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The purpose of this article is to present a detailed numerical study of the second-order phase tran-
sition in the 2D Ising model. The importance of correctly presenting elementary theory of phase
transitions, computational algorithms and finite-size scaling techniques results in a important under-
standing of both the Ising model and the second order phase transitions. In doing so, Markov Chain
Monte Carlo simulations are performed for di↵erent lattice sizes with periodic boundary conditions.
Energy, magnetization, specific heat, magnetic susceptibility and the correlation function are calcu-
lated and the critical exponents determined by finite-size scaling techniques. The importance of the
correlation length as the relevant parameter in phase transitions is emphasized.

I. INTRODUCTION

When the Ising model was first introduced it appeared
that the greatly over-simplified representation of inter-
molecular forces on which this model is based would make
it inapplicable to any real system. However, it seems
that the essential features of cooperative phenomena do
not depend on the details of intermolecular forces but
on the mechanisms of propagation of long-range order,
and the Ising model is a good first approximation to the
problem1.

Nowadays it is the most-well studied model in sta-
tistical mechanics and although the Ising model is the
simplest model used for describing a magnetic system it
is also very versatile. For example, it can also be used
to model the fluid critical point and binary alloy phase
separation2,3 and variations of the Ising model have been
used in high energy physics to explore the behavior of
simple lattice gauge theories2,4.

Despite the simplicity of the model, it was solved ana-
lytically in the one dimensional case in 1925 by Ising5 and
in 1944 for a two dimensional square lattice by Onsager6.
It is worth to mention that while the 2D Ising model can
be solved analytically, the 3D version does not have an
analytical solution7 or at least no solution has been found
yet. However, solutions of the model can be found by nu-
merical methods in n dimensional square lattices with-
out huge complications and for this reason it is usually
presented as an exercise in textbooks3,8,9 and in some
computational undergraduate courses.

Eventhough the computational algorithms for solving
the Ising model are “simple” to program and are dis-
cussed and presented in textbooks3,8–10, recovering ther-
modynamic properties and critical phenomena is not as
straightforward as it might seem. It is our interest to
give the reader a complete approach to the problem of
critical phenomena in the 2D Ising model. In order to
do so, elementary theory of phase transitions, compu-
tational algorithms and finite-size scaling techniques are
presented.

This article is organized as follows. In section II we
introduce the Hamiltonian that is used to describe mag-
netic systems. From sections III to V an introduction
to phase transitions, the order parameter, the correla-
tion function and the scaling hypothesis is made. Results
from the mean-field and the exact solution are presented
in section VI, while in section VII the tools for the nu-
merical solution are discussed. Later, in section VIII the
numerical results are presented with their benchmarks
and those results are discussed in section IX, where the
importance of the correlation length in phase transitions
is emphasized. An example of the relevance of the corre-
lation length is given in section X where the XY model
is discussed. Suggested problems are given in section XI.

II. MAGNETIC SYSTEMS

In describing the thermodynamics of magnetic systems
a mean-field model called the Weiss molecular field the-
ory is used. The Hamiltonian of the system is the Heisen-
berg Hamiltonian given by11,12,

H = �J

2

X

hiji

si · sj �H ·
X

i

si, (1)

where H is the applied external magnetic field, J is the
coupling constant which measures the strength of the in-
teraction between spins or magnetic moments si. Ferro-
magnetic systems correspond to J > 0 and antiferromag-
netic ones correspond to J < 0. Each spin has a fixed
location on a lattice and is labeled by the index i, whereas
the index hiji indicates that only nearest-neighbor inter-
actions are considered.
The net magnetization of the system is given by,

M =
X

i

si. (2)

It is important to stress that setting J as a constant
in the Hamiltonian is a simplification. The interaction
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between the spins Jij is named the exchange interaction
and is an extremely complicated quantum phenomena,
see for example Mattis’s book13.

In the Ising model, the spin values are restricted to
si = ±1. The one dimensional Ising model does not
exhibits a phase transition for T > 0. On the other
hand, the two dimensional Ising model solved by Onsager
showed that in absence of an external magnetic field there
is a continuous phase transition for finite temperature6.

III. PHASE TRANSITIONS

The most familiar examples of phase transitions are
those involving water, either melting ice to water or its
evaporation. These phase transitions named first-order,
are characterized by having discontinuous values in its
extensive variables14. However, there is a subtlety when
water is transformed into a gas. If it is at a su�ciently
high temperature and pressure, there is no transition be-
tween a liquid and a gas. The limiting pressure and tem-
perature above which there is no phase transition are
called the critical pressure and critical temperature, re-
spectively.

At the critical pressure and temperature there is a con-
tinuous phase transition or second-order transition, and
in this case the extensive variables of the system are con-
tinuous, while being its first derivatives, as the specific
heat or isothermal compressibility, discontinuous. It is
important to mention that this kind of phase transitions
occur for all pure substances, not only water, but car-
bon dioxide, gold, and others. In a pressure-temperature
phase diagram (p� T diagram), this point is referred as
the critical point.

Second order phase transitions are also seen in mag-
netic systems, such as the Curie point in ferromagnets,
which separates the paramagnetic phase from the ferro-
magnetic one. That means that below the Curie temper-
ature, the system presents spontaneous magnetization in
absence of an external magnetic field, whereas above it,
the system is not magnetized and only responds when an
external magnetic field is applied. It is our goal to illus-
trate what happens in second-order transitions and how
do the thermodynamic properties of the systems behave.

IV. THE ORDER PARAMETER AND THE
CORRELATION FUNCTION

As stated above, in a second-order transition the first
order derivatives of the extensive variables of the sys-
tem are discontinuous. These thermodynamic quantities,
such as the specific heat, the isothermal compressibility
or the magnetic susceptibility in a magnetic system fol-
low a power law near the transition.

For example,

CH ⇠ |1� T/Tc|�↵
, (3a)

�M ⇠ |1� T/Tc|��
, (3b)

where CH and �M denote the specific heat and the sus-
ceptibility, respectively. Tc is the critical temperature, T
is the temperature at which the system is, ↵ and � are
critical exponents.
The dimension of space is very important in phase

transitions. Critical exponents fall into di↵erent univer-
sality classes depending upon both, the space dimension
and on the system degrees of freedom. For example, the
van der Waals equation of state reproduces correctly the
critical exponents of a real liquid-gas for a four dimen-
sional space.
Nonetheless, critical exponents give vital information

about the thermodynamic system under study because
they are linked with a key concept for understanding
phase transitions, the order parameter. The relationship
between the critical exponents and the order parameter
is that the behavior of the last one near Tc is usually
described by the first ones. But what is the order pa-
rameter? In simple words the order parameter is the
indicator of a phase transition.
For example, in a magnetic system, the magnetization

M = |M| is the order parameter. Because in absence of
an external magnetic field, in the paramagnetic phase,
the spins have equal probability of pointing in any direc-
tion, thus the net magnetic moment of the system van-
ishes M = 0. Though, below the critical temperature or
Curie temperature, in the ferromagnetic phase, the spins
tend to align in one direction, causing the net magnetic
moment to be di↵erent from zero M 6= 0. On the other
hand, for the van der Waals fluid, the density is the order
parameter and for the Bose Einstein Condensation is the
wavefunction itself, amongst other examples.
It is in the order parameter where the spontaneous

symmetry breaking reflects. Considering the magnetic
system, in the absence of an external magnetic field, the
high-temperature phase (paramagnetic phase) exhibits
an isotropic alignment of magnetic moments, but the low-
temperature phase (ferromagnetic phase) does not. This
isotropy is broken (M 6= 0), with a given preferential
direction, called a spontaneous symmetry breaking.
To really understand the behavior of a system near a

phase transition we need to look at its microscopic be-
havior. Such information is enclosed in the correlation
function G(r, T ), that expresses how the local order pa-
rameter at one position is correlated with itself a distance
r away. The correlation function is explicitly written as
G(r, T ) to indicate that it depends both on the temper-
ature of the system T and the distance r.
Above the critical temperature, the correlation func-

tion falls o↵ exponentially:

G(r, T ) ⇠ exp

✓
� r

⇠(T )

◆
(T > Tc), (4)
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where ⇠(T ) is called the correlation length, which as in-
dicated, depends on temperature.

At the transition, the correlation falls o↵ as a power
law given by:

G(r, T ) ⇠ 1

rd�2+⌘
(T = Tc), (5)

where d is the dimension of space and ⌘ is a critical expo-
nent. This power law decrease of the correlation function
at the critical point implies that there is no length scale
in the system, and consequently far regions in the system
are correlated.

Finally, below the critical temperature, the correlation
function reaches a constant value for large r. Such or-
dering is called long-range order and it is a consequence
of cooperative e↵ects that cause regions of space to be
correlated with nearby regions, which in turn causes a
farther region to be correlated. In this case, the devia-
tion from the asymptotic value can be described by:

G(r, T )�G(1, T ) ⇠ exp

✓
� r

⇠(T )

◆
(T < Tc), (6)

The correlation length also follows a power law as the
transition is approached from either T > Tc or T < Tc,
given by:

⇠(T ) ⇠ |1� T/Tc|�⌫
, (7)

being ⌫ another critical exponent.
It is interesting to notice that the critical exponents are

not independent from each other, because of the following
scaling laws15:

� = ⌫(2� ⌘), (8a)

2 = ↵+ 2� + �, (8b)

⌫d = 2� ↵, (8c)

� = �(� � 1), (8d)

so it is only necessary to know two of them to determine
the rest of them.

V. THE SCALING HYPOTHESIS

The scaling hypothesis is as its name indicates, a hy-
pothesis. It does not rely on any model but has been
very successful in correlating experimental data. The ba-
sic idea of the scaling hypothesis is that the long-range
correlations around Tc are responsible for all singular
behavior16.

So far, it seems that the important parameter in a
phase transition is the order parameter and for a long
time it was considered that if there was not a spontaneous
symmetry breaking in the order parameter in a system,
then that system does not exhibit a phase transition.
This belief is false and a brief example will be discussed
later (see section X).

In the scaling hypothesis, instead of looking at the
order parameter, we focus our attention in a quantity
we briefly mentioned in the last section: the correlation
length ⇠. It states that the divergence of ⇠ near Tc is
responsible for the singular dependence on 1 � T/Tc of
physical quantities, and, as far as the singular depen-
dence is concerned, ⇠ is the only relevant length in the
system16.

It is not the scope of this paper to derive the scaling
laws, neither to prove them by renormalization theory,
but just to present the importance of the scaling hypothe-
sis. An extensive discussion of the scaling hypothesis and
renormalization theory can be found in references16,17.

VI. MEAN-FIELD AND ONSAGER’S
SOLUTION

In the mean-field solution the Landau free energy18–20

is proposed as,

FL ⇡ Fo +
1

2
a(T )Nm

2 +
1

4
b(T )Nm

4 +O(m6), (9)

where m = |M|/N and N denotes the total number of
lattices sites (spins). Under this proposal, if a(T ) and
b(T ) are both positive, only m = 0 is a minimum. On
the other hand if b(T ) is positive and a(T ) changes sign,
then m = 0 is a local maximum and the minimum of FL

occurs atm 6= 0, that is an indicator of a phase transition.
The transition takes place at the critical temperature Tc,
which is determined when a(T ) changes sign, i.e. a(Tc) =
0. As a result, Tc for the Ising model is20,

kBTc = zJ, (10)

where z is the number of nearest neighbors, so for the two
dimensional case kBTc = 4J . In the mean-field model it
is also found that in absence of an external magnetic field,

M = 0 T � Tc, (11a)

M ⇠ |1� T/Tc|� T < Tc, (11b)

with the critical exponent � = 1/2. On the other hand,
when T = Tc,

H ⇠ M
�
, (12)

with the critical exponent � = 3.
On the other hand, although it is not the scope of

this paper to present the exact solution, some important
results that will be used in section VIII are given. The
magnetization is found to be,

M = 0 T > Tc, (13a)

M = N
⇥
1� sinh�4(2�J)

⇤1/8
T < Tc, (13b)

and the critical temperature is,

kBTc =
2J

ln(1 +
p
2)

⇡ 2.269J. (14)
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Also, near Tc the heat capacity behaves as,

CH =NkB
2

⇡

✓
2J

kBTc

◆2 
� ln

✓
1� T

Tc

◆
+

ln

✓
kBTc

2J

◆
�

⇣
1 +

⇡

4

⌘�
,

(15)

so CH diverges logarithmically near the transition. From
the results above, the critical exponents � = 1/8 and
↵ = 0 are found. All the critical exponents found in
the mean-field and the exact solution are presented in
TABLE I in section VIII. A complete discussion on the
exact solution can be found in references15,19,20.

VII. NUMERICAL SOLUTION

A. The Metropolis Hastings Algorithm

In principle we could construct all the possible states
the system can access {n} and their energies E{n}. With
that information, we could construct the partition func-
tion and recover all the thermodynamics of the system.
However there are 2N possible states the system can ac-
cess, so it is impractical to follow this path for large
systems that obey N � 1. This problem is solved by
designing a Markov chain (or transition matrix) in such
way that its stationary distribution is the desired distri-
bution, in this case,

P ({n}) = 1

Z
e
��E{n} , (16)

where {n} is a possible state of the system and P ({n})
is its stationary distribution.

But what is a Markov chain? It is one type of stochas-
tic process. It is an evolution in time that is not de-
terminist, but there is a transition probability from the
current state to a new state. A Markov chain satisfies
that the probability distribution of the next state de-
pends only on the current state.

If an initial probability distribution is given P(t = 0) =
P0 and P is the transition matrix at one step, it is easy
to prove that the probability distribution at the n-th step
is simply,

Pn =
�
PN

�T
P0, (17)

where the probability distributions are written as column
vectors and the superindex T denotes transposition.

It is our interest to know if there is a stationary distri-
bution P1, i.e. if the next limit exists,

P1 = lim
t!1

�
PT

P0

�
. (18)

BecauseP0 is the initial distribution and does not depend
on t, the problem reduces to determine if limt!1 PT

exists. It is straight forward to prove that if P1 exists
and P0 = P1, then 8 t,Pt = P1.

A matrix is called ergodic if it is possible to go from
every state to every other state (not necessarily in one
move). This condition can be rewritten the following
way: A matrix is ergodic, i.e. limt!1 PT exists if and
only if its only unitary eigenvalue is 1. If the multiplic-
ity of the eigenvalue is m, the theorem also holds. This
condition is written as,

P = PT
P, (19)

that expressed in index notation and using the fact that
for a Markov chain

P
i
Pij = 1, where Pij is the transi-

tion probability from state i to state j, is:
X

j 6=i

Pi Pij =
X

j 6=i

Pj Pji. (20)

This equality is known as the global balance equations.
However, if it is possible to found a stationary distribu-
tion that for all pair of states i and j,

Pi Pij = Pj Pji, (21)

then the global balance equations will trivially hold. This
condition is named the detailed balance equation and is
the basis of the Metropolis-Hastings algorithm.

In statistical mechanics, in the canonical ensemble, the
stationary distribution is know and is given by the den-
sity matrix, so the probability that the system is in a
state {n} is given by eq. (16). In that sense, in order to
design a Markov chain that respects the desired distribu-
tion it is only necessary to consider the detailed balance
equation (21), that may be rewritten in a more enlight-
ening manner as,

P ({n})
P ({m}) =

P({m} ! {n})
P({n} ! {m}) . (22)

And because of eq. (16), this condition is simply,

P ({n})
P ({m}) = exp (�� [E({n})� E({m})]) , (23)

so there is no need to calculate the partition function.
The Metropolis-Hastings algorithm works as

follows21,22:

1. The system is at state {m} and the new configu-
ration {n} is proposed with probability g({m} !
{n}).

2. After this new state is proposed, it will accepted
with probability ↵({m} ! {n}) or rejected with
probability 1�↵({m} ! {n}). That way, the tran-
sition probability P({m} ! {n}) simply becomes,

P({m} ! {n}) = g({m} ! {n})↵({m} ! {n}). (24)

3. The detailed balance equation is written as,

P ({n})
P ({m}) =

g({m} ! {n})↵({m} ! {n})
g({n} ! {m})↵({n} ! {m}) , (25)
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so,

↵({m} ! {n})
↵({n} ! {m}) =

P ({n})
P ({m})

g({n} ! {m})
g({m} ! {n}) , (26)

4. In order to fulfill the detailed balance equations,
the acceptance distribution may be expressed as,

↵({m} ! {n}) = min

✓
1,

P ({n})
P ({m})

g({n} ! {m})
g({m} ! {n})

◆
.

(27)

In the Ising model when {n} and {m} only di↵er by one
spin, g({n} ! {m}) = g({m} ! {n}), so the acceptance
distribution is,

↵({m} ! {n}) = min (1, exp [���E({n}, {m})]) . (28)

With those ideas in mind, the Metropolis-Hastings al-
gorithm for the Ising model is the following. First, a
L ⇥ L square lattice is created and in every site of the
lattice a spin is set with equal probability of being ±1.

Each step of the algorithm is:

1. Choosing randomly one site k in the lattice.

2. Calculating the energy di↵erence �Ek between the
actual energy and the energy if the spin is flipped.

3. If �Ek < 0, we accept the new configuration. If
not, we accept it with probability exp (���Ek)
where � = 1/kBT and kB is the Boltzmann con-
stant.

4. Energy and magnetization of the system are saved.

The Metropolis-Hastings algorithm samples states ac-
cording to the appropriate probability distribution and
then temporal sequences of energies and magnetizations
(generated by the sampling process) are then averaged
and observables calculated. It is important to empha-
size that the algorithm only generates configurations in
agreement with the probability distribution, it does not
compute thermodynamic quantities, but only samples en-
sembles from which thermodynamic quantities must be
determined. In the next sections, techniques for recover-
ing those quantities are discussed.

Before presenting those techniques, it is necessary to
define a Monte Carlo step (MC step) as the product
N = L

2 with the number of steps in the algorithm. For
example, for a system with a lattice size L = 50, a MC
step is 2500 steps of the algorithm. That way a MC step
takes into account the lattice size, while a step of the
algorithm does not. In that sense, performing 1000 MC
steps for di↵erent lattices sizes allows the same sampling
in all the lattices, whereas performing 1000 steps of the
algorithm for di↵erent lattices sizes does not. It is nat-
ural that the following question arises: How many MC
steps produce a good sampling? This question is not so
easy to answer because it depends on the temperature
at which the system is as it will be clear later in section
VIII. Nevertheless, if while computing observables, such
as energy and magnetization, the curves are noisy, then
it is necessary to perform more MC steps.

B. Finite Size Scaling

So far we have presented the mean-field, the Onsager
and the numerical solution. However one problem arises
in the numerical solution: while the mean-field and the
exact solutions are in the thermodynamic limit (N ! 1
and V ! 1, but N/V constant), in the numerical solu-
tion it is impossible to achieve N,V ! 1. Although we
are incapable of achieving the thermodynamic limit a nu-
merical computation, K. Binder developed the finite-size
scaling technique for analyzing finite-size systems such as
the ones considered in computational simulations23–25.

As we have stated before, near the critical tempera-
ture, the correlation length diverges following a power
law (7),

⇠ ⇠ |1� T/Tc|�⌫
. (29)

For a finite system, the thermodynamics quantities are
smooth functions of the system parameters, so the diver-
gences of the critical point phenomena are absent. De-
spite this fact, in the scaling region (⇠ >> L), we can see
traces of these divergences in the occurrence of peaks:
peaks become higher and narrower and its location is
shifted with respect to the location of the critical point
as the system size increases (see FIG. 1). These charac-
teristics of the peak shape as a function of temperature
are described in terms of the so-called finite-size scaling
exponents8:

• The shift in the position of the maximum with re-
spect to the critical temperature is described by,

Tc(L)� Tc(1) / L
�� (30)

• The width of the peak scales as,

�T (L) / L
�⇥ (31)

• The peak height grows with the system size as,

Amax(L) / L
�max . (32)

Defining t = |1� T/Tc|, the finite-size scaling Ansatz
is formulated as follows8:

AL(t)

A1(t)
= f


L

⇠1(t)

�
, (33)

where A is a physical quantity. Assuming that the expo-
nent of the critical divergence of A is �, and using the
fact that ⇠ ⇠ t

�⌫ , the scaling Ansatz is formulated as,

AL(t) = t
��

f
⇥
Lt

�⌫
⇤
, (34)

which can be rewritten as,

AL(t) = L
�/⌫

�

h
L
1/⌫

t

i
, (35)

where the scaling function f is replaced by �, by extract-
ing the factor (Lt⌫)�/⌫ from f and writing the remaining
function in terms of (Lt⌫)1/⌫ . From eq. (35) it is clear
that8:
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FIG. 1. Typical behaviour of a physical quantity A vs tem-
perature close to the critical point for various system sizes.
Figure taken from Thijssen8.

• The peak height scales as L�/⌫ , hence �max = �/⌫.

• The peak position scales as L�1/⌫ , hence � = 1/⌫.

• The peak width also scales as L
�1/⌫ , hence ⇥ =

1/⌫.

These are the finite-size scaling laws for any thermody-
namic quantity which diverges at the critical point as a
power law. From these laws it is clear that if the peak
height, position and width are calculated as a function
of the system size, the critical exponents ⌫ and � can be
determined.

Nevertheless, the finite-size scaling technique presents
di�culties due a to phenomena named critical slowing-
down3,8–10. Because of the critical slowing-down, config-
urations change very slowly, and it is di�cult to sample
enough configurations. Near the critical point, the fluc-
tuations increase and the time needed to obtain reliable
values for the quantities measured also increases. As the
system size increases, calculations for larger systems re-
quire more time, not only because of the computational
e↵ort needed per MC step for a larger system, but also
because we need to generate more and more configura-
tions in order to obtain reliable results.

C. The correlation function

In systems where a physical magnitude relies on posi-
tion, one generally asks, given a measure at point ri what
is the relation between another measure at a position rj .
This is given by the spatial correlation function and if
the system presents translational and rotational symme-
try (such as the Ising model), the correlation function
does not depend on the absolute positions, but on the

distance between them r = |ri � rj |. The correlation
function we are interested in is the spin-spin correlation
function that is given by,

G(r, T ) = hs(0)s(r)i � hs(0)i2, (36)

where hs(0)i = hs(r)i = M/N is the magnetization per
site. Because of the fact that for a given temperature, M
reaches a constant value, the behavior of the correlation
function is carried by the first term of eq. (36). Thus we
will consider the correlation function only as,

G(r, T ) = hs(0)s(r)i. (37)

We are limited to obtain the correlation function up to
L/2, where L is the lattice size. This came as a price
of the periodic boundary conditions we are using. For
example, if we were to calculate the correlation function
up to the value r = L we would find that the correlation
function would be equal to 1 there, which is wrong be-
cause we would be computing the correlation function at
r = 0.
The process for numerically computing the correlation

function is the following: For each spin in the lattice, we
determine the value of the local correlation function in
r = n taking the average magnetic state of the nearest
neighbors found advancing n steps in one direction (not
mixing êi with êj , i.e. not moving in diagonals). The
global correlation function is taken as the average of all
the local correlation functions. The process is repeated
for multiple simulations of the Ising model.

D. Hints, tips and improvements to the algorithm

As soon as Monte Carlo methods are used, one has
to think on ways of making e�cient calculations, as the
brute force involved in a Monte Carlo simulation often
requires a lot of trials to reduce standard deviation.

• First of all, Monte Carlo methods are always good
candidates for parallelization, which even in a dual-
core cpu will half the calculation time.

• Second, one can remove some “randomness” to the
method to improve e�ciency. In the case of the
Ising model, we know that the system will have pre-
ferred states as a function of the temperature. For
temperatures below the critical temperature, once
the system is near a local energy-minimum, it will
hardly jump to another one (even if the energy gap
is huge). All annealing methods are prone to this
phenomena, and hence, once the standard devia-
tions of the last steps start to decrease, the system
should be randomized entirely to make sure we are
not just sampling a single region of the entire space
of states.

• Third, one can also improve the selection of spins
to flip, and change a completely uniform random
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distribution to a random walker (or walkers) that
moves through the lattice. However, there are some
considerations when doing this because we might
actually modify the result or slow down the con-
vergence rate. The step size is crucial to ensure a
good convergence ratio. What could we say about
the walker if the last ten attempts to switch a spin
have failed? Well, the zone it is moving through is
already in a stable position, hence, it sounds wise
to increase the step size of the random walker. So
the goal is to accelerate the relaxation process by
trying to modify spins in unstable areas (which we
assume are stable because a lot of changes are ac-
cepted). The best results are achieved if we mon-
itor the standard deviation of the system in order
to restart it as soon as it falls in a stable position.

• Last but not least, it is important to perform sim-
ulations with a good random number generator.
This is usually not a problem with most of com-
putational languages, but it is something to take
into account because a poor random generator will
be unable to sample enough configurations, thus
obtaining unreliable results.

VIII. NUMERICAL RESULTS

Energy, magnetization, specific heat and magnetic sus-
ceptibility are studied first. It is a simple exercise to show
that the specific heat CH and the magnetic susceptibility
�M can be expressed in terms of the fluctuations of the
extensive variables,

CH =

✓
@E

@T

◆

H

=
1

kBT
2

�
hE2i � hEi2

�
, (38a)

�M =

✓
@M

@H

◆

T

=
1

kBT

�
hM2i � hMi2

�
. (38b)

For a system in the thermodynamic limit, below the
critical temperature, the system has equal probability of
magnetizing with a positive value of M or its negative
value. Nevertheless, in the absence of an external mag-
netic field there is no chance for the system to go from
the positive branch of spontaneous mangetization to the
negative one and viceversa. However, for finite size sys-
tems there is a characteristic time (that depends of course
on the lattice size) in which the system can go from one
branch of the spontaneous magnetization to the other.
Simply averaging the magnetization would yield an in-
correct value, for this reason, instead of using hMi as the
order parameter, h|M |i will be used10. If h|M |i is consid-
ered as the order parameter, �M is also calculated using
h|M |i instead of hMi, so the susceptibility we compute
is not exactly the “true” one. However, in the T < Tc

region they are equal and in the T > Tc region they only
di↵er by a constant, so the critical exponents are equal.
Likewise, this consideration also “smooths” the compu-
tation of thermodynamic quantities that are derivatives

of the order parameter, and in general of any physical
quantity that presents a peak.
Because magnetization M , energy E, specific heat CH

and magnetic susceptibility �M are extensive variables,
intensive ones were constructed by dividing them by the
number of sites in the lattice N = L

2. From now on, M
will refer to magnetization per site, E energy per site, CH

specific heat per site and �M magnetic susceptibility per
site. All simulations were performed considering kB = 1
and J = 1. In FIGS. 2, 3 and 4, magnetization per
site M , magnetic susceptibility per site �M and specific
heat per site CH as functions of the temperature T are
presented. This plots were constructed by performing
15,000 MC steps per lattice size L.

FIG. 2. (Color online) Magnetization per site M vs tempera-
ture T for di↵erent lattice sizes L = 5 (squares), 10 (circles),
25 (up triangles), 50 (down triangles) and 100 (diamonds) for
the 2D Ising model.

A. How does the algorithm works

In FIGS. 5 and 6 simulations for a L = 50 lattice are
presented. In FIG. 5 the behavior of the order param-
eter is presented as a function of the 15,000 MC steps
performed, while in FIG. 6 it is presented as a function
of the energy of the system.
From these figures important information is inferred.

From FIG. 5 is clear that for T < Tc and T > Tc the
behavior of the system is relatively simple. In the ferro-
magnetic phase the magnetization settles around a value
M 6= 0, while in the paramagnetic phase the order pa-
rameter settles around M = 0. But near the transition
T ⇡ Tc, the system behaves exotically, the fluctuations in
the order parameter are huge, M does not settle around
a concrete value, but covers a broad range of values.
These observations are supported by FIG. 6, where it
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FIG. 3. (Color online) Magnetic susceptibility per site �M

vs temperature T for di↵erent lattice sizes L = 5 (squares),
10 (circles), 25 (up triangles), 50 (down triangles) and 100
(diamonds) for the 2D Ising model.

FIG. 4. (Color online) Specific heat per site CH vs tempera-
ture T for di↵erent lattice sizes L = 5 (squares), 10 (circles),
25 (up triangles), 50 (down triangles) and 100 (diamonds) for
the 2D Ising model.

is clear that the algorithm samples states according to
the probability distribution (see eq. (16)).

• For T < Tc, there are few possible states to be sam-
pled, but they are distributed in the phase space.
This is due to the fact that states are sampled until
the system magnetization reaches its final value. As
the system gets magnetized, fewer and fewer states
are accesible, because the acceptance probability
gets smaller and smaller because �Ek < 0 only

FIG. 5. (Color online) Magnetization per site M vs MC steps
for temperatures T = 1.4, 2.269 and 3.4 for a lattice size of
L = 50.

FIG. 6. (Color online) Magnetization per site M vs energy
per site E for temperatures T = 1.4, 2.269 and 3.4 for a lattice
size of L = 50.

if spins are flipped in the same direction of M and
exp (���Ek) is very small, so flipping a spin in the
opposite direction of M is extremely improbable.

• For T > Tc there are more possible states to be
sampled, but they localized near M = 0. This is
obvious from the fact that the system is in its para-
magnetic phase and fluctuations are only caused by
thermal e↵ects.

• Near Tc, the simulation samples a broad portion
of the phase space. Near the scaling region gener-
ating statistically independent configurations con-
sumes more computational time due to the critical
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slowing-down. This fact implies that near the tran-
sition configurations change very slowly, they cor-
relate over large time scales. For this reason, near
the critical temperature more MC steps are needed
than for T < Tc and T > Tc.

B. Critical exponents and the correlation function

Despite the fact that for correctly determining the crit-
ical exponents, finite-size scaling techniques must be used
and the correlation function studied, in the 2D Ising
model there is an analytical solution. For this reason,
we consider important to prove that our numerical so-
lution is consistent with the analytical solution, hence
FIGS. 7 and 8 are fitted with Onsager’s solution. The
solution found by Onsager for the magnetization in the
2D Ising model is given by eq. (13), hence the curve used
to fit the data presented in FIG. 7 in the T < Tc regime
is,

M =


A�B sinh�4

✓
2

T

◆�C
. (39)

On the other hand, CH is given by eq. (15), so the curve
used to fit the data presented in FIG. 8 in the T < Tc

regime is,

CH = A�B ln

✓
1� T

C

◆
. (40)

It is worth to notice the importance of considering large
systems in order to obtain reliable results of the thermo-
dynamic quantities because Onsager’s solution is in the
thermodynamic limit while numerical simulations are fi-
nite. In this manner, large systems were considered in
order to ensure the correct behavior of magnetization
and specific heat and from FIGS. 7 and 8 the critical
exponents � and ↵ are determined.

To determine ⌫ and �, FIGS. 9 and 10 were constructed
in order to use finite size-scaling techniques. In FIG. 9
the critical temperature as a function of the lattice size
Tc(L) is obtained from FIG. 2 by finding the inflection
point in each curve. In order to construct FIG. 10, 50
simulations of 15,000 MC steps each, were performed for
every lattice size considered and the peak height of the
magnetic susceptibility �max was registered for every rep-
etition. These values were averaged and presented with
its standard deviation of the mean. We know that near
the critical temperature Tc fluctuations are large, so the
standard deviation of �max will be large too, but we are
only interested in knowing how precise is its mean, that
is why the standard deviation of the mean is used as a
measure of uncertainty.

In FIG. 11 we plot the magnetization M as a function
of the external magnetic field H for di↵erent tempera-
tures and from FIG. 12 the critical exponent � is deter-
mined. These plots were also constructed by performing
15,000 MC steps per lattice size L. Later, in FIG. 13 the

FIG. 7. (Color online) Magnetization per site M vs temper-
ature T for a lattice size of L = 100 for the 2D Ising model.
The curve in the left region was fitted with eq.(39), where
A = 1.020± 0.026, B = 1.027± 0.017 and C = 0.129± 0.007.

FIG. 8. (Color online) Specific heat per site CH vs temper-
ature T for a lattice size of L = 100 for the 2D Ising model.
The curve in the left region was fitted with eq. (40), where
A = �0.404±0.030, B = 1.293±0.059 and C = 2.303±0.011.

correlation function G(r, T ) is presented as a function of
r for di↵erent temperatures. The behavior discussed in
section IV is clearly observed in this figure. For T > Tc

the correlation function falls of exponentially, at T = Tc if
follows a power law and for T < Tc, it reaches a constant
value for large r. Likewise, in FIG. 14 the correlation
function at the critical temperature G(r, Tc) is presented
as a function of r. The critical exponent ⌘ is determined
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by fitting the data with the curve,

G(r, Tc) = A
exp (�r/B)

rC
. (41)

These plots were constructed by performing 100 simu-
lations of 15,000 MC steps each, for every temperature
considered and the correlation function was registered for
every repetition and then averaged.

Finally, in TABLE I, the critical exponents for the two
dimensional Ising model are presented as found by On-
sager and the mean-field and numerical solutions.

FIG. 9. (Color online) Inverse of the critical temperature T�1
c

vs inverse of lattice size L�1 for the 2D Ising model. The curve
was fitted with a power law T

�1
c = T

�1
c1 � bL

�1/⌫ , and the
critical exponent ⌫ was determined.

TABLE I. Critical exponents and critical temperature of the
2D Ising model given by Onsager, the mean-field and the
numerical solutions.

Exponent Onsager Mean-Field Numerical

↵ 0 0 0

� 0.125 0.5 0.129 ± 0.007

� 1.750 1 1.779 ± 0.225

⌫ 1 0.5 0.994 ± 0.098

⌘ 0.250 0 0.277 ± 0.002

� 15 3 14.641 ± 0.821

Tc 2.269 4 2.269± 0.002

IX. DISCUSSION

From TABLE I is clear that the mean-field solution is
inconsistent with the Onsager solution. Why does the

FIG. 10. (Color online) Peak height of the magnetic suscep-
tibility �max vs lattice size L for the 2D Ising model. The
curve was fitted with a power law �max = aL

�/⌫ , and the
critical exponent � was determined.

FIG. 11. (Color online) Magnetization per site M vs external
magnetic field H for temperatures T = 1.3 (triangles), 2.269
(circles) and 3.3 (squares) for a lattice size of L = 50.

mean-field solution is not consistent? In its derivation,
fluctuations in the order parameter are neglected. How-
ever, in the scaling region, these fluctuations are of great
relevance to the thermodynamic quantities, so neglect-
ing them will of course generate incorrect results in this
region, such as the critical temperature and the critical
exponents.
The main problem with most of the mean-field solu-

tions is that the Landau free energy coe�cients are ex-
panded in Taylor series around Tc. This expansion pre-
supposes that the coe�cients are analytic around Tc, a
supposition that is not valid. It is also worth to no-
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FIG. 12. (Color online) Magnetization per site M vs external
magnetic field H for a lattice size of L = 100 at the critical
temperature. The curve was fitted with a power law M =
aH

1/�, and the critical exponent � was determined.

FIG. 13. (Color online) Correlation function G(r, T ) for tem-
peratures T = 1.5 (squares), 2.0 (circles), 2.269 (up triangles),
2.6 (down triangles) and 3.1 (diamonds) for a lattice size of
L = 128.

tice that the mean-field model presented here gives the
same critical exponents for any dimension. This of course
is a severe problem, because universality classes depend
both on the space dimension and on the system degrees
of freedom. Although most of the mean-field models do
not reproduce correctly the critical exponents, they pro-
vide a useful insight to phase transitions, so they should
not be discarded. Actually mean-field models such as
the Ginzburg-Landau model, are used for describing phe-
nomena such as superfluidity and superconductivity, see

FIG. 14. (Color online) Correlation function G(r, T ) at the
critical temperature Tc for a lattice size of L = 128. The
curve was fitted with eq.(41), where A = 0.706± 0.002, B =
108.525± 2.752 and C = 0.277± 0.002.

for example Annett’s book26. On the other hand, the nu-
merical results are consistent with the analytic solution
and the critical exponents determined by the numerical
simulation obey the scaling laws (eqs. (8)). These are
good indicators that numerical solutions are reliable for
recovering information about the thermodynamics of a
system.

In the numerical solutions, if very small systems are
considered, then no reliable information can be inferred
(see for example the L = 5 curve in FIG. 2). And al-
though the thermodynamic limit is impossible to achieve
in numerical simulations, finite-size scaling techniques
provide a useful tool to recover information about the
critical exponents. This technique requieres to consider
large systems in order to obtain solid information, but as
we have stated before, in the scaling region, the critical
slowing-down phenomena is present, so sampling enough
configurations requieres a lot of MC steps. This problem
is partially solved by using other algorithms that respect
the detailed balance equations, but that improve the ef-
fectiveness of the algorithm update (instead of flipping
one spin, clusters are flipped) so they reduce the critical
slowing-down phenomena27–29.

So far we have seen that two particular situations
emerge in the scaling region: the mean-field solution fails
to reproduce the critical exponents and the numerical so-
lution exhibits critical slowing-down. These situations il-
lustrate the fact that in experiments is very hard to set
the system at the critical point, it “does not like to be”
at the critical point, so critical phenomena (such as crit-
ical opalescence) is hard to achieve. This di�culty to be
at the critical point is exhibited in the mean-field solu-
tion in the fact that performing an analytic expansion
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around the critical point fails; and in the numerical so-
lution in the critical slowing-down, where is di�cult to
sample enough configurations: the system does not “feel
comfortable” in the critical region. This “unconformity”
is understood in terms of the correlation length, because
near the transition ⇠ diverges, so there is no length scale
in the system and far regions in the system are correlated.
This correlation between far regions is what troubles nu-
merical simulations to sample enough configurations and
mean-field models to describe the singularity of the crit-
ical point.

Despite the fact the phase transition can be “visual-
ized” in the order parameter, the correlation length ⇠ is
the most important parameter in a phase transition, be-
cause it defines the scale of the system. As it has been
pointed earlier, the scaling laws, based on the scaling
hypothesis16 and proved by renormalization theory17, are
based on the fact that the singularity of a phase transi-
tion is carried by the correlation length, and that in the
critical region, the only length in the system that matters
is ⇠. Also, the finite-size scaling techniques are based on
this fact. We can conclude that large spin clusters, but
not the details over smaller scales, account for the physics
of critical phenomena. An example of the importance of
the correlation function and the correlation length is the
Berezinskii-Kosterlitz-Thouless (BKT) phase transition
which we will briefly discuss in the next section.

It is indispensable to mention that given a Hamilto-
nian it is relatively simple to adapt the numerical algo-
rithm in order to sample states according to the appro-
priate probability distribution, and that the techniques
presented for recovering thermodynamic quantities are
the same regardless the dimension of the system and its
Hamiltonian. For example, the 3D Ising model can be
solved by using the same methods presented here, where
the only di↵erence is that the number of nearest neigh-
bors is z = 6.

X. BEYOND THE ISING MODEL: THE XY
MODEL

In 1966 Mermin and Wagner proved that in certain two
dimensional systems, such as the XY model, where in the
Heisenberg Hamiltonian (eq. (1)) the spin values are re-
stricted to two dimensional unit vectors si = (cos ✓, sin ✓),
there cannot be long-range order at finite temperature30.

What this means, is that for all T > 0, the spin-spin
correlation function does not become constant for large
separation between spins, and the net magnetization van-
ishes.

However, in 1973, Kosterlitz and Thouless showed that
despite the fact there is no long-range order, there is a
phase transition at finite temperature in such models31.
The phase transition is not seen neither in the sys-
tem magnetization nor in the specific heat or the mag-
netic susceptibility, but in the correlation function. For
T > Tc the spin-spin correlation function decreases expo-

nentially, while for T < Tc it falls o↵ as a power law, as
happens in a continuous phase transition at the critical
temperature.

The XY model exemplifies the BKT transition. It is
not a continuous phase transition as the one exhibited by
the Ising model, because the order parameter (the mag-
netization) is zero for any temperature and the specific
heat and the magnetic susceptibility are not discontin-
uous at the transition, so it is referred as an essential
phase transition.

It is indeed true that there is not long-range order in
the XY model, so Kosterlitz and Thouless proposed to
call this order as topological long-range order. The BKT
transition is characterized by the existence of vortices,
which are bound in pairs of zero total vorticity (vortex
buddies) below the critical temperature, while above it
they are free to move under the influence of a weak ap-
plied magnetic field31.

Vortices are the topological stable configurations in the
XY model. Above the critical temperature unpaired vor-
tices and anti-vortices may be present, and below it vor-
tex buddies formation happens (a vortex and an anti-
vortex are coupled). Thus, instead of spontaneous mag-
netization of the system as happens in the Ising model,
the presence of vortex buddies characterize the BKT
transition (see FIG. 15).

The 2D XY model is interesting because it is used to
describe systems in condensed matter physics, such as su-
perfluid helium films31, superconducting films32, Joseph-
son junction arrays33, to cite a few examples amongst
others. There is a lot of interest in explaining the phe-
nomena previously presented and in order to do so, the
BKT transition must be understood, so many e↵orts are
focused in this problem, see for example references34–37.

XI. SUGGESTED PROBLEMS

A. Implementing the Wol↵ algorithm

As a first problem, the Wol↵ algorithm may be imple-
mented. A nice discussion on how to do it for the Ising
model is presented in references3,29. The reader should
compare his results with those shown in FIGS. 5 and 6
in order to understand how di↵erent the algorithms are.
The reader should be able to reproduce FIGS. 2, 3, 4 and
11.

If the reader is interested, he could implement the
Metropolis-Hastings and the Wol↵ algorithm for the XY
model. In the Metropolis-Hastings algorithm, each step
is very similar as the one used for the Ising model, except
that in each step an angle ✓ is proposed (instead of the
flipping proposal) and �Ek calculated. For implement-
ing the Wol↵ algorithm, see reference28.
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FIG. 15. (Color online) Behavior of the two dimensional Ising model (top) and XY model (bottom) at T < Tc, T = Tc and
T > Tc. For the Ising model, an " spin (si = 1) is represented by red and a # spin (si = �1) is represented by blue. For the
XY model, because every spin is determined by ✓, so si = (cos ✓, sin ✓), an angle of 2⇡ is represented by red and an angle of
0 by blue. In the low-temperature phase, the Ising model exhibits spontaneous magnetization while in the XY model, vortex
buddies appear (characterized by points where a continuum from blue to red, or viceversa, circle the point. It is worth to notice
that these points are present by pairs with opposite circulation).

B. Higher-order spin Ising models

The Ising model is not restricted to square lattices and
spin-1/2 systems, but it has been extended to other ge-
ometries like triangular lattices38,39. Physicists have not
only played with the geometry, but with the nature of
the interactions and the spin angular momentum as well.

The Blume-Emery-Grittiths (BEG) model is a spin-1
Ising model with a Hamiltonian given by40,

H = �J

X

hiji

si · sj �K

X

hiji

s
2
i
s
2
j
��

X

i

s
2
i
, (42)

that presents a rich variety of critical and multicrit-
ical phenomena41 and has been extended to spin-3/2
systems42–45. The BEG model was introduced to simu-
late He3-He4 mixtures40, but it has been used to describe
critical phenomena magnetic systems and multi compo-
nent fluids46,47.

We suggest the reader to implement the Metropolis-

Hastings algorithm for the Heisenberg Hamiltonian
eq. (1) for a spin-1 or spin-3/2 system and calculate E,
M , CH , �M and the correlation function, then compare
the results with the spin-1/2 system. Later, implement
the BEG model and observe what does the “multicritical
phenomena” means and how do thermodynamic proper-
ties behave in this model.
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