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Equivalent Forces

The scope is to develop a representation of the displacement 
generated in an elastic body in terms of the quantities that originated 

it: body forces and applied tractions and displacements over the 
surface of the body.

The actual slip process will be described by superposition of equivalent 
body forces acting in space (over a fault) and time (rise time).

The observable seismic radiation is through energy release as the fault 
surface moves: formation and propagation of a crack. This complex 

dynamical problem can be studied by kinematical equivalent approaches.



Final source representation

    
un(x,t)= [ui ]cijpqν j ∗

∂G np

∂ξq
dΣ

Σ
∫∫

    
mpq = [ui]cijpqν j        un(x,t)= mpq ∗

∂Gnp

∂ξq
dΣ

Σ
∫∫

And if the source can be considered a point-source (for distances greater than 
fault dimensions), the contributions from different surface elements can be 

considered in phase. 
Thus for an effective point source, one can define the moment tensor:

    

M pq = mpqdΣ
Σ
∫∫  

 un(x,t)=M pq ∗G np,q



Far field term

Near field term

GF for double couple
An important case to consider in detail is the radiation pattern expected when 
the source is a double-couple. The result for a moment time function M0(t) is:

Intermediate field 
term
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NF DC (static) Radiation pattern 
The static final displacement for a shear dislocation of strength M0 is:
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Figure 7: Near-field Static Displacement Field From a Point Double Couple
Source (⌃ = 0 plane); � = 31/2, ⇥ = 1, r = 0.1, 0.15, 0.20, 0.25, ⇧ = 1/4⌅,
M⇥ = 1; self-scaled displacements

The near-field term gives a static displacement as t⇥⇤

u =
M0(⇤)
4⌅⇧r2
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,

where M0(⇤) is the final value of the seismic moment. Interestingly, this ex-
pression contains two terms with the same angular dependence as those for the
far-field, but decays as r�2. The strain field, which is the usual observable used
to study such permanent near field terms, will correspondingly decay as r�3.
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Coseismic deformation



Co- & Post- seismic: Tohoku-oki 

a, Coseismic displacements for 10–11 March 2011, relative to the Fukue site. The black arrows indicate the 
horizontal coseismic movements of the GPS sites. The colour shading indicates vertical displacement. The star marks 
the location of the earthquake epicentre. The dotted lines indicate the isodepth contours of the plate boundary at 

20-km intervals28. The solid contours show the coseismic slip distribution in metres. 
b, Postseismic displacements for 12–25 March 2011, relative to the Fukue site. The red contours show the afterslip 

distribution in metres. All other markings represent the same as in a.

From: Ozawa et al., 2011,, Nature, 475, 373–376.

http://www.nature.com/nature/journal/v475/n7356/full/nature10227.html#ref28
http://www.nature.com/nature/journal/v475/n7356/full/nature10227.html#ref28


Far field for a point d-c point source

From the representation theorem we have:

that, in the far field and in a spherical coordinate system becomes:

� 

 un(x,t) = Mpq ∗Gnp,q

� 

 u(x,t) = 1
4πρα3 sin2θcosφˆ r ( )

˙ M t − r /α( )
r

+

1
4πρβ3 cos2θcosφ ˆ θ − cosθsinφ ˆ φ ( )

˙ M t − r /β( )
r

and both P and S radiation fields are proportional to the time 
derivative of the moment function (moment rate). If the moment 
function is a ramp of duration τ (rise time), the propagating 
disturbance in the far-field will be a boxcar, with the same 
duration, and whose amplitude is varying depending on the 
radiation pattern.



FF DC Radiation pattern



receiverstructuresource

Methodology - Modal Summation Technique

Expression of the displacement generated by a 
double-couple point source in a flat layered 
halfspace
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Source definition and examples of radiation pattern

vertical strike-slip

45° dipping strike-slip

45° dipping oblique slip

45° dip-slip (thrust)

45° dip-slip (normal)

vertical dip-slip

Love   Rayleigh

Methodology - Modal Summation Technique



Expression of the source radiation pattern

� 

χL = i(d1L sinϕ + d2L cosϕ) + d3L sin2ϕ + d4L cos2ϕ
χR = d0 + i(d1R sinϕ + d2R cosϕ) + d3R sin2ϕ + d4R cos2ϕ
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Methodology - Modal Summation Technique



Example of quantities associated with a structure
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Phase velocity dispersion curve

2

3

4

5

6

7
8

9 10 11 12

4

not dispersed

dispersed

dispersed

Methodology - Modal Summation Technique



Eigenfunctions
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Synthetic seismograms

Radial Velocity

0 5 10 15 20 25 30 35 40 45 50

Time (s)

Vertical Velocity

22.3176

0 5 10 15 20 25 30 35 40 45 50

Time (s)

Transverse Velocity

0 5 10 15 20 25 30 35 40 45 50

Time (s)

� 

uy
L x,z,ω( ) = e−i3π / 4

8πω
e−ik mx

x
χm
L (hs,ω)( )
cmvmIm

Fy (z,ω)( )
vmImm=1

∞

∑

� 

ux
R x,z,ω( ) = e−i3π / 4

8πω
e−ik mx

x
χm
R (hs,ω)( )
cmvmIm

Fx (z,ω)( )
vmImm=1

∞

∑

� 

uz
R x,z,ω( ) = e−iπ / 4

8πω
e−ik mx

x
χm
R (hs,ω)( )
cmvmIm

Fz (z,ω)( )
vmImm=1

∞

∑

Methodology - Modal Summation Technique



Synthetic seismograms

(s1f1) sre=168.00 dip=30.0 sde=  7.000 edi= 15.000 rde=  0.000
 mod=  0-  0 int= 1 mag=6.5
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Haskell, 1964
sumatra

　　        Ishii et al., Nature 2005 doi:10.1038/nature03675

Rupture

Sumatra earthquake, Dec 28, 2004 　

Haskell dislocation model

Bulletin of the Seismological Society of America. Vol. 61, No. 1, pp. 221-223. February, 1971 

MEMORIAL 

NORMAN A. HASKELL (1905--1970) 

Norman A. Haskell, a former Research Physicist and Branch Chief at Air Force 
Cambridge Research Laboratories, and President of the Seismological Society of 
America, died at Hyannis, Massachusetts on April 11 1970 after a long illness. He is 
survived by his wife and two children. 

Dr. Haskell was one of the world's leading theoretical seismologists, perhaps best 
known for his development of the matrix method of computing the seismic effects of 
multiple horizontally-layered structures. His research interests spanned an extra- 
ordinarily broad geophysical range including the development of computational tech- 
niques in seismic, prospecting, the extension of seismic prospecting techniques to the 
mining industry, mechanics of the deformation of granitic rocks, underwater ballistics, 
atmospheric acoustics, blast phenomena, operations research, crustal structure and 
nuclear test detection. 

NORMAN A. HASKELL 

221 

Haskell N. A. (1964). Total energy spectral density of elastic wave radiation from propagating faults, 
Bull. Seism. Soc. Am. 54, 1811-1841



Haskell source model: far field
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 ur (r,t) = ui ri,t − ri /α−Δti( )
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For a single segment (point source)



Haskell source model: far field

resulting in the convolution of two boxcars: the first with 
duration equal to the rise time and the second with duration 

equal to the rupture time (L/vr)

� 

 ur (r,t)∝ ˙ D (t)∗vrH(z) t−x /vr

t = vr
˙ D (t)∗B(t;Tr )



Haskell source model: directivity
The body waves generated from a breaking segment will arrive at a receiver before 

than those that are radiated by a segment that ruptures later. 
If the path to the station is not perpendicular, the waves generated by different 

segments will have different path lengths, and then unequal travel times.
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Rupture velocity
Earthquake ruptures typically propagate at velocities that are in the range 70–90% of the 
S-wave velocity and this is independent of earthquake size. A small subset of earthquake 
ruptures appear to have propagated at speeds greater than the S-wave velocity. These 
supershear earthquakes have all been observed during large strike-slip events.

http://pangea.stanford.edu/~edunham/research/supershear.html

http://pangea.stanford.edu/~edunham/research/supershear.html
http://pangea.stanford.edu/~edunham/research/supershear.html


Directivity example



Ground motion scenarios

The two views in this movie show the cumulative velocities for a 
San Andreas earthquake TeraShake simulation, rupturing south to 
north and north to south. The crosshairs pinpoint the peak velocity 

magnitude as the simulation progresses.
www.scec.org

http://www.scec.org
http://www.scec.org


Source spectrum
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 u(t) = M0 B t;τ( )∗B t;TR( )( )

The displacement pulse, corrected for the geometrical spreading and the 
radiation pattern can be written as:

and in the frequency domain:



Source spectrum
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Empirical source spectra    

represent a set of average amplitude 
curves respect to:

Tectonic setting 

Source mechanism

Directivity effects
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