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Chapter 4: Fluid Flow and Sediment Transport 

Affronteremo ora il tema di come i sedimenti su muovino in risposta ad 
un flusso fluido (in una direzione). 

Perchè? 

La conoscenza delle condizioni di trasporto dei sedimenti è necessaria 
per la risoluzione di problemi ingegneristici, come ad es. la costruzione 
di un canale e il mantenimento funzionale dello stesso. 

Nell’interpretazione dei sedimenti fossili: la gran parte dei sedimenti 
hanno subito processi associati ad acque in movimento (fiumi, correnti 
oceaniche, maree). 

Cinematica dei fluidi e trasporto dei sedimenti sono ovviamente 
collegati nella formazione delle strutture sedimentarie primarie. 



Flusso fluido tra due piastre parallele 

La piastra al fondo è fissa e quella superiore viene accelerata applicando 
una determinata forza che agisce da sinistra a destra. 

La piastra superiore accelererà fino a raggiungere una certa velocità 
terminale e il fluido tra le due piastre si metterà in movimento. 

La velocità terminale viene raggiunta quando la forza applicata è 
bilanciata dalla forza resistente (qui rappresentata come una forza uguale 
e opposta applicata sulla piastra stazionaria al fondo). 



Quando la piastra superiore inizia ad accelerare, la velocità del fluido in 
contatto con la piastra è uguale alla velocità della piastra (cioè vi è una  
no slip condition tra la piastra e il fluido). 
Le molecole del fluido in contatto con quelle contro la piastra saranno 
quindi accelerate a causa dell’attrazione viscosa tra loro .... e così avanti 
lungo tutta la colonna del fluido. 

La viscosità del fluido (µ, l’attrazione tra le molecole del fluido) 
comporta quindi una dislocazione progressiva degli strati del fluido a 
partire dalla piastra in movimento. 



Il gradiente di velocità (cambio di velocità tra le due piastre; du/dy) 
varierà linearmente da zero a Uterm . 

La velocità terminale è raggiunta quando la forza resistente (riferita alla 
piastra stazionaria di fondo) è uguale alla forza applicata alla piastra 
superiore (le forze si eguagliano quando non c’è cambio di velocità nel 
tempo). 

La piastra al fondo è stazionaria (U=0) e quindi il gradiente di velocità 
varierà da zero al fondo a Uterm alla sommità, che è uguale alla velocità 
terminale della piastra superiore. 



Man mano che la velocità incrementa verso l’alto lungo la colonna di 
fluido, ci deve essere uno slittamento attraverso ciascun piano del fluido 
che è parallelo alle piastre. 

Questa forza resistente è la “resistenza del fluido” piuttosto che una forza 
applicata sulla piastra di fondo. 

Al contempo, ci deve essere una resistenza allo slittamento, altrimenti la 
piastra superiore accelererebbe all’infinito. 

Questa stessa resistenza comporta un’accelerazione iniziale di ciascun 
strato fluido fino alla propria velocità terminale (che diminuisce verso il 
basso). 



Fluid viscosity is the cause of fluid resistance and the total viscous 
resistance equals the applied force when the terminal velocity is 
achieved. 

The viscous resistance results in the transfer of the force applied to the 
top plate through the column of fluid. 

Within the fluid this force is applied as a shear stress (τ, the lower case 
Greek letter tau; a force per unit area) across an infinite number of planes 
between the top and bottom plates. 



The shear stress transfers momentum (mass times velocity) through the 
fluid to maintain the linear velocity profile. 

The magnitude of the shear stress is equal to the force that is applied to 
the top plate. 

The relationship between the shear stress, the fluid viscosity and the 
velocity gradient is given by: 

du
dy

τ µ=



From this relationship we can determine the velocity at any point within 
the column of fluid. 

Rearranging the terms: 
du
dy

τ
µ
=

We can solve for u at any height y above the bottom plate by integrating 
with respect to y. 

y
duu dy
dy

= ∫ dy cτ
µ

= +∫

y cτ
µ

= +

yu yτ
µ

=

Where c (the constant of integration) is the velocity at y=0 (where u=0) 
such that: 

du
dy

τ µ=



yu yτ
µ

=

From this relationship we can see the following: 

2.  That as the applied force (equal to τ) increases so does the velocity 
at every point above the lower plate. 

1.  That the velocity varies in a linear fashion from 0 at the bottom 
plate (y=0) to some maximum at the highest position (i.e., at the top 
plate). 

3.  That as the viscosity increases the velocity at any point above the 
lower plate decreases. 



Fluid Gravity Flows 

Water flowing down a slope in response to gravity (e.g., rivers). 

In this case, the driving force is the down slope component of gravity 
acting on the mass of fluid; more complicated because the deeper into 
the flow the greater the weight of overlying fluid. 



D is the flow depth. 

FG is the force of gravity acting on a cube of fluid with dimensions 
(D-y) x 1 x 1; note that y is the height above the lower boundary. 

θ is the slope of the water surface (note that depth is uniform so that this 
is also the slope of the lower boundary). 

τy is the shear stress that is acting across the bottom of the block of fluid 
(it is the downslope component of the weight of fluid in the block). 



For this general situation, τy, the shear stress acting on the bottom of 
such a block of fluid that is y above the bed:  

( ) 1 1 siny g D yτ ρ θ= − × × ×

Weight of water in the block The proportion of that weight 
that is acting down the slope. 

Clearly, the deeper within the water (i.e., with decreasing y) the greater 
the shear stress acting across any plane within the flow. 



At the boundary (y=0) the shear stress is greatest and is referred to as 
the boundary shear stress (τo); this is the force per unit area acting on 
the bed which is available to move sediment. 

sino gDτ ρ θ=
Setting y=0:  

( )siny g D yτ ρ θ= −



( )siny g D yτ ρ θ= −

y
du
dy

τ µ=

Given that: 

and 

sin ( )du g D y
dy

ρ θ
µ

−
=

We can calculate the velocity distribution for such flows by substituting: 

y du
dy

τ

µ
=or 



sin ( )du g D y
dy

ρ θ
µ

−
=

Integrating with respect to y: y
duu dy
dy

= ∫

sin ( )g D y dy cρ θ
µ

= − +∫

2sin
2y

g yu yDρ θ
µ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
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2

g yyD cρ θ
µ

= − +

Where c is the constant of integration and equal to the velocity at the 
boundary (uy=0) such that: 



2sin
2y

g yu yDρ θ
µ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

Velocity varies as an exponential function from 0 at the boundary to 
some maximum at the water surface; this relationship applies to: 

Steady flows: not varying in velocity or depth over time. 
Uniform flows: not varying in velocity or depth along the channel. 
Laminar flows: see next section. 



I. The classification of fluid gravity flows 

a) Flow Reynolds’ Number (R). 

Reynold’s experiments involved injecting a dye streak into fluid moving 
at constant velocity through a transparent tube. 

Fluid type, tube diameter and the velocity of the flow through the tube 
were varied. 



Dye followed a 
straight path. 

Dye followed a wavy 
path with streak 
intact. 

Dye rapidly mixed 
through the fluid in 
the tube 

Reynolds’ Results 



Reynolds classified the flow type according to the motion of the fluid. 

Laminar Flow: every fluid 
molecule followed a straight path 
that was parallel to the 
boundaries of the tube. 

Turbulent Flow: every fluid 
molecule followed very complex 
path that led to a mixing of the 
dye. 

Transitional Flow: every fluid 
molecule followed wavy but 
parallel path that was not parallel 
to the boundaries of the tube. 



Reynolds found that conditions for each of the flow types depended on: 

1.  The velocity of the flow (U) 2.  The diameter of the tube (D) 

3.  The density of the fluid (ρ). 4.  The fluid’s dynamic viscosity (µ). 

He combined these variables into a dimensionless combination now 
known as the Flow Reynolds’ Number (R) where: 

UDρ
µ

=R



UDρ
µ

=R

Flow Reynolds’ number is often expressed in terms of the fluids 
kinematic viscosity (ν; lower case Greek letter nu), where: 

µ
ν

ρ
= (units are m2/s) 

Such that: 

UD
ν

=R



The value of R determined the type of flow in the experimental tubes: 
UD
ν

=R

< 1000 

1000 - 2000 

> 2000 



Laminar 

Transitional 

Turbulent 



Example:  Given two pipes, one with a diameter of 10 cm and the other 
with a diameter of 1 m, at what velocities will the flows in each pipe 
become turbulent? 

What is the critical velocity for R = 2000? 

2000UD
ν

= =R
2000U
D
ν

=Solve for U: 

Solve for D = 0.1 m and D = 1.0 m. 

3
6 21.005 10 1.007 10 m /s

998.2
µ

ν
ρ

−
−×

= = = ×Given:  Distilled water 
at 20°C. 



For a 0.1 m diameter pipe: For a 1.0 m diameter pipe: 

62000 1.007 10
0.1

U
−× ×

=

0.02m/s 2cm/sU = =

62000 1.007 10
1

U
−× ×

=

0.002m/s 2mm/sU = =



b) Flow Froude Number (F). 

Classification of flows according to their water surface behaviour. 

An important part of the basis for classification of flow regime. 

U
gD

=F Where g is the acceleration 
due to gravity. 

F < 1  subcritical flow (tranquil flow) 

F = 1  critical flow 

F > 1  supercritical flow (shooting flow) 



Formulazione matematica 
  
Per ricavare l'espressione precedente che definisce il numero di 
Froude, bisogna anzitutto esprimere il rapporto tra forza d'inerzia e 
forza peso in termini generali. 
La forza d'inerzia (F) può essere scritta, in base al secondo principio 
della dinamica classica, come prodotto tra massa (m) e accelerazione 
(a): 
  
F = ma 
  
In una situazione generica, si considera una massa di riferimento m0 
mentre l'accelerazione a  può essere espressa come il rapporto tra 
una lunghezza di riferimento L0 e il quadrato di un tempo di 
riferimento t0, cioè: 





La forza peso (P) risulta essere il prodotto tra massa di un corpo e 
accelerazione di gravità agente su di esso, ovvero: 

membro a membro le espressioni delle due forze in termini di 
grandezze di riferimento, abbiamo: 



A questo punto, mettendo il rapporto delle forze sotto radice, si 
ottiene l'espressione del numero di Froude: 



U
gD

=F

gD = the celerity (speed of propagation) of gravity waves on a 
water surface. 

gDF < 1, U <                water surface waves will propagate upstream  
           because they move faster than the current. 

gDF > 1, U >                water surface waves will be swept downstream 
           because the current is moving faster than they can 
           propagate upstream. 



In sedimentology the Froude number is important to predict the type of 
bed form that will develop on a bed of mobile sediment. 

Bed forms are not in 
phase with the water 
surface. 

Bed forms are in phase 
with the water surface. 



II.  Velocity distribution in turbulent flows 
Earlier we saw that for laminar flows the velocity distribution could be 
determined from: 

2sin
2y

g yu yDρ θ
µ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

In laminar flows the fluid momentum is transferred only by viscous 
shear; a moving layer of fluid drags the underlying fluid along due to 
viscosity (see the left diagram, below). 

The velocity distribution 
in turbulent flows has a 
strong velocity gradient 
near the boundary and 
more uniform velocity 
(on average) well above 
the boundary. 



The more uniform distribution well above the boundary reflects the fact 
that fluid momentum is being transferred not only by viscous shear. 

The chaotic mixing that takes place also transfers momentum through 
the flow. 
The movement of fluid up and down in the flow more evenly distributes 
the velocity: low speed fluid moves upward from the boundary and high 
speed fluid in the outer layer moves upward and downward. 

This leads to a redistribution of fluid momentum. 



Turbulent flows are made up of two regions: 

An inner region near the boundary that is dominated by viscous shear, 
i.e.,  

y
du
dy

τ µ=

An outer region that is dominated by turbulent shear (transfer of fluid 
momentum by the movement of the fluid up and down in the flow). 
                                                         i.e.,  

y
du du
dy dy

τ η µ= +

Where η (lower case Greek letter 
eta) is the eddy viscosity which 
reflects the efficiency by which 
turbulence transfers momentum 
through the flow. 



As a result, the formula for determining the velocity distribution of a 
laminar flow cannot be used to determine the distribution for a turbulent 
flow (it neglects the transfer of momentum by turbulence). 

Experimentally determined formulae are used to determine the velocity 
distribution in turbulent flows. 

E.g. the Law of the Wall for rough boundaries under turbulent flows: 

*

2.38.5 logy

o

u y
U yκ

= +

*
oU τ
ρ

=

Where κ (lower case Greek letter 
kappa) is Von Karman’s constant 
(0.41 for clear water flows lacking 
sediment). 

30o
dy = Where d is grain size. y is the height above the 

boundary. 

U* is the shear velocity of the flow where: 



*

2.38.5 logy

o

u y
U yκ

= +

This formula may be used to estimate the average velocity of a 
turbulent flow by setting y to 0.4 times the depth of the flow (i.e., y = 
0.4D). 

Experiments have shown that the average velocity is at 40% of the depth 
of the flow above the boundary. 

Set y = 0.4D 

*
2.38.5 logy

o

yu U
yκ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

If the flow depth and shear velocity are known, as well as the bed 
roughness, this formula can be used to determine the velocity at any 
height y above the boundary. 

0.4 *
2.3 0.48.5 logD

o

Du u U
yκ

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠



III.  Subdivisions of turbulent flows 

Turbulent flows can be divided into three layers: 

Viscous Sublayer: the region near the boundary that is dominated by 
viscous shear  and quasilaminar flow (also referred to, inaccurately, as 
the “laminar layer”). 

Transition Layer: intermediate between 
quasilaminar and fully turbulent flow. 

Outer Layer: fully turbulent and 
momentum transfer is dominated by 
turbulent shear. 



i) Viscous Sublayer (VSL) 

The thickness of the VSL (δ the lower case Greek letter delta) is known 
from experiments to be related to the kinematic viscosity and the shear 
velocity of the flow by:  

*

12
U
ν

δ =

It ranges from a fraction of a millimetre to several millimetres thick. 

The thickness of the VSL is particularly important in comparison to 
size of grains (d) on the bed (we’ll see later that the forces that act on 
the grains vary with this relationship). 



The Boundary Reynolds’ Number  (R*)is used to determine the 
relationship between δ and d: 

*U d
ν

=*R

A key question is “at what value of R* is the diameter of the grains on 
the bed equal to the thickness of the VSL?” 

*

12
U
ν

δ =Given that: The condition exists when δ = d. 

Substituting: *

*

12U
U
ν

ν
= ×*R = 12 

R* < 12  δ > d 

R* = 12  δ = d 

R* > 12  δ < d 



Turbulent boundaries are classified on the basis of the relationship 
between thickness of the VSL and the size of the bed material. 

Given that there is normally a range in grain size on the boundary, the 
following shows the classification: 



IV.  Organized structure of turbulent flows 

We characterized turbulent flows as being of a “chaotic” nature marked 
by random fluid motion. 

More accurately, turbulence consists of organized structures of various 
scale with randomness likely superimposed. 

The following illustration shows a hypothetical record of changing flow 
velocity at a point in a flow. 



Note that there are short duration, relatively large magnitude fluctuations 
that are superimposed on a longer duration, lower magnitude, regular 
variation in velocity. 

Such a pattern of velocity fluctuations is due to large and small scale 
organized structures. 

Note that a similar pattern of variation would be apparent if boundary 
shear stress were plotted instead of velocity. 



Note on boundary shear stress, erosion and deposition 

At the boundary of a turbulent flow the boundary shear stress (τo) can be 
determined using the same relationship as for a laminar flow. 

In the viscous sublayer viscous shear predominates so that the same 
relationship exists: 

sino gDτ ρ θ=

This applies to steady, uniform turbulent flows. 

Boundary shear stress governs the power of the current to move 
sediment; specifically, erosion and deposition depend on the change in 
boundary shear stress in the downstream direction. 



In general, sediment transport rate (qs; the amount of sediment that is 
moved by a current) increases with increasing boundary shear stress. 

When τo increases downstream, so does the sediment  transport rate; this 
leads to erosion of the bed (providing that τo is sufficient to move the 
sediment). 

When τo decreases downstream, so does the sediment  transport rate; this 
leads to deposition of sediment on the bed 

Variation in τo along and across 
the flow due to turbulence leads 
to a pattern of erosion and 
deposition on the bed of a mobile 
sediment. 



a) Large scale structures of the outer layer 

Rotational structures in the outer layer of a turbulent flow. 

i) Secondary flows. 

Involves a rotating component of the motion of fluid about an axis that is 
parallel to the mean flow direction. 

Commonly there are two or more such rotating structures extending 
parallel to each other. 



In meandering channels, characterized by a sinusoidal channel form, 
counter-rotating spiral cells alternate from side to side along the channel. 



ii)  Eddies (vortici) 

Components of turbulence that rotate about axes that are perpendicular 
to the mean flow direction. 

Smaller scale than secondary flows and move downstream with the 
current at a speed of approximately 80% of the water surface velocity 
(U∞). 

Eddies move up and down within 
the flow as the travel downstream 
and lead to variation in boundary 
shear stress over time and along the 
flow direction. 



Some eddies are created by the topography of the bed. 

In the lee of a negative step on the bed (see figure below) the flow 
separates from the boundary (“s” in the figure) and reattaches 
downstream (“a” in the figure).  

A roller eddy develops between the point of separation and the point of 
attachment. 

Asymmetric bed forms (see next chapter) develop similar eddies. 



b) Small scale structures of the viscous sublayer. 

i) Streaks 

Associated with counter-rotating, flow parallel vortices within the VSL. 

Streak spacing (λ) varies with the shear velocity and the kinematic 
viscosity of the fluid; λ ranges from millimetres to centimetres. 

*

100
U
ν

λ ≈

Alternating lanes of high and low speed fluid within the VSL. 

λ increases when sediment 
is present. 



Red = high velocity 
Blue = low velocity 



ii) Bursts and sweeps (lett. scoppi e spazzate) 

Burst: ejection of low speed fluid from the VSL into the outer layer. 

Sweep: injection of low speed fluid from the outer layer into the VSL. 

Often referred to as the “bursting cycle” but not every sweep causes a 
burst and vise versa. 

However,  the frequency of bursting and sweeps are approximately 
equal. 





Sediment transport under unidirectional flows 

I.  Classification of sediment load 

The sediment that is transported by a current. 

Two main classes: 

Wash load: silt and clay size material that remains in suspension even 
during low flow events in a river. 

Bed material load: sediment (sand and gravel size) that resides in the 
bed but goes into transport during high flow events (e.g., floods). 

Bed material load makes up many arenites and rudites in the geological 
record. 



Three main components of bed material load. 

Contact load: particles that move in contact with the bed by sliding or 
rolling over it. 



Saltation load: movement as a series of 
“hops” along the bed, each hop following a 
ballistic trajectory. 



When the ballistic trajectory is disturbed by turbulence the motion is 
referred to as Suspensive saltation. 



Intermittent suspension load: carried in suspension by turbulence in the 
flow. 

“Intermittent” because it is in suspension only during high flow events 
and otherwise resides in the deposits of the bed. 

Bursting is an important process in initiating suspension transport. 



In the section on grain size 
distributions we saw that some sands 
are made up of several normally 
distributed subpopulations. 

These subpopulations can be 
interpreted in terms of the modes of 
transport that they underwent prior to 
deposition. 

II.  Hydraulic interpretation of grain 
size distributions 



The finest subpopulation represents the 
wash load. 

Only a very small amount of wash 
load is ever stored within the bed 
material so that it makes up a very 
small proportion of these deposits. 



The coarsest subpopulation represents 
the contact and saltation loads. 

In some cases they make up two 
subpopulations (only one is shown in 
the figure. 



The remainder of the distribution, 
normally making up the largest 
proportion, is the intermittent 
suspension load.  

This interpretation of the 
subpopulations gives us two bases for 
quantitatively determining the 
strength of the currents that 
transported the deposits. 



The grain size “X” is the coarsest 
sediment that the currents could 
move on the bed. 

If the currents were weaker, that 
grain size would not be present. 

If the currents were stronger, coarser 
material would be present. 

This assumes that there were no 
limitations to the size of grains 
available in the system. 

In this case, X = -1.5 φ or 
approximately 2.8 mm. 



The grain size “Y” is the coarsest 
sediment that the currents could take 
into suspension. 

Therefore the currents must have 
been just powerful enough to take  
the 0.41 mm particles  into 
suspension. 

In this case, Y = 1.3 φ or 
approximately 0.41 mm. 

If the currents were stronger the 
coarsest grain size would be larger. 

This assumes that there were no 
limitations to the size of grains 
available in the system. 



To quantitatively interpret “X” we 
need to know the hydraulic 
conditions needed to just begin to 
move of that size.  

This condition is the “threshold for 
sediment movement”.  

To quantitatively interpret “Y” we 
need to know the hydraulic 
conditions needed to just begin carry 
that grain size in suspension.  

This condition is the “threshold for 
suspension”.  



a)  The threshold for grain movement on the bed. 

Grain size “X” can be interpreted if we know what flow strength is 
required to just move a particle of that size. 

That flow strength will have transported sediment with that maximum 
grain size. 

Several approaches have been taken to determine the critical flow 
strength to initiate motion on the bed. 



i) Hjulstrom’s Diagram 

Based on a series of experiments using unidirectional currents with a 
flow depth of 1 m. 

The diagram (below) shows the critical velocity that is required to just 
begin to move sediment of a given size (the top of the yellow field). 

It also shows the critical velocity for deposition of sediment of a given 
size (the bottom of the yellow field). 



Note that for grain sizes coarser than 0.5 mm the velocity that is required 
for transport increases with grain size; the larger the particles the higher 
velocity that is required for transport. 

For finer grain sizes (with cohesive clay minerals) the finer the grain size 
the greater the critical velocity for transport. 

This is because the more mud is present the greater the cohesion and the 
greater the resistance to erosion, despite the finer grain size. 



In our example, the coarsest grain size was 2.8 mm. 



In our example, the coarsest grain size was 2.8 mm. 

According to Hjulstron’s diagram, that grain size 
would require a flow with a velocity of 
approximately 0.65m/s. 

Therefore, the sediment shown in the cumulative 
frequency curve was transported by currents at 
0.65 m/s. 



The problem is that the forces that are required to move sediment are 
not only related to flow velocity. 

Boundary shear stress is a particularly important force and it varies with 
flow depth. 

τo = ρgDsinθ

Therefore, Hjulstrom’s diagram is reasonably accurate only for sediment 
that has been deposited under flow depths of 1 m. 



i) Shield’s criterion for the initiation of motion 

Based on a large number of experiments Shield’s criterion considers the 
problem in terms of the forces that act to move a particle. 

The criterion applies to beds of spherical particles of uniform grain size. 

Forces that are important to initial motion: 

2.  τo which causes a drag force that 
acts to move the particle down current. 

3.  Lift force (L) that reduces the 
effective submerged weight. 

1.  The submerged weight of the particle (                    ) 
which resists motion. 

3( )
6 s gdπ
ρ ρ−



What’s a Lift Force? 

The flow velocity that is “felt” by the particle varies from approximately 
zero at its base to some higher velocity at its highest point. 



Pressure (specifically “dynamic pressure” in contrast to static pressure) 
is also imposed on the particle and the magnitude of the dynamic 
pressure varies inversely with the velocity: 

Higher velocity, lower dynamic pressure. 

Maximum dynamic pressure 
is exerted at the base of the 
particle and minimum 
pressure at its highest point. 



The dynamic pressure on the particle varies symmetrically from a 
minimum at the top to a maximum at the base of the particle. 



This distribution of dynamic pressure results in a net pressure force that 
acts upwards. 

Thus, the pressure force (known as the Lift Force) acts oppose the 
weight of the particle (reducing its effective weight). 

This makes it easier for the 
flow to roll the particle 
along the bed. 

The lift force reduces that 
drag force that is required to 
move the particle. 



If the particle remains immobile to the flow and the velocity gradient is 
large enough so that the Lift force exceeds the particle’s weight….it will 
jump straight upwards away from the bed. 

Once off the bed, the 
pressure difference from top 
to bottom of the particle is 
lost and it is carried down 
current as it falls back to the 
bed…. 

following the ballistic 
trajectory of saltation. 

A quick note on saltation…… 





( )
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τ

β
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=
−

*
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Shield’s experiments involved determining the critical boundary shear 
stress required to move spherical particles of various size and density 
over a bed of grains with the same properties. 

He produced a diagram that allows the determination of the critical shear 
stress required for the initiation of motion. 

A bivariate plot of “Shield’s Beta” versus Boundary Reynolds’ Number: 

vs 



( )
o
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τ

β
ρ ρ

=
−

Critical shear stress for motion. 

Submerged weight of grains per unit area 
on the bed. 
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β
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−
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Force acting to move the particle (excluding Lift) = 
Force resisting movement 

As the Lift Force increases β will decrease (lower τo required for movement). 

Reflects something of the lift force (related to the velocity 
gradient across the particle. 



For low boundary Reynold’s numbers Shield’s β decreases with 
increasing R*. 

For high boundary Reynold’s numbers Shield’s β increases with 
increasing R*. 



For low boundary Reynold’s numbers Shield’s β decreases with 
increasing R*. 

For high boundary Reynold’s numbers Shield’s β increases with 
increasing R*. 

The change takes place at R* ≈ 12. 



At boundary Reynold’s numbers less than 12 the grains on the bed are 
entirely within the viscous sublayer. 

At boundary Reynold’s numbers greater than 12 the grains on the bed 
extend above the viscous sublayer. 



As Shield’s β decreases (R* < 12) the critical shear stress required for 
motion decreases for a given grain size. 



For small R* (which corresponds to relatively small values of a Reynolds 
number based on local flow velocity around the particle) there is no well 
defined boundary layer along the top surface of the particle, and there is no flow 
separation behind the particle.  
 
Both viscous forces and pressure forces are important. The line of action of the 
resultant force lies well above the center of mass of the particle, because the 
viscous forces are strongest on the uppermost surface of the particle.  

Figure by MIT OpenCourse Ware 



For large R* (which corresponds to relatively large values of a Reynolds 
number based on local flow velocity) there is a well defined local boundary 
layer on the surface of the particle, and pronounced flow separation, with a 
turbulent wake behind the particle.  
 
Pressure forces far outweigh viscous forces, and because the net pressure force 
comes about mainly by the difference in pressure from front to back the line of 
action of the resultant force is closer to the center of mass of the particle.  

Figure by MIT OpenCourse Ware 



At low boundary Reynolds numbers (< 12) the grains experience a 
strong velocity gradient within the VSL. 

As R* increases towards a value of 12 the VSL thins and the velocity 
gradient becomes steeper, increasing the lift force acting on the grains. 

The greater lift force reduces the effective weight of the grains and 
reduces the boundary shear stress that is necessary to move the grain. 



At high boundary Reynolds numbers (> 12) the grains protrude through 
the VSL so that the region of strong velocity gradient is below the grains, 
leading to lower lift forces. 

As R* increases the velocity gradient acting on the grains and resulting 
lift forces are reduced. 

The lower lift force leads to an increase in the effective weight of the 
grains and increases the boundary shear stress that is necessary to move 
the grains. 



The boundary Reynold’s number accounts for the variation in lift force 
on the grains which influences the critical shear stress required for 
motion. 



d = -1.5φ = 2.8 mm = 0.0028 m 

ν = 1.1 x 10-6 m2/s (water at 20°C) 

ρs = 2650 kg/m3 (density of quartz) 
ρ = 998.2 kg/m3 (density of water at 20°C) 

g = 9.806 m/s2 

0.1 1)sd gdρ
υ ρ
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Calculate: 

=172 

How to use Shield’s Diagram 

Note the assumptions 
regarding the water 

What is the boundary shear stress required to move 
2.8 mm sand?  



( )o s gdτ β ρ ρ= −

( )
o

s gd
τ

β
ρ ρ

=
−

= 0.047 

Rearranging: 

( )0.047 s gdρ ρ= −

= 2.13 N/m2 

Remember: 
using the Hjulstrom 
diagram we obtained a 
critical velocity 
Vc = 0.65 m/s 
for the same grain size 
 



Limitations of Shield’s Criterion: 

1.  It applies only to spherical particles; it doesn’t include the influence 
of particle shape. 

It will underestimate the critical shear stress required for 
motion for angular grains. 

2.  It assumes that the material on the bed is of uniform size. 

It underestimates the critical shear stress for small grains on a bed of 
larger grains 

It overestimates the critical 
shear stress for large grains on 
a bed of finer grains 



b)  The threshold for suspension 

The coarsest grain size in the intermittent 
suspension load is the coarsest sand that the 
current will suspend. 

Sediment is suspended by the 
upward component of 
turbulence (velocity V). 

The largest particle to be 
suspended by a current will be 
that particle with a settling 
velocity (ω) that is equal to V. 



Experiments have shown that V ≈ U*  for a given current. 

Therefore, Middleton's criterion is: 

A particle will be taken into suspension by a current when the shear 
velocity of the current equals or exceeds the settling velocity of the 
particle. 

U* ≥ ω



River     U*   ω
             (m/s)            (m/s) 

Middle Loup             7 – 9             7 - 9 

Middle Loup             ≈ 20             ≈20 

Niobrara             7 - 10             7 - 9 

Elkhorn             7 - 9          2.5 – 5.0 

Mississippi (Omaha)         6.5 – 6.8          2.5 – 5.0 

Mississippi (St. Louis)          9 - 11             3 - 12 

Rio Grande             8 - 12              ≈10 

Comparisons of the settling velocity of the largest grain size in the 
intermittent suspension load found in the bed material of major rivers 
show that they compare very favorably to the measured shear velocity 
during peak flow in those rivers. 



This diagram shows the shear velocity required to suspend particles as a 
function of their size (the curve labeled U* = ω). 

For comparison it also shows the critical shear velocity required to move 
a particle on the bed based on Shield’s criterion. 

Note that for grain sizes finer than approximately 0.015 mm the grains 
will go into suspension as soon as the flow strength is great enough to 
move them (i.e., they will not move as contact load). 

The U* = ω curve can 
also be used to estimate 
settling velocity for 
grains coarser than 0.1 
mm (the upper limit for 
Stoke’s Law).



What is the critical shear velocity required to 
suspend 0.41 mm sand?  

The critical shear velocity 
for suspension is 0.042 m/s. 



How do our estimates based on the coarsest grains size in transport on 
the bed and the coarsest grain size in suspension compare? 

Middleton’s criterion: U* = 0.042 m/s  

Shield’s criterion: τo = 2.13 N/m2  

*
oU τ
ρ

= ρ = 998.2 kg/m3 (density of water at 20°C) 

U* = 0.046 m/s  

Very close! 


