CARBONATE PLATFORM MARGINS
AND CARBONATE REEFs

el

The carbonate reefs are

excellent indicators of
environmental conditions
(climate, water depth,
oxygenation).

Their recognition along
the seismic profiles is
fundamental for the
reconstruction of the
ancient sedimentary
domains.
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Figure 14.18 Generalized mode! of a Carboniferous carbonate platform (from Richards, 1989a).
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FIG. 1—Types of carbonate buildups most easily recognized from seismic interpretation.
Conventional classification of reefs and banks, although preferred, is not easily applicable to

seismic data.
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CARBONATE PLATFORM MARGINS
AND CARBONATE REEFs e —

The carbonate reefs are generally excellent hydrocarbon Petroleum
stratigraphic traps: -

in Canada 60% of oil production comes from reefs, which SC|ence
developed in the Devonian, also present in many oil regions
of the USA.

In Italy, the oil fields of southern Italy are located along

the edge of the Apulia platform (e.g. in the south-Adriatic: Aquila, Giove wells, etc.)

—o. ] ornear it (Rospo Mare) or in the Apulia
m s | Platform, buried under the thrusts of the
i southern Apennines (Val d'Agri, Tempa Rossa,

| Mesozoic plateawx

[0 Mesozolc carbonate phth etC) .

esozoic extensional faultes

Cenozowe compressionsl fa

The recent exploration of the Croatian offshore
is also mainly focused on the margin of the
Dinaric carbonate platform.
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The carbonate platform margins often represent an
important target of investigation, as they constitute
the transition between the shallow water domain
and the basin domain, sometimes very deep.
The two domains generally separated during a
tectonic phase (typically in the continental margins).
The closest example to us concerns the Friulian /
Istrian / Dalmatian carbonate platforms, often called
Adria Carbonate Platform, and the Apulian
Carbonate Platform, separated by the pelagic
basin domains of (Belluno / Umbrian-Marchigiano /

lonian basins) generally during the Liassic period, in These margins are often characterized
connection with the oceanic Tethys opening. by high porosity (possible reservoir),

due to fracture systems, dolomitization,
slope deposits, etc., sometimes close
to rocks with a high content of organic
carbon (possible source rocks). They
are therefore an important target of
seismic interpretation.
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Platform Margin

Direct Seismic Evidence

Margin Configuration (on the left)
1 & 2 Mound shape and abrupt interruption of

adjacent reflectors
3 — different seismic facies on the two sides of

the structure
Internal Configuration (on the right)

1 — absence of reflectors
2 — structure growth above a “hinge line”
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Indirect Seismic Evidence

Effects (on the left) e e E e
1- drapery over the structure —— — i
2- pull-up velocity : : g
3- diffraction on the structure margins e —] &

Architecture (on the right)
1- growth above “hinge line”
2- growth above a structural high 0 ]




Distinguishing Characteristics of Reefs voom

. . . . ottt s 1. VEL. LOWER VEL.
Figure 5.16 is a summary of criteria for distinguishing reefs F et % e /?\ SH,
on seismic sections. These criteria include: o
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(1) Reflections that partially outline reefs. SEISMIC SECTION SEISMIC SECTION

(2) Reflection voids, distinguishable by the sharp termina-
tion of reflections that onlap the reef.

(3) Changes in amplitude, frequency, or continuity of re-
flections at reef edges.

(4) Differences between reflection patterns on one side of MODEL
the reef compared to those on the other; this is often

especially marked for shelf-margin and barrier reefs where LIMESTONE :ﬁiﬂ;.ﬁ; SHALE ; umssmnsz EVAPORITES
the back-reef and fore-reef patterns may differ markedly.

= S R N R R D T e A e B o S R s
N T Ry Ol IR L L e T LV TP Wi Vetvaleey SisvEa R S ades sm e &
e N e e e e s P B e O b P o SIS I A SR LT A

(5) The presence of diffractions and other types of events
that mark reef edges.

SEISMIC SECTION SEISMIC SECTION

(6) Differential compaction effects that produce a drape in T ALV ARE S R e i S e AT
the sediments over the reef; this is generally due to the off- T SN e e e T T
reef sediments being more compactable than the reefitself, ©
but occasionally the porous parts of a reef collapse and pro- e
duce compaction effects. Compaction effects usually | Reefs are usually evic.lenced by a combmatlor} oft thfe fore-
become gradually less with distance above the reef. going, it being recognized that none are exclusive indicators
of reefs.

Commonly, a reef has higher velocity than the surround-
ing sediments (see figures 5.17a and 5.17b), especially where
(8) Location where reef growth should be propitious, such | the surrounding sediments are shales, and hence reﬂectiqns
as on a hinge line, at the edge of a shelf, or on the uptilted under a reef usually show an apparent .bUt unr(.aal uplift.
edge of a fault block. Sometimes a reefis surrounded by evaporite deposits such as
anhydrite, which have higher velocity than the reef, and
then the velocity anomaly under the reef is an apparent sag
(see figure 5.17c). Occasionally the back-reef and fore-reef
sediments will be of sufficiently different kinds that velocity
anomalies will differ for opposite sides of a reef (see figure

(d)

(7) Velocity anomaly for reflections underneath the reef
(see below and figure 5.17).

(9) Regional factors, such as the knowledge that the
climate or environment associated with a particular reflec-
tion was propitious for reef growth.




Differential compaction at a build-up

Effects on frequency content: above the build-up structure the
sedimentary sequence shows higher frequency content.
Other seismic attributes can be useful (e.g chaos & dips)
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In this profile the margin
shape is amplified by the

presence of a reef.
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Note the different seismic

z

facies of the shallow water
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Example of platform margin:

often, the margins, especially if they are

seismic resolution
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Example of
Platform Margin

We can distinguish

- Different seismic facies of
different domains

< carbonate platform
sw on the right
< basinal on the left
diffraction from the margin
the pull-up velocity
the draping
differential compaction in
the covering sediments

Del Ben Anna - Interpretazione Sismica -
Margini Piattaforma Carbonatica
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Fig. 10.27 Windward (left) and leeward (right) platform margins of the Bahamas (from Eberli and Ginsburg, 1987). See text fol
bz

details

Example of a carbonate platform margin in the Bahamas
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EAST ADRIATIC SLOPE ZONE aikes
CONCEPTUAT, ENTRAPMENT MODEL 3 =

CARBONATE BDS.
EOCENE-M.JURASSE

EPOSITS
3~CRETACEOU

Scheme for the
E-Adriatic Shelf Margin
proposed by Grandic (1999)

VLASTA - KOMIZA Bds
1 NIAN-CARNIAN

P B-ANHYDRIT!
E.LADINIAN-ANISIAN

WERFEN-RED BEDS
E.TRIASSIC-PERMIAN

in this model we can note:

DIAPIRE COMPLEX
PERMIAN-CARNIAN

SLOPE&FOLT RELATED
RESERVOIR

SOURCE ROCK Bds

- a system of extensional faults

(L| assic fa u lts Of th e paSS|Ve Fig. 18. This hydrocarbon conceptual model was created mostly on the basis of the well and

Tethy a n m a rg i n) seismic interpretation between the Maja-1 well and the Palagruza high (After GRANDIC et al
’ 1999\

- escarpment deposits (hlgh J— SEISMIC LINE: J-22-82 / J-22A-82 Inlika Biilrs
porosity and therefore good SWS
probability to act as a reservoir for
hydrocarbons);

- presence of evaporites in depth
would have given rise to salt
domains, giving rise to the Island of
Jabuka (or |. del Pomo) and further
positive structures

2 Way Time Sec.

SYMBOLS EXPLANATIONS
OBJASNJENJE SIMBOLA
pm CARBONATE PLATFORM MARGIN ar ROSSO AMMONITICO EQUIV.

RUB KARBONATNE PLATFORME EKVIVALENT ROSSO AMMONITICO
OSP/RSP OPEN/RESTRICTED CARB. PLATF. -8 SOURCE ROCK (Komiza type?)
OTVORENA | ZATVORENA KARB. PLATFORMA MATICNE STIJENE (Komiza tipa)
. P sl UPPER SLOPE CLASTIC (RESERVOIR) E - E' BASE CARBONATE / KOMIZA BDS.
Del Ben Anna - mterpretaZIOne Sismica - KLASTITI GORNJE PADINE (LEZISNE STIJENE) BAZA KARBONATA (KOMIZA SLOJEVI)

tf TRIASSIC RIFT RELATED FAULT

Margini Piattaforma Carbonatica TRIJASKI RASJEDI



EXPLORATION in the CROATIAN OFFSHORE
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CENTRAL ADRIATIC BASIN : Seismic line D - 10
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Carbonate
platform:

-opaque
seismic facies (Grandic, 1999)

-velocity pull-up
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Seismic profile crossing the Trieste Gulf.
The margin of the Frulian/Istrian Carbonate
Platform separates the pelagian basin to the

west from the sw domain to the east.
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Example of seismic profile in the in Adriatic Sea:

Barbara isolated carbonate platform
sw -< total length 35 km
well A well B well C

\]
#

Margin

Figure 5. Line drawing of the Barbara Platform from the Central Adriatic showing the internal organization and
the architecture of the margins of a well-preserved MICP. The platform is characterized by a transparent seismic
facies, but between the J and LK reflectors, seismic facies variations are interpreted to be due to facies zonation
with a reflective and stratified platform interior passing laterally into a chaotic to massive margin facies. Line
drawing from line CROP M16, flattened on the base Pliocene. FT: Top Permo Triassic; U: Top Lower Jurassic; MJ: Top

Middle Jurassic; J: Top Upper Jurassic; LK: Top Lower Cretaceous; K: Top Cretaceous; Pg: Near top Paleogene; P: Base © b o ™
Pliocene — cespondsto o rat. — I ' I — i
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Chapter 15

Seismic Modeling of a Carbonate Platform Margin
(Montagna della Maiella, Italy): Variations in
Seismic Facies and Implications for Sequence
Stratigraphy

Flavio S. Anselmetti Gregor P. Eberli
Swisy Federal Institute of Technology ETH University of Miami
Ziirich, Switzerland Rosenriel School of Marine and

Atmospheric Science/MGG

X ! AR
Eresensadiress Miami, Florida, U.S.A.

University of Miami

Rosentiel School of Marine and Daniel Bernoulli
Atmospheric Science/MGG Swiss Federal Institute of Technology ETH
Miami, Florida, U.S.A. Ziirich, Switzerland
Abstract

Synthetic seismic sections across the exposed Cretaceous—Miocene carbonate platform margin
of the Montagna della Maiella (central Ttaly) explain the seismic facies of a carbonate platform
margin system and show the limitations of rclating seismic sequences (w depositional sequences.
To define a layered impedance model, velocities and densities of 186 minicores from all major out-
cropping lithologies were determined. The impedance model was converted to synthetic seismic
data by applying a computer-simulated model that uses the normal incidence ray-tracing method at
variable frequencies, amplitude gains, and noise levels, The resulting synthetic seismic sections
show a mostly transparcnt platform that is onlapped along the escarpment by a succession of high-
amplitude slope reflections. The different reflectivities of platform and slopc can be explained by
their differences in impedance contrasts. The small impedance contrasts within platform carbon-
ates results in weak reflections nearly indistinguishable from noise, whereas the large impedance
contrasts within the slope and basin carbonates yield coherent high-amplitude reflections. The
scismic image with incoherent (o transparent platform, high-amplitude slope refiections, and rec-
ognizable prograding units is similar to observed seismic data across other steep carbonate plat-
form margins (e.g., Great Bahama Bank and Adriatic Sea)

In outcrop, seven unconformity-bounded supersequences were mapped. Comparison with the
synthetic seismic section shows that, at a frequency of 20 Hz, only five of these depositional super-
sequences can be recognized using seismic unconformities. With an increase in frequency, an
increasing number of unconformitics become visible, and at a [requency of 60 Hz, all seven are
imaged. The synthetic seismic sections also reveal that some of the seismic unconformitics are
pseudo-unconformities—they do not exist in outcrop, but the seismic image shows erroneous or
nonexistent geometric patterns. These are a result of the thinning of layers below seismic resolu-
tion. These observations document the problem of seismically imaging depositional sequences.
Depending on the dominant frequency, an erroneous number of sequences might be interpreted.
This limitation must be taken into account when making sequence stratigraphic interpretations
based solely on seismic information.
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Fig. 1S. Comparison of seismic sections from similar geologic environments plotted at equal horizontal and vertical scales
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(total width of sections is 14 km). (a) Synthetic seismic section across the platform-to-basin transition in the Montagna
della Maiella (30 Hz). (b) Seismic section of the eastward continuation of the Maiella platform margin (Apulian platform)
located ~40 km east of the Maiclla where the margin plunges into the subsurface beneath the Adriatic Sea (Figure 3). The
reflection pattern is characterized by u transparent platform onlapped by a wedge-like succession of high-amplitude

(c) Part of the Western seismic line from Great Rahama Rank (Eberli and Ginsburg, 1989). The reflection
pattern is similar to that above, confirming the differences in seismic facies of platform and slope.
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Figure 10. Stratigraphic distribution, main components, and schematic
depositional profiles of carbonate factories of MICPs.

Figure 8. Seismic profile from offshore southeastern Adriatic showing the southwestern margin of the Adriatic
Platform modified after Wrigley et al. (2015). The U reflector is the same event as in Figure 6 and represents
the differentiation of the epeiric platform into ICPs and intervening basins and, on this more modern data, is sw Apulian Platform, slope & basinal domains ne
continuous into the platform domain where it clearly defines the base of the MICP. Also on this data, the platform
interior appears to be characterized by a parallel, continuous seismic facies, passing into a more massive, chaotic
facies toward the margin. At this location, the margin is characterized by an aggradational slope with minor
backstepping and present-day vertical relief of approximately 1750 m and a slope angle of approximately 15°. On
the eastern end of the line, an inversion structure formed during Tertiary compression is clearly imaged. LJ: Top
Lower Jurassic; J: Top Jurassic; K: Top Cretaceous (also top of carbonates); P: Base Pliocene.

Apulian Platform, slope & basinal domains

Figure 7. Seismic profile from offshore southern Adriatic showing the northeastern margin of the Apulian
Platform. The C reflector corresponds to the top of the carbonates, while base carbonate is difficult to interpret

in both platformal and basinal domains. This line shows evidence of Cretaceous tectonic activity that created
localized deeper water basins within the platform, as evidenced by the presence of a thin interval of pelagic Upper
Cretaceous sediments overlying shallow marine carbonates in well A. Shallow marine carbonate sedimentation
lasted until the end of the Lower Miocene in well B. At this location, the margin is characterized by a bypass slope
with a toe-of-slope apron and present-day vertical relief of approximately 2750 m and an escarpment angle of
approximately 30°. Seismic line courtesy of Spectrum Geo Inc. with reprocessing as described by Nicholls et al.
(2015). D: Top Dolostones; J: Top Upper Jurassic; LK: Top Lower Cretaceous; iK: infra Upper Cretaceous; S: Top Lower
Senonian; K: Top Cretaceous; C: Top Carbonates (infra Miocene in the platform [left]; Top Paleogene in the basin
[right]); P: Base Pliocene; PI: Top Pliocene.
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Isolated carbonate platforms of the Mediterranean and
their seismic expression — Searching for a paradigm

Giovanni Rusciadelli* and Peter Shiner?

https://doi.org/10.1190/t1e37070492.1.

Figure 1. (a) lllustration showing the geometry of an ICP and its internal
subdivision into gross depositional environments. (b) Example of a Triassic ICP
(Sella Group, Dolomites) in which erosion of softer and younger basinal sediments
has resulted in exposure of the paleotopography of the ICP.

[ isolated carbonate platform [ Attached carbonate platform [ Basin [ Oceanic basin
[ ewrasian margin [ Sticiciastic [T Emerged fand “\. Normal fault ™ Active subduction and major thrusts.

Figure 4. Paleogeography of Tethys during the Mid-Cretaceous. Modified after Dercourt et al. (2000); Barrier

et al. (2008). A: Apenninic Platform; Ad: Adriatic Platform; Ap: Apulian Platform; B: Barbara Platform; C: Calypso
Platform; E: E Platform; GT: G Tripolitza Platform; LPO: Ligure-Piemontese Ocean; Me: Menderes
Platform; MO: Mesogean Ocean; Ta: Taurus Platform; Z: Zohr Platform.

Figure 2. Present distribution of ICPs in Mediterranean in outcrop and the subsurface. (a) Mountain belts related
to continental collision. (b) Fold-and-thrust belts related to back-arc opening. (c) Accretionary complexes related to
oceanic subduction. (d) Intracontinental belts. (e) Back-arc basins. (f) Residual (Mesozoic) Tethyan ocean.
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siliciclastic
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1: Growth during phases of relative tectonic qui 1: during phases of sngniﬁcam tectonic activity,
including both P 1al tectonics
2: Growth in proximity to contemporaneous clastic systems 2: Commonly from is clastic

3: Develop over a few million years and develop dimensions
of up to 10s km in diameter and < 1000m thickness

3: Develop over 10s of millions years and develop dimen-
sions of 100s km in diameter and up to S000m thickness

4: One main carbonate factory with high growth

4:C medbyasenesofesrbovmtefactomsuc-

ceeding each other in time, each with a characteristic
growth potential and depositional profile

5: Clear top and base ismik flecti 5: Generally characterized by su'ong top carbonate seismic
flecti but base y cryptic
6: Variable slope geometries including bypass and deposi- 6: Generally ct ized by aggradati high relief, high
tional (agg to progr: i )grvhg rise to angle bypass margins with development of base of slope
i in tio P and accr C y mavglns with slope aprons. Sec-
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7: Well developed facies variation within platform combined 7: Variable but g i iation within
with diagenetic overprint gives rise to systematic seismic platform combined with diagenhc overprim results in plat-
facies variations between reflective and stratified platform forms commonly being bya P seis-

interior and chaotic to massive margin

Figure 3. Comparison of the main characteristics of Southeast Asian and Mediterranean ICPs.
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Data show that the
margins of the Maldive
platform migrated during
the time: some sectors
subsided and were buried
below pelagic sediments,
other sectors outcropped
were eroded. Eventually,
after erosion, new building

could develop.
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Growth and demise of a Paleogene isolated carbonate platform
of the Offshore Indus Basin, Pakistan: effects of regional and local
controlling factors
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