18. Seguite le istruzioni del Quesito 17 per le seguenti soluzioni.

- (a) solfato di rame(II) e cloruro di sodio.
- nitrato di manganese(II) e idrossido di sodio.
- nitrato d'argento e acido cloridrico. (b)
- solfato di cobalto(II) e idrossido di bario. (c)
- carbonato d'ammonio e idrossido di potassio. (d)

19. Scrivete un'equazione ionica netta per ciascuna delle reazioni di precipitazione che si verificano per mescolamento delle seguenti soluzioni

- 0.1 M.
 - nitrato di zinco e cloruro di nichel(II) (a)
 - fosfato di potassio e nitrato di calcio (b) idrossido di sodio e nitrato di zinco
 - (c)
- nitrato di ferro(III) e idrossido di bario 20. Seguite le istruzioni del Quesito 19 per le seguenti coppie di solu-
- zioni
 - fosfato di sodio e cloruro di bario (a)
 - solfato di zinco e idrossido di potassio (b)
 - solfato d'ammonio e cloruro di sodio
- (d) nitrato di cobalto(III) e fosfato di sodio 21. Che volume di solfato di cobalto(III) 0.2500 M occorre per reagire
- completamente con (a) 25.00 mL di idrossido di calcio 0.0315 M?
 - (b) 5.00 g di carbonato di sodio?
 - (c) 12.50 mL di fosfato di potassio 0.1249 M?
- 22. Che volume di cloruro di bario 0.4163 M occorre per reagire com-
- pletamente con

zione

- (a) 12.45 mL di acido solforico 1.732 *M*?
- (b) 15.00 g di fosfato di ammonio?
- (c) 35.15 mL di carbonato di potassio 1.28 M?

23. Un campione di 50.00 mL di nitrato d'argento 0.0250 M viene me-

- scolato con cloruro di cromo(III) 0.0400 M. (a) Qual è il minimo volume di cloruro di cromo(III) necessario
 - per precipitare completamente il cloruro d'argento?
- (b) Quanti grammi di cloruro d'argento vengono prodotti in (a)? 24. Gli ioni alluminio reagiscono con gli ioni carbonato per formare un
- composto insolubile, il carbonato di alluminio.
 - (a) Scrivete l'equazione ionica netta per questa reazione. Qual è la molarità di una soluzione di cloruro di alluminio se oc-
 - corrono 30.0 mL per reagire con 35.5 mL di carbonato di sodio 0.137 M?
- (c) Quanti grammi di carbonato di alluminio si formano in (b)? 25. Quando si combinano Na₃PO₄ e Ca(NO₃)₂, avviene la seguente rea-

 - $2PO_4^{3-}(aq) + 3Ca^{2+}(aq) \longrightarrow Ca_3(PO_4)_2(s)$

Quanti grammi di $Ca_3(PO_4)_2$ (s) (MM = 310.18 g/mol) si ottengono quando 15.00 mL di Na₃PO₄ 0.1386 M vengono mescolati con 20.00 mL

26. Quando si mescolano delle soluzioni di solfato di alluminio e di idrossido di sodio, si forma un precipitato bianco e gelatinoso.

- (a) Scrivete una equazione ionica netta bilanciata per la reazione. (b) Qual è la massa del precipitato quando 2.76 g di solfato di alluminio in 125 mL di soluzione vengono combinati con 85.0 mL di
- (c) Qual è la molarità dello ione in eccesso? (Ignorate gli ioni spettatori ed assumete che i volumi siano additivi).

Reazioni Acido-Base

96

27. Classificate i seguenti composti come acidi o basi, deboli o forti.

- (a) acido perclorico
- idrossido di cesio (b)
- acido carbonico, H₂CO₃ (c)
- etilammina, C₂H₅NH₂ (d)

CAPITOLO 4 Reazioni in soluzione acquosa

- 28. Seguite le istruzioni del Problema 27 per ammoniaca
- (a) acido solforoso (d) acido iodidrico
- (c) idrossido di bario 29. Per una reazione acido-base, quale è la specie reagente, cioè lo ione o
- la molecola che compare nelle equazioni chimiche, nei seguenti acidi?
 - (b) acido iodidrico (d) acido nitrico

- (a) acido perclorico
- (c) acido nitroso (e) acido lattico (HC₃H₅O₃)
- 30. Seguite le istruzioni del Problema 29 per i seguenti acidi. (b) acido cloroso
 - acido solforoso (d) acido solforico
 - acido perclorico (c)

(a)

- acido formico (HCHO₂)
- 31. Per una reazione acido-base, quale è la specie reagente (cioè lo ione o molecola che compare nell'equazione chimica) per le seguenti basi?
 - (b) trimetilammina, (CH₃)₃N
 - (a) idrossido di bario (d) idrossido di sodio
- (c) anilina, C₆H₅NH₂ 32. Seguite le istruzioni del Problema 31 per le seguenti basi.

 - (a) indolo, C₈H₆NH
 - (b) idrossido di potassio
 - ammoniaca acquosa
 - (c) idrossido di calcio
- 33. Scrivete un'equazione ionica netta per ciascuna delle seguenti rea-
- zioni acido-base in acqua.
 - (a) acido nitroso e idrossido di bario
 - idrossido di potassio e acido fluoridrico (b)
 - anilina (C₆H₅NH₂) e acido perclorico
- 34. Scrivete un'equazione ionica netta per ciascuna delle seguenti rea-
- zioni acido-base in acqua.
 - (a) acido acetico $(HC_2H_3O_2)$ con idrossido di stronzio
 - dietilammina, (C₂H₅)₂NH, con acido solforico (b)
 - acido cianidrico acquoso (HCN) con idrossido di sodio
- (c) 35. Considerate l'equazione generica

 $H^+(aq) + B^-(aq) \longrightarrow HB(aq)$

Per quali delle seguenti coppie questa rappresenta la corretta equazione-tipo della corrispondente reazione acido-base in soluzione? Se non fosse corretta, scrivete l'equazione giusta per la reazione acido-base

- della coppia (a) acido nitrico e idrossido di calcio
 - acido cloridrico e CH₃NH₂
 - (b) acido bromidrico e ammoniaca acquosa
- (c) acido perclorico e idrossido di bario
- (d) idrossido di sodio e acido nitroso
- (e) 36. Considerate l'equazione generica

 $OH^{-}(aq) + HB(aq) \longrightarrow B^{-}(aq) + H_2O$

Per quali delle seguenti coppie questa rappresenta la corretta equazione-tipo della corrispondente reazione acido-base in soluzione? Se non fosse corretta, scrivete l'equazione giusta per la reazione acido-base

- della coppia (a) acido cloridrico e piridina, C5H5N
- acido solforico e idrossido di rubidio
- idrossido di potassio e acido fluoridrico (b)
- (c) ammoniaca e acido iodidrico
- (d)
- idrossido di stronzio e acido cianidrico 37. Qual è la molarità di una soluzione di acido nitrico, se occorrono 0.216 g di idrossido di bario per neutralizzare 20.00 mL di acido nitrico?
- 38. Che volume di idrossido di stronzio 0.285 M occorre per neutraliz-
- zare 25.00 mL di acido fluoridrico (HF) 0.275 M?

39. Qual è il volume di idrossido di sodio 1.222 M necessario per reagire	Reazioni di ossidoriduzione
con	(19) Scrivete il numero di ossidazione di ogni elemento in
(a) 32.5 mL di acido solforoso 0.569 M? (Una mole di acido solfo-	(a) ossido di azoto
roso reagisce con due moli di ioni idrossido.)	(b) ammoniaca
(b) 5.00 g di acido ossalico $(H_2C_2O_4)$? (Una mole di acido ossalico	(c) perossido di potassio
reagisce con due moli di ioni idrossido.)	(d) ione clorato (ClO_3^-)
(c) 15.0 g di acido acetico concentrato $(HC_2H_3O_2)$ con una pu-	(50.) Scrivete il numero di ossidazione di ogni elemento in
rezza dell'88% in massa?	(a) metano
40. Che volume di acido cloridrico $0.885 M$ è necessario per reagire con	(b) acido solforoso
(a) 25.00 mL di ammoniaca acquosa 0.288 M?	(c) ossido di sodio
(b) 10.00 g di idrossido di sodio? (c) 25.0 mL di una soluzione $(d = 0.028 \text{ s}/(\text{cm}^3) \text{ contenente il})$	(d) ione diidrogeno fosfato ($H_2PO_4^-$)
(c) 25.0 mL di una soluzione ($d = 0.928$ g/cm ³) contenente il 10.0% in massa di metilammina (CH ₃ NH ₂)?	(51,) Scrivete il numero di ossidazione di ogni atomo in
	(a) P_2O_5
41. Un'analisi rivela che un campione di H ₂ X (MM = 100 g/mol) reagi-	(b) NH_3
sce completamente con 330.0 mL di KOH 0.2000 M.	(c) CO_3^{2-} (d) $S O_2^{2-}$
$H_2X(aq) + 2OH^-(aq) \longrightarrow X^-(aq) + 2H_2O$	(d) $S_2O_3^{2-}$ (e) N_2H_4
Qual è il volume del campione? (Densità di $H_2X = 1.200 \text{ g/mL}$)	
42. L'analisi di un acido incognito rivela che servono 24.55 mL di NaOH	 (52) Scrivete il numero di ossidazione di ogni atomo in (a) HIO₃ (b) NaMnO₄ (c) SnO₂
0.128 <i>M</i> per reagire completamente con 0.566 g dell'acido. L'equazione	(a) HIO_3 (b) $NaMIO_4$ (c) SIO_2 (d) NOF (e) NaO_2
	53. Classificate ciascuna delle seguenti semi-equazioni come di ossida- zione o riduzione.
$HB(aq) + OH^{-}(aq) \longrightarrow H_2O + B^{-}(aq)$	(a) $O_2(g) \longrightarrow O_2^{-}(aq)$
Qual è la massa molare dell'acido?	(b) $MnO_4^-(aq) \longrightarrow MnO_2(s)$
43. Per funzionare, una batteria al piombo ha bisogno di acido solforico.	(c) $\operatorname{Cr}_2 \operatorname{O_7}^{2-}(aq) \longrightarrow \operatorname{Cr}^{3+}(aq)$
La minima concentrazione di acido solforico raccomandata per la mas-	(d) $\operatorname{Cl}^{-}(aq) \longrightarrow \operatorname{Cl}_{2}(g)$
sima efficienza è circa 4.8 M.	54. Classificate ciascuna delle seguenti semi-equazioni come di ossida-
Se per neutralizzare completamente un campione di 10.0 mL di acido	zione o riduzione.
della batteria occorrono 66.52 mL di KOH 1.325 <i>M</i> , la concentrazione dell'acido della batteria raggiunge o no il valore minimo richiesto? (<i>Nota</i> :	(a) $\operatorname{TiO}_2(s) \longrightarrow \operatorname{Ti}^{3+}(aq)$
dell'actio della batteria raggiunge o no il valore minimo richestos (1904a: Per ogni mole di H_2SO_4 ne sono prodotte due di ioni H^+).	(b) $\operatorname{Zn}^{2+}(aq) \longrightarrow \operatorname{Zn}(s)$
	(c) $NH_4^+(aq) \longrightarrow N_2(g)$ (d) $CH(OH(aq)) \longrightarrow CH(O(aq))$
44. Perché un prodotto possa essere chiamato "aceto", deve contenere al- meno il 5.0% in massa di acido acetico, HC ₂ H ₃ O ₂ . Nella titolazione di un	(d) $CH_3OH(aq) \longrightarrow CH_2O(aq)$
campione di 10.00 g di un "aceto di lampone", la completa neutralizza-	(55. Classificate ciascuna delle seguenti semi-equazioni come di ossida-
zione richiede 37.50 mL di Ba(OH) ₂ 0.1250 <i>M</i> . Il prodotto in questione	zione o di riduzione e bilanciatele. (a) (ambiente acido) $Mn^{2+}(aq) \longrightarrow MnO_4^{-}(aq)$
può essere definito "aceto"?	(a) (ambiente acido) $\operatorname{Mn}^{2+}(aq) \longrightarrow \operatorname{MnO}_4^{-}(aq)$ (b) (ambiente basico) $\operatorname{CrO}_4^{2-}(aq) \longrightarrow \operatorname{Cr}^{3+}(aq)$
45. La percentuale di idrogenocarbonato (detto anche "bicarbonato") di	(c) (ambiente basico) $PbO_2(s) \longrightarrow Pb^{2+}(aq)$
sodio, NaHCO ₃ , in una polvere antiacido viene determinata per titola-	(d) (ambiente acido) $ClO_2^{-}(aq) \longrightarrow ClO^{-}(aq)$
zione con acido cloridrico 0.275 M.	656. Classificate ciascuna delle seguenti semi-equazioni come di ossida-
Se 15.5 mL di acido cloridrico reagiscono completamente con 0.500 g del	zione o di riduzione e bilanciatele.
campione, qual è la percentuale di idrogenocarbonato di sodio nel cam-	(a) (ambiente basico) $ClO^{-}(aq) \longrightarrow Cl^{-}(aq)$
pione?	(b) (ambiente acido) $NO_3^-(aq) \longrightarrow NO(g)$
L'equazione bilanciata per la reazione che avviene è	(c) (ambiente basico) $Ni^{2+}(aq) \longrightarrow Ni_2O_3(s)$
$NaHCO_3(s) + H^+(aq) \longrightarrow Na^+(aq) + CO_2(g) + H_2O$	(d) (ambiente acido) $Mn^{2+}(aq) \longrightarrow MnO_2(s)$
46. Una compressa di vitamina C, un acido debole, viene analizzata per	57. Bilanciate le semi-equazioni del Quesito 53. Bilanciate (a) e (b) in
molazione con idrossido di sodio 0.425 M. Si trova che 6.20 mL di base	ambiente basico, (c) e (d) in ambiente acido.
reagiscono completamente con una capsula del peso di 0.628 g; qual è la	58. Bilanciate le semi-equazioni del Quesito 54. Bilanciate (a) e (b) in embiente acide (c) α (d) in embiente basico
r di vitamina C (C ₄ H _{\circ} O ₄) nella capsula? (Una mole di vita-	ambiente acido, (c) e (d) in ambiente basico.
reagisce con una mole di ioni idrossido.)	 59. In ognuna delle equazioni non bilanciate, sotto riportate, scrivete le semi-reazioni non bilanciate.
47. Una bevanda artificiale di frutta contiene 12.0 g di acido tartarico, $H_2C_4H_4O_4$ che l	scrivete le semi-reazioni non bilanciate.individuate la specie ossidata e la specie ridotta.
	identificate l'agente ossidante e l'agente riducente.
in massa di KOU ci	(a) $\operatorname{Ag}(s) + \operatorname{NO}_3^-(aq) \longrightarrow \operatorname{Ag}^+(aq) + \operatorname{NO}(g)$
in massa di KOH. Che volume della soluzione basica occorre? (Una mole di acido tartarico reagisce con due moli di ioni idrossido.) 48. L'acido 1	(b) $\operatorname{CO}_2(g) + \operatorname{H}_2\operatorname{O}(l) \longrightarrow \operatorname{C}_2\operatorname{H}_4(g) + \operatorname{O}_2(g)$
48. Eacido Laut	 (c) Contraction (c) Contraction (
48. L'acido lattico, C ₃ H ₆ O ₃ , è l'acido presente nel latte inacidito. Un campione di 0.100 g di acido lattico puro richiede 12.95 mL di idrossido di sodio 0.0857 M per completare la regione Quante meli di ioni idros.	bilanciate.
s di acido lattico puro netticie 12.95 mil di latossido	(a) $H_2O_2(aq) + Ni^{2+}(aq) \longrightarrow Ni^{3+}(aq) + H_2O$
sido occorrono per neutralizzare una mole di acido lattico?	(b) $\operatorname{Cr}_2 \operatorname{O_7}^{2-}(aq) + \operatorname{Sn}^{2+}(aq) \longrightarrow \operatorname{Cr}^{3+}(aq) + \operatorname{Sn}^{4+}(aq)$
	Quesiti e problemi 97

Quesiti e problemi

97

71. In una soluzione di idrossido di bario contenente dello zolfo viene non bilanciata della reazione

61. Bilanciate le equazioni del Quesito 59 in ambiente basico. 62. Bilanciate le equazioni del Quesito 60 in ambiente basico. 63. Scrivete le equazioni bilanciate per le seguenti reazioni in soluzione

- (a) $\operatorname{Ni}^{2+}(aq) + \operatorname{IO}_4^-(aq) \longrightarrow \operatorname{Ni}^{3+}(aq) + \operatorname{I}^-(aq)$ (b) $O_2(g) + Br^-(aq) \longrightarrow H_2O + Br_2(I)$
- (c) $\operatorname{Ca}(s) + \operatorname{Cr}_2\operatorname{O}_7^{2-}(aq) \longrightarrow \operatorname{Ca}^{2+}(aq) + \operatorname{Cr}^{3+}(aq)$

(d) $IO_3^{-}(aq) + Mn^{2+}(aq) \longrightarrow I^{-}(aq) + MnO_2(s)$ 64. Scrivete le equazioni bilanciate per le seguenti reazioni in soluzione

acida.

acid

(a) $P_4(s) + Cl^-(aq) \longrightarrow PH_3(g) + Cl_2(g)$ (b) $\operatorname{MnO_4^-}(aq) + \operatorname{NO_2^-}(aq) \longrightarrow \operatorname{Mn^{2+}}(aq) + \operatorname{NO_3^-}(aq)$

- (c) HBrO₃(aq) + Bi(s) \longrightarrow HBrO₂(aq) + Bi₂O₃(s)

(d) $\operatorname{CrO}_4^{2^-}(aq) + \operatorname{SO}_3^{2^-}(aq) \longrightarrow \operatorname{Cr}^{3^+}(aq) + \operatorname{SO}_4^{2^-}(aq)$ 65. Scrivete le equazioni bilanciate per le seguenti reazioni in soluzione

basica.

- (a) $SO_2(g) + I_2(aq) \longrightarrow SO_3(g) + I^-(aq)$
- (b) $Zn(s) + NO_3^{-}(aq) \longrightarrow NH_3(aq) + Zn^{2+}(aq)$

(c) $ClO^{-}(aq) + CrO_2^{-}(aq) \longrightarrow Cl^{-}(aq) + CrO_4^{2-}(aq)$ (d) $K(s) + H_2O \longrightarrow K^+(aq) + H_2(g)$ 66. Scrivete le equazioni bilanciate per le seguenti reazioni in soluzione

basica.

(a) $Ni(OH)_2(s) + N_2H_4(aq) \longrightarrow Ni(s) + N_2(g)$

(b) $\operatorname{Fe}(\operatorname{OH})_3(s) + \operatorname{Cr}^{3+}(aq) \longrightarrow \operatorname{Fe}(\operatorname{OH})_2(s) + \operatorname{CrO}_4^{2-}(aq)$

- (c) $MnO_4^{-}(aq) + BrO_3^{-}(aq) \longrightarrow MnO_2(s) + BrO_4^{-}(aq)$

(d) $H_2O_2(aq) + IO_4^-(aq) \longrightarrow IO_2^-(aq) + O_2(g)$ 67. Scrivete le equazioni ioniche nette bilanciate per le seguenti reazioni

(a) L'idrazina liquida reagisce con una soluzione acquosa di broin soluzione acida.

mato di sodio. Si formano azoto gassoso e ioni bromuro. (b) Il fosforo solido (P₄) reagisce con una soluzione acquosa di un nitrato, producendo ossido di azoto gassoso e ioni diidrogeno fo-

Soluzioni acquose di solfito di potassio e di permanganato di sfato (H2PO4-).

potassio reagiscono fra loro formando ioni solfato e manganese(II). 68. Scrivete le equazioni ioniche nette bilanciate per le seguenti reazioni

(a) L'ossido di azoto e l'idrogeno gassosi reagiscono per formare in soluzione acida.

ammoniaca gassosa e vapore d'acqua. (b) Il perossido di idrogeno reagisce con una soluzione acquosa di

ipoclorito di sodio, producendo ossigeno e cloro gassosi. (c) Lo zinco metallico riduce gli ioni vanadile (VO²⁺) a ioni di va-

nadio(III). Si formano anche ioni zinco. 69. Una soluzione di permanganato di potassio reagisce con l'acido ossalico, H₂C₂O₄, per dare biossido di carbonio e ossido di manganese(IV)

(a) Scrivete un'equazione ionica netta bilanciata per questa reasolido (MnO2).

(b) Se 20.0 mL di una soluzione di permanganato di potassio 0.300 M reagiscono completamente con 13.7 mL di una soluzione di acido ossalico, qual è la molarità dell'acido ossalico?

(c) Quale è la massa di ossido di manganese(IV) che si forma?

70. Lo iodio reagisce con lo ione tiosolfato, S2O327, producendo ione io-

duro e ione tetrationato, S4062-.

- (a) Scrivete un'equazione bilanciata per la reazione.
 - (b) Se 25.0 g di iodio vengono sciolti in una quantità di acqua sufficiente per produrre 1.50 L di soluzione, che volume di tiosolfato di sodio 0.244 M sarà necessario perché la reazione avvenga completamente?

CAPITOLO 4 Reazioni in soluzione acquosa

gorgogliato idrogeno gassoso. L'equazione non okaz
che avviene è
$$s^{2^-}(aa) + H_2O$$

$$\dot{e}$$

 $H_2(g) + S(s) + OH^-(aq) \longrightarrow S^{2-}(aq) + H_2O$

(b) Che volume di Ba(OH)₂ 0.349 M occorre per reagire comple-

72. Considerate la reazione tra l'argento e l'acido nitrico la cui equa-

on bilanciata è zione

he non bilanciata è

$$Ag(s) + H^+(aq) + NO_3^-(aq) \longrightarrow Ag^+(aq) + NO_2(g) + H_2O$$

(b) Se 42.50 mL di acido nitrico 12.0 M forniscono tanti ioni H⁺ (a) Bilanciate l'equazione. sufficienti a reagire con l'argento, quanti grammi di argento reagi-

73. La limonite, un minerale di ferro, viene portata in soluzione in ambiente acido e titolata con KMnO4. L'equazione non bilanciata della rea-

zione è

$$M_{P}O_{1}^{-}(aq) + Fe^{2+}(aq) \longrightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$$

Se per titolare un campione di 1.000 g del minerale occorrono 75.52 mL

di KMnO₄ 0.0205 *M*, qual è la percentuale di Fe nella limonite? 74. La molarità dello iodio in soluzione può essere determinata per tito-

lazione con H3AsO3. L'equazione non bilanciata della reazione è $I^{-}(aq) + H_3AsO_4(aq)$

$$H_3AsO_3(aq) + I_2(aq) \longrightarrow I (aq)$$

Sciogliendo in acqua alcuni cristalli di iodio si ottengono 125 mL di una soluzione che viene titolata con 45.00 mL di H₃AsO₃ 0.2317 M. Qual è la molarità della soluzione? Quanti grammi di cristalli di iodio sono stati

75. La varechina è una soluzione di ipoclorito di sodio (NaClO). Per determinare il contenuto di ipoclorito (ClO⁻) della varechina (che è responsabile dell'azione sbiancante), si aggiunge lo ione solfuro in soluzione basica. L'equazione bilanciata per la reazione è

 $ClO^{-}(aq) + S^{2-}(aq) + H_2O \longrightarrow Cl^{-}(aq) + S(s) + 2OH^{-}(aq)$

Lo ione cloruro risultante dalla riduzione di HClO viene precipitato sotto forma di AgCl. Quando 50,0 mL di varechina ($d = 1.02 \text{ g/cm}^3$) vengono trattati come è descritto sopra, si ottengono 4.95 g di AgCl.

Quale è la massa percentuale di NaClO nella varechina? 76. Le leggi in vigore in alcuni Stati degli U.S.A. definiscono come un guidatore in stato di ebbrezza chi ha un contenuto di alcol nel sangue di 0.10% in massa o più alto. Il livello di alcol si può determinare titolando il plasma sanguigno con bicromato di potassio secondo l'equazione non

il plasma sangangato
bilanciata:

$$H^+(aq) + Cr_2O_7^{2-}(aq) + C_2H_5OH(aq) \longrightarrow Cr^{3+}(aq) + CO_2(g) + H_2O$$

 $H^+(aq) + Cr_2O_7^{2-}(aq) + C_2H_5OH(aq) \longrightarrow Cr^{3+}(aq) + CO_2(g) + H_2O$

Assumendo che l'unica sostanza nel plasma che reagisce con il sia l'alcol, una persona è legalmente in stato di ebrezza, se occorrono 38.94 mL di bicromato di potassio 0.0723 *M* per titolare un campione di

50.0 g di plasma?

bilanciata:

77. Un campione di calcare del peso di 1.005 g viene sciolto in 75.00 m^l di acido cloridrico 0.2500 M di acido cloridrico 0.2500 M. La reazione che si verifica è

lo cloridrico 0.2500 M. La reazione che si verta
lo cloridrico 0.2500 M. La reazione che si verta
$$\operatorname{Co}_2(g) + \operatorname{H}_2O$$

 $\operatorname{Co}_2(g) + \operatorname{H}_2O$
 $\operatorname{Co}_2(g) + \operatorname{H}_2O$

Si trova che occorrono 19.26 mL di NaOH 0.150 M per titolare l'eccess di HCl rimasto dono la reazione en il di HCl rimasto dopo la reazione con il calcare. Quale è la massa percentuale di CaCO₃ nel calcare? tuale di CaCO3 nel calcare?