
LESSON 19.

1. Grassmannians.

In this Lesson we will see how the antisymmetric tensors play an important role in alge-

braic geometry, providing an ambient space in which naturally embeds the Grassmannian of

subspaces of fixed dimension of a vector space, or, equivalently, of a projective space.

To define the exterior powers of the vector space V , one proceeds in a way which is similar

to the one used to define its symmetric powers. We define the d-th exterior power ∧dV as the

quotient V ⊗d/Λ, where Λ is generated by the tensors of the form v1⊗· · ·⊗vi⊗· · ·⊗vj⊗· · ·⊗vd,
with vi = vj for some i 6= j. The following notation is used: [v1 ⊗ · · · ⊗ vd] = v1 ∧ · · · ∧ vd.

There is a natural multilinear alternating map V × · · · × V = V d → ∧dV , that enjoys the

universal property. Given a basis B = (e1, . . . , en) of V , a basis of ∧dV is formed by the

tensors ei1 ∧ . . . ∧ eid , with 1 ≤ i1 < . . . < id ≤ n. Therefore dim∧dV =
(
n
d

)
. The exterior

algebra of V is the following direct sum: ∧V = ⊕d≥0 ∧d V = K ⊕ V ⊕ ∧2V ⊕ . . .. To define

an inner product that gives it the structure of algebra we can proceed as follows.

Step 1. Fixed v1, . . . , vq ∈ V , define f : V d → ∧d+pV posing f(x1, . . . , xd) = x1∧ . . .∧xd∧
v1 ∧ . . .∧ vq. Since f results to be multilinear and alternating, by the universal property we

get a factorization of f through ∧dV , which gives a linear map f̄ : ∧dV → ∧d+pV , extending

f . For any ω ∈ ∧dV , we denote f̄(ω) by ω ∧ v1 ∧ . . . ∧ vd.
Step 2. Fixed ω ∈ ∧dV , consider the map g : V p → ∧d+pV such that g(y1, . . . , yp) =

ω ∧ y1 ∧ . . . ∧ yp: it is multilinear and alternating, therefore it factorizes through ∧pV and

we get a linear map ḡ : ∧pV → ∧d+pV , extending g. We denote ḡ(σ) := ω ∧ σ.

Step 3. For any d, p ≥ 0 we have got a map ∧ : ∧dV × ∧pV → ∧d+pV , that results to

be bilinear, and extends to an inner product ∧ : (∧V ) × (∧V ) → ∧V , which gives ∧V the

required structure of algebra. It is a graded algebra, the non-zero homogeneous components

are those of degree from 0 to n = dimV .

Proposition 1.1. Let V be a vector space of dimension n.

(i) Vectors v1, . . . , vp ∈ V are linearly dependent if and only if v1 ∧ . . . ∧ vp = 0.

(ii) Let v ∈ V be a non-zero vector, and ω ∈ ∧pV . Then ω ∧ v = 0 if and only if there

exists Φ ∈ ∧p−1V such that ω = Φ ∧ v. In this case we say that v divides ω.

Proof. The proof of (i) is standard. If ω = Φ∧ v, then ω ∧ v = (Φ∧ v)∧ v = Φ∧ (v ∧ v) = 0.

Conversely, if ω ∧ v = 0, v 6= 0, we choose a basis of V , B = (e1, . . . , en) with e1 = v. Write

ω = Σi1<···<ipai1...ipei1 ∧ . . . ∧ eip . Then 0 = ω ∧ e1 = Σi1<···<ip(±)ai1...ipe1 ∧ ei1 ∧ . . . ∧ eip .
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If i1 = 1, the corresponding summand does not appear in this sum, so it remains a linear

combination of linearly independent tensors, which implies ai1...ip = 0 every time i1 > 1.

Therefore ω = e1 ∧ Φ for a suitable Φ. �

Proposition 1.2. Let ω 6= 0 be an element of ∧pV . Then ω is totally decomposable if and

only if the subspace of V : W = {v ∈ V | v divides ω} has dimension p.

Proof. If ω = x1 ∧ · · · ∧ xp 6= 0, then x1, . . . , xp are linearly independent and belong to

W . So we can extend them to a basis of V adding vectors xp+1, . . . , xn. If v ∈ W , v =

α1x1+· · ·+αnxn, and v divides ω, then ω∧v = 0, i.e. x1∧· · ·∧xp∧(α1x1+· · ·+αnxn) = 0. This

implies αp+1x1∧· · ·∧xp∧xp+1 + · · ·+αnx1∧· · ·∧xp∧xn = 0, therefore αp+1 = · · · = αn = 0,

so v ∈ 〈x1, . . . , xp〉.
Conversely, if (x1, . . . , xp) is a basis of W , we can complete it to a basis of V and write

ω = Σai1...ipxi1 ∧ · · · ∧ xip . But x1 divides ω, so ω ∧ x1 = 0. Replacing ω with its explicit

expression, we obtain that ai1...ip = 0 if 1 /∈ {i1, . . . , ip}. Repeating this argument for

x2, . . . , xp, it remains ω = a1...px1 ∧ · · · ∧ xp. �

With explicit computations, one can prove the following proposition.

Proposition 1.3. Let V be a vector space with dimV = n. Let B = (e1, . . . , en) be a basis

of V and v1, . . . , vn be any vectors. Then v1 ∧ · · · ∧ vn = det(A)e1 ∧ · · · ∧ en, where A is the

matrix of the coordinates of the vectors v1, . . . , vn with respect to B.

Corollary 1.4. Let v1, . . . , vp ∈ V , with vi = Σaijej, i = 1, . . . , p. Then v1 ∧ · · · ∧ vp =

Σi1<···<ipai1...ipei1 ∧· · ·∧ eip, with ai1...ip = det(Ai1...ip), the determinant of the p×p submatrix

of A containing the columns of indices i1, . . . , ip.

We are now ready to introduce the Grassmannian and to give it an interpretation as

projective variety via the Plücker map. Let V be a vector space of dimension n, and r be

a positive integer, 1 ≤ r ≤ n. The Grassmannian G(r, V ) is the set whose elements are the

subspaces of V of dimension r. It is usual also to denote it by G(r, n).

There is a natural bijection between G(r, V ) and the set of the projective subspaces of

P(V ) of dimension r − 1, denoted by G(r − 1,P(V )) or G(r − 1, n − 1). Let W ∈ G(r, V );

if (w1, . . . , wr) and (x1, . . . , xr) are two bases of W , then w1 ∧ · · · ∧ wr = λx1 ∧ · · · ∧ xr,
where λ ∈ K is the determinant of the matrix of the change of basis. Therefore W uniquely

determines an element of ∧rV up to proportionality. This allows to define a map, called the

Plücker map, ψ : G(r, V )→ P(∧rV ), such that ψ(W ) = [w1 ∧ · · · ∧ wr].

Proposition 1.5. The Plücker map is injective.
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Proof. Assume ψ(W ) = ψ(W ′), where W,W ′ are subspaces of V of dimension r with bases

(x1, . . . , xr) and (y1, . . . , yr). So there exists λ 6= 0 in K such that x1∧· · ·∧xr = λy1∧· · ·∧yr.
This implies x1 ∧ · · · ∧ xr ∧ yi = 0 for any i, so yi is linearly dependent from x1, . . . , xr, so

yi ∈ W . Therefore W ′ ⊂ W . The reverse inclusion is similar. �

In coordinates with respect to the basis of ∧rV {ei1 ∧ . . . ∧ eir , 1 ≤ i1 < . . . < ir ≤ n},
ψ(W ) is given by the minors of maximal order r of the matrix of the coordinates of the

vectors of a basis of W , with respect to e1, . . . , en.

Example 1.6.

(i) r = n−1: ∧n−1V has dimension n. It results to be isomorphic to the dual vector space

V ∗, and an explicit isomorphism is obtained associating to e1∧· · ·∧êk∧· · ·∧en the linear form

e∗k of the dual basis. In this case the Plücker map is surjective, so ψ(G(n− 1, n)) ' P(V ∗).

(ii) n = 4, r = 2: G(2, 4) or G(1, 3), the Grassmannian of lines in P3. In this case

ψ : G(1, 3)→ P(∧2V ) ' P5. Let (e0, e1, e2, e3) be a basis of V . Let ` = P(L) be the line of P3

obtained by projectivisation of the vector subspace L ⊂ V of dimension 2, let L = 〈x, y〉; then

ψ(`) = [x ∧ y]. Its Plücker coordinates are traditionally denoted by p01, p02, p03, p12, p13, p23,

with pij = xiyj − xjyi, the 2× 2 minors of the matrix(
x0 x1 x2 x3
y0 y1 y2 y3

)
.

This time ψ is not surjective; its image is the subset of ∧2V of the totally decomposable

tensors. Assume char(K) 6= 2. They satisfy the equation of degree 2: p01p23 − p02p13 +

p03p12 = 0, which represents a quadric of maximal rank in P5, called the Klein quadric. The

fact that this equation is satisfied can be seen by considering the 4× 4 matrix
x0 x1 x2 x3

y0 y1 y2 y3
x0 x1 x2 x3

y0 y1 y2 y3

 :

its determinant is precisely the above equation (consider the development of the determinant

according to the first two rows).

For instance the line of equations x2 = x3 = 0, obtained projectivising the subspace

〈e0, e1〉, has Plücker coordinates [1, 0, 0, 0, 0, 0].

In general we can prove the following theorem.

Theorem 1.7. The image of the Plücker map is a closed subset in P(∧rV ).
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Proof. The image of the Plücker map is the set of the proportionality classes of totally

decomposable tensors. By Proposition 1.2, a tensor ω ∈ ∧rV is totally decomposable if and

only if the subspace W = {v ∈ V | v divides ω} has dimension r. We consider the linear

map Φ : V → ∧r+1V , such that Φ(v) = ω∧ v. The kernel of Φ is equal to W . So ω is totally

decomposable if and only if the rank of Φ is n− r. Fixed a basis B = (e1, . . . , en) of V , we

write ω = Σi1<···<irai1...irei1 ∧ . . . ∧ eir . We then consider the basis of ∧r+1V associated to B
and we construct the matrix A of Φ with respect to these bases: its minors of order n− r+1

are equations of the image of ψ, and they are polynomials in the coordinates ai1...ir of ω. �

From now on we shall identify the Grassmannian with the projective algebraic set that

is its image in the Plücker map. The equations obtained in Theorem 1.7 are nevertheless

not generators for the ideal of the Grassmannian. For instance, in the case n = 4, r = 2, let

ω = p01e0 ∧ e1 + p02e0 ∧ e2 + . . .. Then:

Φ(e0) = ω ∧ e0 = p12e0 ∧ e1 ∧ e2 + p13e0 ∧ e1 ∧ e3 + p23e0 ∧ e2 ∧ e3;
Φ(e1) = ω ∧ e1 = −p02e0 ∧ e1 ∧ e2 − p03e0 ∧ e1 ∧ e3 + p23e1 ∧ e2 ∧ e3;
Φ(e2) = ω ∧ e2 = p01e0 ∧ e1 ∧ e2 − p03e0 ∧ e2 ∧ e3 + p13e1 ∧ e2 ∧ e3;
Φ(e3) = ω ∧ e3 = p01e0 ∧ e1 ∧ e3 + p02e0 ∧ e2 ∧ e3 + p12e1 ∧ e2 ∧ e3.
So the matrix is 

p12 −p02 p01 0

p13 −p03 0 p01
p23 0 −p03 p02
0 p23 p13 p12

 .

Its 3 × 3 minors are equations defining G(1, 3), but the radical of the ideal generated by

these minors is in fact (p01p23 − p02p13 + p03p12).

To find equations for the Grassmannian and to prove that it is irreducible, it is convenient

to give an explicit open covering with affine open subsets. In P(∧rV ), let Ui1...ir be the

affine open subset where the Plücker coordinate pi1...ir 6= 0. To simplify notation we assume

i1 = 1, i2 = 2, . . . , ir = r, and we put U = U1...r. If W ∈ G(r, n) ∩ U , and w1, . . . , wr

is a basis of W , then the first minor of the matrix M of the coordinates of w1, . . . , wr is

non-degenerate. So we can choose a new basis of W such that M is of the form

M =


1 0 . . . 0 α1,r+1 . . . α1,n

0 1 . . . 0 α2,r+1 . . . α2,n

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 αr,r+1 . . . αr,n

 .

Conversely, any matrix of this form defines a subspace W ∈ G(r, n) ∩ U . So there is a

bijection between G(r, n) ∩ U and Kr(n−r), i.e. the affine space of dimension r(n− r). The

coordinates of W result to be equal to 1 and all minors of all orders of the submatrix of
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the last n − r columns of M . Therefore they are expressed as polynomials in the r(n − r)
elements of the last n− r columns of M . This shows that G(r, n)∩U is an affine subvariety

of U isomorphic to Ar(n−r). By homogenising the equations obtained in this way, one gets

equations for G(r, n).

For instance, in the case n = 4, r = 2, the matrix M becomes

M =

(
1 0 α13 α14

0 1 α23 α24

)
.

One gets 1 = p01, α23 = p02, α24 = p03,−α13 = p12,−α14 = p13, α13α24 − α23α14 = p23. If we

make the substitutions and homogenise the last equation with respect to p01, we find the

equation of the Klein quadric p01p23 − p02p13 + p03p12 = 0.

Theorem 1.8. G(r, n) is an irreducible projective variety of dimension r(n − r), and it is

rational.

Proof. We remark that G(r, n)∩Ui1...ir is the set of the subspaces W which are complementar

to the subspace of equations xi1 = . . . = xir = 0. It is clear that they have two by two non-

empty intersection. Therefore, the projective algebraic set G(r, n) has an affine open covering

with irreducible varieties isomorphic to Ar(n−r). Using Ex. 5, Lesson 7, we conclude that

G(r, n) is irreducible. Its dimension is equal to the dimension of any open subset of the open

covering, r(n− r). Since it is irreducible and contains open subsets isomorphic to the affine

space, it is rational. �

Assume char(K) 6= 2. In the special case r = 2 with n ≥ 4, using the Plücker coordinates

[. . . , pij, . . .], the equations of the Grassmannian G(2, n) are of the form pijphk − pihpjk +

pikpjh = 0, for any i < j < h < k.

Also in the case of G(2, n), as for Pn × Pm and Vn,2, there is an interpretation in terms

of matrices, that I expose here without entering in all details. Given a tensor in ∧2V with

coordinates [pij], we can consider the skew-symmetric n× n matrix whose term of position

i, j is pij, with the conditions pii = 0 and pji = −pij. In this way we can construct an

isomorphism between ∧2V and the vector space of skew-symmetric matrices of order n.

From tA = −A, it follows det(A) = (−1)n det(A). If n is odd, this implies det(A) = 0. If

n is even, one can prove that det(A) is a square. For instance if n = 2, and A =

(
0 a

−a 0

)
,

then det(A) = a2.
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If n = 4, and P =


0 p12 p13 p14

−p12 0 p23 p24

−p13 −p23 0 p34

−p14 −p24 −p34 0

 , then det(P ) = (p12p34−p13p24 +p14p23)
2.

In general, for a skew-symmetric matrix A of even order 2n, one defines the pfaffian of

A, pf(A), in one of the following equivalent ways:

(i) by recursion: if n = 1, pf

(
0 a

−a 0

)
= a; if n > 1, one defines

pf(A) = Σ2n
i=2(−1)ia1iPf(A1i),

where A1i is the matrix obtained from A by removing the rows and the columns of indices

1 and i. Then one verifies that pf(A)2 = det(A);

(ii) (in characteristic 0) given the matrix A, one considers the tensor ω = Σ2n
i,j=1aijei∧ej ∈

∧2K2n. Then one defines the pfaffian of A as the unique constant such that pf(A)e1 ∧ · · · ∧
e2n = 1

n!
ω ∧ · · · ∧ ω.

For a skew-symmetric matrix of odd order, one defines the pfaffian to be 0.

Proposition 1.9. A 2-tensor ω ∈ ∧2V is totally decomposable if and only if ω ∧ ω = 0.

Proof. If ω is decomposable, the conclusion easily follows. Conversely, if ω = Σ2n
i,j=1aijei ∧

ej and ω ∧ ω = 0, then the pfaffians of the principal minors of order 4 of the matrix A

corresponding to ω are all 0, therefore from definition (ii) it follows that the pfaffians of the

principal minors of all orders are 0, and also det(A) = 0. In conclusion A has rank 2. Then

one checks that ω is the ∧ product of two vectors corresponding to two linearly independent

rows of A. For instance, if a12 6= 0, then ω = (a12e2+. . .+a1nen)∧(−a12e1+a23e3+. . .+a2nen).

�

The equations of G(2, n) are the pfaffians of the principal minors of order 4 of the matrix P .

They are all zero if and only if the rank of P is 2. Therefore the points of the Grassmannian

G(2, n), for any n, can be interpreted as (proportionality classes of) skew-symmetric matrices

of order n and rank 2.

The subvarieties of the Grassmannian G(r, n) correspond to subvarieties of Pn covered by

linear spaces of dimension r. Conversely, any subvariety of Pn covered by linear spaces of

dimension r gives rise to a subvariety of the Grassmannian.

Example 1.10.

1. Pencils of lines. A pencil of lines in Pn is the set of lines passing through a fixed point

O and contained in a 2-plane π such that O ∈ π. Assume that O has coordinates [y0, . . . , yn],
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and fix two points A,B ∈ π, different from O. Let A = [a0, . . . , an], B[b0, . . . , bn]. Then a

general line of the pencil is generated by O and by a point of coordinates [. . . , λai +µbi, . . .].

Therefore the Plücker coordinates of a general line of the pencil are pij = yi(λaj + µbj) −
yj(λai +µbi) = λqij +µq′ij, where qij, q

′
ij are the Plücker coordinates of the lines OA and OB

respectively. So the lines of the pencil are represented in the Grassmannian by the points of a

line. Conversely one can check that any line contained in a Grassmannian of lines represents

the lines of a pencil.

2. Lines in a smooth quadric surface. Let Σ : x0x3 − x1x2 = det

(
x0 x1

x2 x3

)
= 0 be

the Segre quadric in P3. A line of the first ruling of Σ is characterised by a constant ratio of the

rows of the matrix

(
x0 x1
x2 x3

)
. Therefore it can be generated by two points with coordinates

[x0, x1, 0, 0], [0, 0, x0, x1]. The Plücker coordinates of such a line are [x20, 0, x0x2,−x0x2, 0, x22].
This parametrizes a conic contained in G(1, 3). Similarly, the lines of the second ruling

describe the points of another conic, indeed the coordinates are [0, x20, x0x1, x0x1, x
2
1, 0]. These

two conics are disjoint and contained in disjoint planes.

3. Planes in G(1, 3). One can prove that G(1, 3) contains two families of planes, and

no linear space of dimension > 2. The planes of one family correspond to stars of lines in

P3 (lines in P3 through a fixed point), while the planes of the second family correspond to

the lines contained in the planes of P3. The geometry of the lines in P3 translates to give

a decription of the geometry of the planes contained in G(1, 3). Since on an algebraically

closed field of characteristic 6= 2 two quadric hypersurfaces are projectively equivalent if and

only if they have the same rank, one obtains a description of the geometry of all quadrics of

maximal rank in P5.

Exercises 1.11. 1. Let `, `′ two distinct lines in P3. Let [pij] be the Plücker coordinates of

` and [qij] those of `′, 0 ≤ i < j ≤ 3. Prove that ` ∩ `′ 6= ∅ if and only if

p01q23 − p02q13 + p03q12 + p12q03 − p13q02 + p23q01 = 0.

(Hint: fix points on the two lines to get the Plücker coordinates.)


