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We propose a simple algorithm for generating normally distributed pseudorandom numbers. The algorithm
simulatesN molecules that exchange energy among themselves following a simple stochastic rule. We prove
that the system is ergodic, and that a Maxwell-like distribution that may be used as a source of normally
distributed random deviates follows in tié—occ limit. The algorithm passes various performance tests,
including Monte Carlo simulation of a finite two-dimensional Ising model using Wolff's algorithm. It only
requires four simple lines of computer code, and is approximately ten times faster than the Box-Muller
algorithm.[S1063-651X99)04409-4

PACS numbd(s): 02.70.Lq, 02.90tp

[. INTRODUCTION its output as a function dfl, and establish useful criteria for
its implementation. Correlation test results are also reported.
Pseudorandom numbéPRN) generation is a subject of
considerable current interefl]. Deterministic algorithms Il. ALGORITHM
lead to undesirable correlations, and some of them have been A. Motivation
shown to give rise to erroneous results for random-walk
simulations[2], Monte Carlo(MC) calculations[3,4], and
growth modeld5]. Most of the interest has been focused on
PRN’s with uniform distributions. Less attention has been
paid to nonuniform PRN generation. 3

Consider real numbens;,v,, ... vy, placed inN com-
puter registers, in analogy to the velocitied\bparticles that
make up a closed classical system in one dimension. Pairs of
registers andj, say, selected at random without bias, are to

Sequences of random numbers with Gaussian probability'nter‘f"CtnzsorgehOW’ conserving the kinetic energy, that is,
distribution functions(PDF’S are needed to simulate on duantityvi+vj. The motivation for imposing this conserva-
computers Gaussian noise that is inherent to a wide varietjfon rule comes from the foundations of statistical physics.
of natural phenomengs]. Their usefulness transcends phys- 1 he statistical distribution function of a systesay, any one
ics. For instance, numerical simulations of economic system8f N particles in equilibrium with a macroscopic system is
that make use of so-callegeometricBrownian modelgin ~ an expongntlal function pf the add|_t|ve constants of the mo-
which noise is multiplicativealso need a source of normally tion (the kinetic energy in our casé the two systems are
distributed PRN'47]. There are several algorithms available Statistically uncorrelatefil6]. By analogy with the approach
for PRN’s with Gaussian PDFE8]. Some, such as the Box- [© equmbnum that is believed to take _pl_ace in statlst|ca_\l
Muller’s algorithm, require an input of uniform PRN'’s, and Physics, we therefore expect that a sufficient number of it-
their output often suffers from the pitfalls of the latf@]. ~ erations will lead to a Maxwelliarii.e., GaussianPDF of
Robustness is therefore a relevant issue. In addition, BoXegister values, from which the desired PRN's may be
Muller's algorithm is slow and can consequently consumedrawn. (See, also Ref 10].) We define below the simplest
significant fractions of computer-simulation timgk0]. The ~ interaction we can think of in order tha implementation
comparison method demands several uniform PRN's pePh @ computer be very fast, aii) that we may be able to
normal PRN, and is therefore also slgid]. Use of tables Prove that a Gaussian PDF does indeed ensue.

[12] is not a very accurate method. Algorithms that are re-

lated, but not equivalent, to the one we propose here have B. Procedure

been published10,13, but they are somewhat cumbersome  gefore the algorithm is implemented, &llregisters must
to use. In addition, no proof of their validity has been given.,e jnitialized to, sayy,=1 for all | satisfying I=1<N, or

We propose here an algorithm for the generation of nory)|y, may be read from a set of register values saved from
mally distributed PRN’s that is quite simple and fast. It is ay previous computer run, which we assume to fulIiw,Z

stochastic caricature of a closed classical systeriN gfar- ; ;
. . o . =N. Let U(1,N) andU,(1,N) be unbiased integer random
ticles. Their velocities provide a source of PRN’s. We prove (LN) ((LN) 9

L . S iabl th in the int 1N t th t
that, for any initial state, their PDF becomes Maxwellian m‘éZ:Zlbl e‘?"hgoalgcl)r;ith; :‘glg\ﬁ' NJ, except that), canno
the N—co limit, after an infinite number of two-particle ' '

“collisions” takes place. To this end, we first prove that our 1=U(1N); J=U,(1N), (2.1
system is ergodi¢14,15. The proof is not exceedingly dif-
ficult because our system is not deterministic. We also study v,<—(v,+vJ)/\/§, (2.2
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Vye——v, + \/Evj. (2.3
The updated value of,, from Eq.(2.2), is used in Eq(2.3).
After an initial warmupphase(see below, v, andv, may be
drawn each time transformation®2.1)—(2.3) are applied.
These are the two desired PRN'’s, wila,)=0 and (v?)
=1 for all 1. Their PDF becomes Gaussi@ee belowin the
N—oo limit.

Transformation(2.1)—(2.3) may be thought of as a rota-
tion of * /4 with respect to a randomly chosen plane
(+ /4 and — 7/4 are for the two possible index orderings,
IJ andj1, respectively.
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€>0 there exists an elemehin Hy such thah(p) is within
distancee of q, that is, thad(h(p),q)<e. For this purpose,
it is sufficient to prove thaiy is dense irSQ(N), by which
we mean that for ang in SO(N) and any real numbe¢
>0 there exists an elemehtin Hy such thatdsony(9,h)
<€, where the distancésqy)(9,h) between elementgand
h is defined to be the supreme of the distancesSqn,,
d(g(p),h(p)), for p varying in Sy_;. To show that this is
indeed sufficient, leg in SO(N) andh in Hy be such that
g=9g(p) and dsgn)(9,h)<e. The desired relation,
d(h(p),q)<e, then follows from the definition of

Numerical evidence that the system becomes nonergonSqN)(g'h)'

if J—U;[1N] is replaced by=1+1 modN in Eq. (2.1) is
easily obtained. This remark may help to place the signifi
cance of the proof that follows into proper perspective.

Il. PROOF
Let P,(v) be the probability density atv
=(Vvq,Va, ...,Vy), after transformation(2.1)—(2.3) has

We now prove foN=3 thatH\ is dense irSO(N). The

Pproof is extended to higher dimensions by induction. Note

first that H; does not belong to the set dihite rotation
groups in three dimensiofl7], and is therefore an infinite
group. Let groupSO(3) be covered by disks of radiug2
each. A finite number of them is sufficient, sin&X3) is
compact{18]. It follows that there must be at least one disk
with two elements oH; in it, sinceHj3 has an infinite num-

been appliedh times. We prove below, in three stages, thatber of elements. Let these two elementsrb@nds, and let

P,(v)—constantover spherical surfacéy_4, if N=3, in
the n—oe limit. We first proveP,(v)«~ P,(u) asn—» if v
andu are related[From here on, we say that pointsandu
arerelatedif succesive transformation®.1)—(2.3) of v can
lead tou.] We then prove that the system’s “orbit” covers
Sy 1 denselyfthat is, that any poing e Sy, can be brought
arbitrarily close to any other poinie Sy_; by applying
transformations(2.1)—(2.3) to v a sufficient number of
timeg). Then, the desired result follows easily.

To start the proof, let kerneK(v,v') be defined by
Prs1(V)=SK(v,v)P,(Vv") dv’, and let

Fo= [ 1P2av)— Pl @3
Note first thatF,<0 implies thatP, . (V) is more uniform
than P,(v), in the sense thafdv [P, ,(v)—P]?<[dv

[P,(v)—P]% whereP=1/fdv. It follows from the defini-
tion of K(v,v’) that

Fnzf dv[

Making use of the detailed balance conditiok(v,v")
=K(Vv',v), that our system satisfies, and the relatjorv
K(v,v')=1, Eq.(3.2 can be cast into

2
fdle(Vrvl)Pn(Vl) —Pﬁ(V)]- 3.2

Fn 3.3

_ %f dvf dvlf dv, Q(V,vq,V,),

where, Q=K (v,v;)K(V,V,)[P,(v1) — Pn(V,)]%. Therefore,

g(u,e) be elementrs™! of H;, which is a rotation by an
angle smaller tharr about some undeterminad axis. We
will build elements ofH; that are as arbitrarily close to any
given rotation. To this end, it is sufficient to show that it can
be done for a set of infinitesimal generators of rotatidrés.
One such set is made up of infinitesimal rotations about three
linearly independent axes. Consider axes U,, andus that
are obtained fronu by rotationsg(1,7/2), g(2,7/2), and
0(3,7/2) about each one of the coordinate axes by angle
/2. The correspondng infinitesimal rotations are given by
[18], g(u,,e)=g(1,7/2)g(u,€)g *(1,7/2). This concludes
the proof for three dimensions.

We now prove by induction that for any elemeyft, «)
of the rotation about plang/ by angle « of the rotation
groupSQO(N), there exists an elemegiof groupHy that lies
arbitrarily close to it, folN=3. By hypothesis, ang(1J,a),
for1,J=1,2,... N can be approximated by an elemenof
Hy . We show now thagi(1 N+1,a), for1=1,2,... N, can
also be approximated by elements df,;. We takeg
€ Hy within distancee of g,,(«). Now, since rotations pre-
serve distances, it follows thaj(i N+1,0) e SO(N+1),
given by g1 N+1,0)=g(1t N+1,7/2)g(1j,a)g” (1 N
+1,7/2) is within distancee of g’ e Hy, 1, given by g’
=g(1 N+1,7/2)gg"*(1 N+1,7/2). This proves dense cov-
erage inN=3 dimensions. This is a kind of stochastic gen-
eralization of Jacobi’s theorei5] to more than two dimen-
sions.

To conclude the proof thaP,(v)—constantin the n
—oo limit, consider any two pointy andU’ as centers of
disksD(V) andD(U’), both of radius, in Sy_4. Since the
system’s orbit coversy_, densely forN=3, it follows that

in the n—oo limit, P,(v) becomes constant over each set ina pointU that is related td/ exists arbitrarily close tdJ)’.

Sy 1 within which any two points/,u are related.

We next prove that the orbit of any poiptn Sy_; under
the action of the transformation group defined by Egsl)—
(2.3 covers the sphere densely. Lt} denote the subgroup
of SO(N) corresponding to transformatior®.1)—(2.3). To
show that the orbiH y(p) of anypin Sy_; is dense irSy_ 1,
we have to prove that for anyin Sy_; and any real number

Consider now two equal size diskV) andD(U). The fact
that there exists at least one sequence of rotatiohkithat
takeV into U implies that there exists a rotatignin Hy that
transformsV into U. Sinceg is a rotation, it transforms
D(V) rigidly into D(U). It follows that [pn,dv
Pn(V) = Jpydu Pn(u) asn—ce. Sincer is arbitrary, and/
andU’ are any two points irSy_1, it follows that P(v) is
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FIG. 2. gy, defined in Eq(4.1), versusx. The full line is for the
zeroth order ternjsee below Eq(4.1)] in a 1N expansion. Data
points shown a#l, O, and® are forN=8, 32, and 512, respec-
tively.

FIG. 1. Numbem(v) of PRN'’s generated withir—Av/2 and
v+Av/2, for Av=0.1. Data points shown &, [0, andH, follow
from sequences of 1:910'% 1.8x 10°, and 2< 10° PRN’s, respec-
tively.

small probability g.) It then follows that [In(M/qv)]?
constant overSy_; (except, perhaps, on a set of measure<Nsp/p must be satisfied biN. Thus, approximately 70
zerg. Ergodicity follows[15] _ _ _registers are sufficient in order to generate as many & 10
The desired result follows easily. Let the single reglsterpRN,S’ with roughly a 10% error in the probability for the
PDF p(v) be the n—o limit of p,(v), where p,(v;) largestPRN in the sequence.
=[Pn(v) dvodvg, ... dvy. SinceP,(v)—constantasn
—o, jt follows that

B. Warmup
y2| (N=3)/2 _ _ _
p(v)e<|1—— (3.9 Our algorithm must be applied a numbegN of times
N before it is ready for use unless all, are initialized

with “equilibrium” values (stored from some previous com-
puter run. The distribution of all register values then evolves
towards equilibrium, as illustrated in Fig. 3. Deviations from
equilibrium are statistically insignificant fon,=2 and N
=1024, and fom,=4 andN=1 048 576. Sincen, is ex-
pected to increase asNp n,=8 should provide ample
Jvarmup for any foreseeable applications.

Clearly, p(v)—C exp(—v%2) in the N—c limit, which is
the desired result.

IV. NUMERICAL TESTS

We next address the following practical issué$:how
good an approximation to a Gaussian PDF of PRN’s i
achieved with a necessarifinite set ofN registers ii) how
long must the initial warm-up phase b@j) period length,
and (iv) what correlations, if any, are found numerically.

C. Recurrence

The number of PRN’s that must be generated before each
PRN in sequence,v,, ... vy returns within distance
from its initial value is exponential itN. More specifically,
we estimate it to be#/+/N)(1/r)N for N>1, wherer is the
period of the algorithm used to selecndj in Eq. (2.1).
The estimation is based df,(v) —constantoverSy_, as
n—o. We have numerically checked this for small values of

A. Distribution

Frequencies of events from sequences df, 100°, and
10'° PRN’s generated with transformatid®.1)—(2.3), with
N=1024, are exhibited in Fig. 1. In order to determine how
much PDF’s obtained for finit&l deviate from the desired
Gaussian distribution, it is convenient to rewrite E814) as
follows,

p(v)“e—vz/zegN(v)/N, (4.

n(v)

where gn(v)=v2(3—v2/2)/2+ O(1/N). N~ 1gy(v) is ap-
proximately the fractional deviationgp(v)/p(v), from
Gaussian form ifSp(v)/p(v)<<1. We have checked this be-
havior numerically. The results obtained are shown in Fig. 2.
Clearly, thenumber of registers Nhat must be used in-
creases with the numb#&t of PRN'’s one intends to generate.
This is because the value of the largest PRN generated in- FIG. 3. Numbem(v) of PRN's withinv — Av/2 andv + Av/2,

creases, on the average, with More precisely, the value of
v beyond which PRN'’s are only generated with probabijty
is approximately given by?~2In(M/vq). Now, it follows
from Eq.(4.1) that the fractional erro8P/P in the probabil-
ity density atv is approximatelyN~*v2(3—v?2/2)/2 for very
large N. (It is pointless to require this error to be too small
since a PRN is expected to be generated beyomdth a

for Av=0.1, starting from initial conditionsv,=1, for all 1
e[1N], after transformatior(2.1)—(2.3) are iterated B,N times
(that is, after each register interacts, on the averaggtithes. The
O and ¢ stand forn,=2,10, respectively, foN=1024. The ¢,
®, and O stand for n,=2,4, and 10, respectively, foN
=1 048576. The two straight lines stand rexp(—v?2) for two
values ofC.
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FIG. 4. Average energy per spin, obtained from MC simulations
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We tried the latter two algorithms, which have been shown
to lead by themselves to unacceptable results for the Ising
model [3], in order to test our algorithm’s robustness. The
results shown in Fig. 4 are gratifying.

Similarly, the specific heat and magnetizatiom fluctua-
tions data points obtained follow approximately the relations
C=Cy+8.4N, and((sm)?)=xo+ 33N, respectively, where
co=1.497(1) andy,=0.54542), in agreement with the
known exact valuef3,22).

V. CONCLUSIONS

Double precision is recommended. It prevents excessive

using Wolff's algorithm, versus the inverse of the number of regis-drift of the sum EVIZ away from its assigned value. Even

ters used for the generation of PRN’s with Gaussian PDF's.@he

then, single precision accuracy is to be expected at the end of

H, andA stand for data points that follow from feeding our algo- a sequence of some %GDRN,S, unless the sum is normal-

rithm with the following uniform PRN generatorsL, R(250,103,

XOR), and RAN3, respectively. Unacceptable energy values that

have been obtained in Ref3] using R(250,103x0R), and RAN3
are also shown as bars next to thexis.

ized several times during the run.

In summary, we have shown that implementation of Egs.
(2.1)—(2.3) provides a source of PRN’'s with an approxi-
mately Gaussian PDF. Some *1fegisters(molecule$ are

N. Thus, an effectively infinite recurrence time follows for sufficient for some purposes, but up to°idr more may be

any reasonably large value bif

D. Correlations

necessary for more demanding taslt$aving to make a de-
cision about the number of registers to be used may some-
times be an unwelcomed task. On the other hand, it is a
virtue of the algorithm that one can control, through the

Correlations between a finite number of PRN's clearlyyajue ofN, how close the output is to be from sequences of

vanish asN—«, sincel andy in Eq. (2.1) are supposedly
independent PRN’s. We have searched for correlatioms in
succesively generated PRN's/q,vs,...vy,, for m

truly independent random numbers with Gaussian PDF's.
Initial warmups for arbitrary initial conditions are necessary;
it is sufficient to let each register initially interact an average

=3,4,...,6,performing a chi-square isotropy test over the number of, say, eight times. The system’s recurrence time

corresponding m-dimensional space. Anmtuple v
=V{,Vy, ...V, Was said to belong to thieh cone of 1024

randomly oriented cones with axe®,,w,, ... Wigog, if

was shown to be exponential M, and therefore effectively
infinite. Its behavior appears to be robust. The proposed al-
gorithm runs an order of magnitude faster on computers than

0.99<v-w,=<1. No significant deviations from isotropy were the most often used Box-Muller meth¢8,9]. For a fortran

observed for 19 generatedn tuples.
Implementation of Wolff's algorithnf20] in MC calcula-

code of our algorithm or other questions, please write
JFF@Pipe.Unizar.Es.

tions of the Ising model’s critical behavior is a demanding
test that some well-known uniform PRN generators have
failed[3]. Large clusters are then flipped as a whole, and this
tests correlations in very long sequences. We have used nor- Continuous help from Dr. Pedro Mamgz with computer

mal PRN’s generated by our algorithm as input into a MCsystems is deeply appreciated by J.F.F. We are indebted to
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