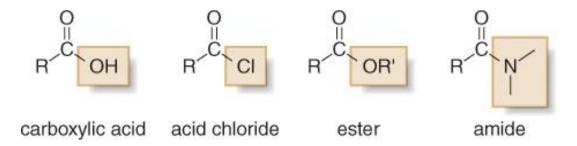
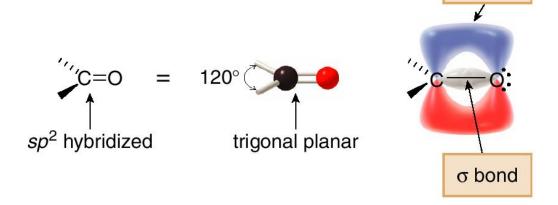

Carbonyl Compounds

Introduction

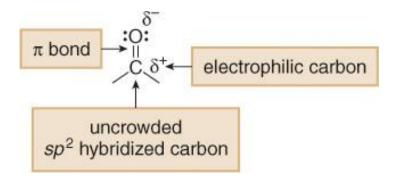

Introduction

Two broad classes of compounds contain the carbonyl group:

[1] Compounds that have only carbon and hydrogen atoms bonded to the carbonyl


[2] Compounds that contain an eteroatom (N, O, S, CI) bonded to the carbonyl

Introduction


• Carbonyl carbons are sp^2 hybridized, trigonal planar, and have bond angles that are ~120°.

 π bond

 The electronegative oxygen atom in the carbonyl group means that the bond is polarized, making the carbonyl carbon electron deficient.

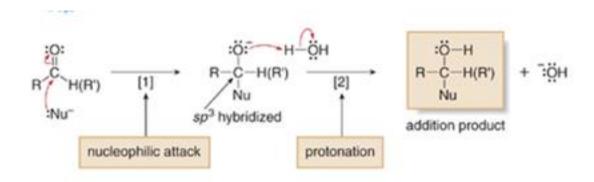
General Reactions of Carbonyl Compounds

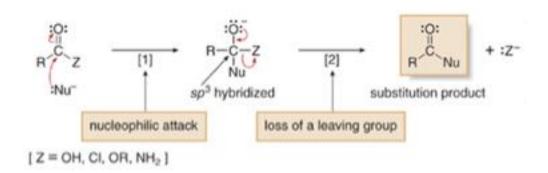
· Aldehydes and ketones undergo nucleophilic addition.

Nucleophilic addition—
General reaction

$$R \stackrel{O}{=} H(R')$$
 $R \stackrel{[1]:Nu^-}{=} R \stackrel{O-H}{=} H$
 $R \stackrel{O-H}{=} H$
 $R \stackrel{O-H}{=} H$
 $R \stackrel{O-H}{=} H$

are added.


· Carbonyl compounds that contain leaving groups undergo nucleophilic substitution.


Nucleophilic substitution—
General reaction

$$Z = OH, CI, OR, NH_2$$

Nu replaces Z.

General Reactions of Carbonyl Compounds

Aldehydes and Ketones

Chapter 19
Organic Chemistry, 8th Edition
John McMurry

Nomenclature of Aldehydes

- Find the longest chain containing the CHO group, and change the –e ending of the parent alkane to the suffix –al. If the CHO group is bonded to a ring, name the ring and add the suffix –carbaldehyde.
- A common name for an aldehyde is formed by taking the common parent name and adding the suffix –aldehyde.

cyclohexanecarbaldehyde benezenecarbaldehyde 2-naphthalenecarbaldehyde (benzaldehyde)

Nomenclature of Ketones

IUPAC name: 2-butanone

Common name: ethyl methyl ketone

IUPAC name: 2-methyl-3-pentanone Common name: ethyl isopropyl ketone

m-bromoacetophenone or 3-bromoacetophenone

acetone

acetophenone

benzophenone

Nomenclature of Aldehydes and Ketones

Do not confuse a **benzyl** group with a **benzoyl** group.

benzyl group

Physical Properties

Table 21.1 Physical Properties of Aldehydes and Ketones

Property	Observation
Boiling point and melting point	For compounds of comparable molecular weight, bp's and mp's follow the usual trend: The stronger the intermolecular forces, the higher the bp or mp.
	CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CHO CH ₃ CH ₂ CH ₂ OH
	VDW MW = 72 bp 36 °C VDW, DD MW = 72 bp 76 °C MW = 74 bp 118 °C CH ₃ CH ₂ COCH ₃ VDW, DD MW = 72 bp 80 °C
	Increasing strength of intermolecular forces Increasing boiling point
Solubility	 RCHO and RCOR are soluble in organic solvents regardless of size. RCHO and RCOR having ≤ 5 C's are H₂O soluble because they can hydrogen bond with H₂O (Section 3.4C).
	 RCHO and RCOR having > 5 C's are H₂O insoluble because the nonpolar alkyl portion is too large to dissolve in the polar H₂O solvent.

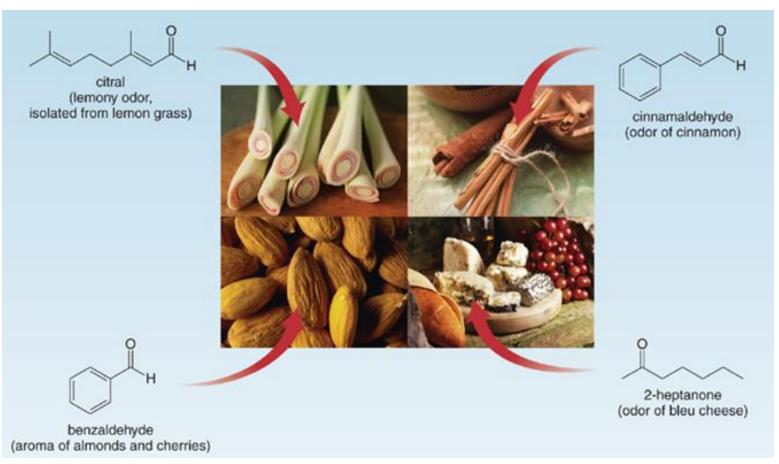
Key: VDW = van der Waals, DD = dipole-dipole, HB = hydrogen bonding, MW = molecular weight

Keto-Enol Tautomerism

Interesting Aldehydes and Ketones

formaldehyde CH₂=O

Billions of pounds of formaldehyde are produced annually from the oxidation of methanol. It is sold as a 37% solution called formalin which is used as a disinfectant, antiseptic, and preservative for biological specimens. It is a product of incomplete combustion of coal, and is partly responsible for the irritation caused by smoggy air.



acetone $(CH_3)_2C=O$

Acetone is an industrial solvent. It is also produced in vivo during breakdown of fatty acids. Diabetics often have unusually high levels of acetone in their blood streams.

Interesting Aldehydes and Ketones

Many aldehydes and ketones with characteristic odors occur in nature.

Preparation of Aldehydes

Hydration of an alkyne (hydroboration-oxidation)

Oxidation of 1ry alcohols

Reduction of esters and acyl chlorides

Preparation of Ketones

Hydration of alkynes

Oxidation of 2^{ry} alcohols

Friedel-Crafts acylation

Acylation of organocuprates

Preparation of Aldehydes and Ketones

Aldehydes and ketones are also both obtained as products of the oxidative cleavage of alkenes.

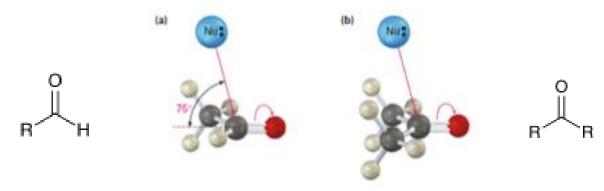
Reactions of Aldehydes and Ketones—General

[1] Nucleophilic addition

General reaction— Nucleophilic addition

O
$$H(R')$$

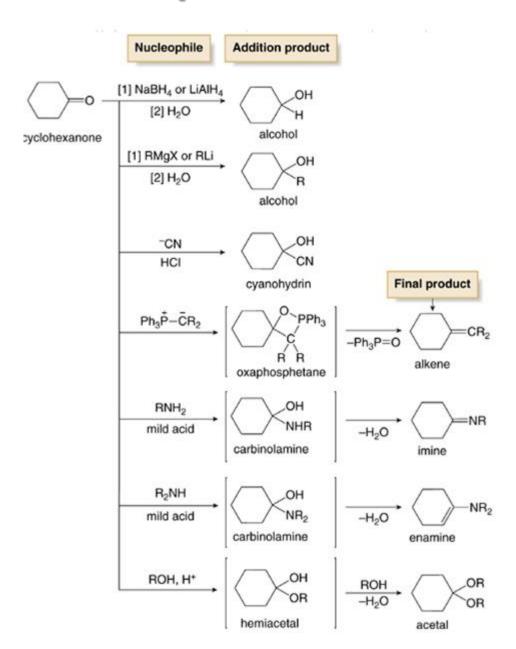
O
 $H(R')$

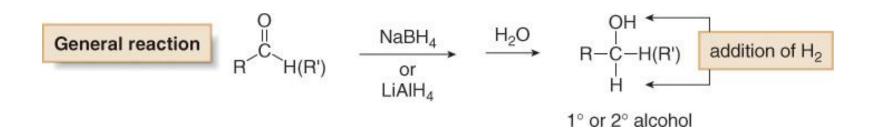

O

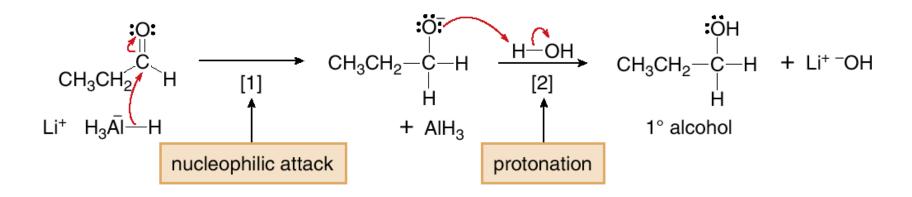
[2] Oxidation

[3] Reaction at the α carbon

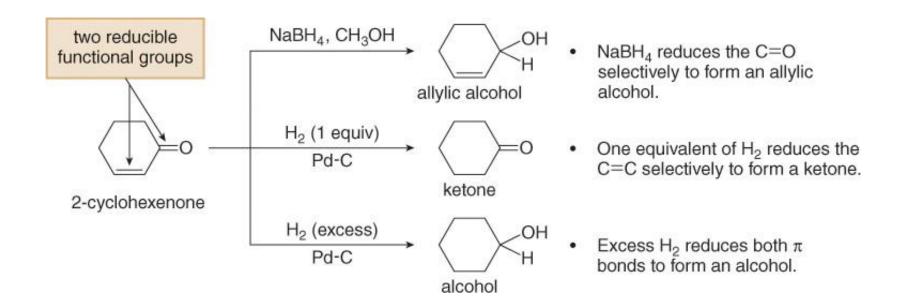
Nucleophilic Addition



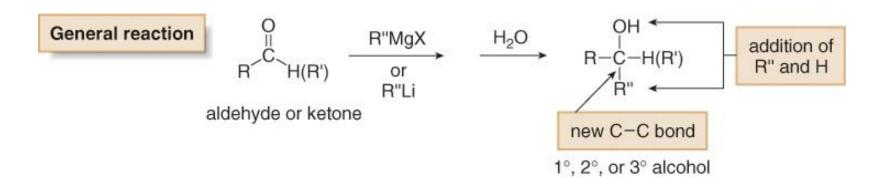

aldehyde less crowded more reactive ketone more crowded less reactive

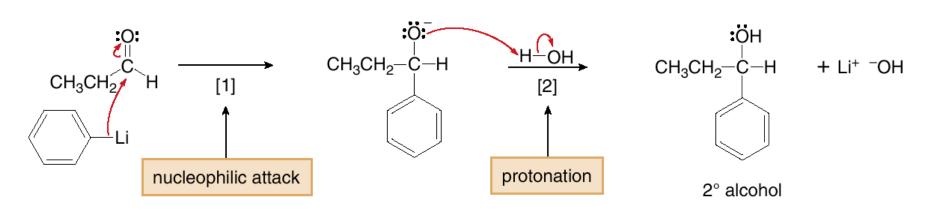

Acid Catalysis

Nucleophilic Addition



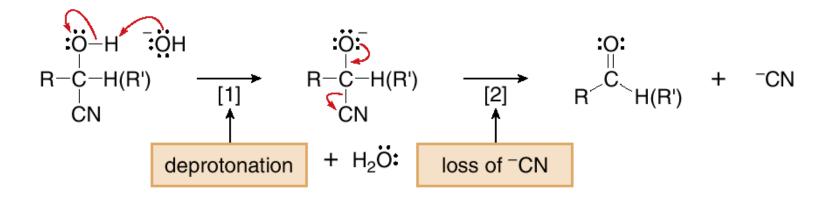
Nucleophilic Addition of H and R — A Review





Nucleophilic Addition of H and R — A Review

Nucleophilic Addition of H and R — A Review



Nucleophilic Addition of CN⁻

 Treatment of an aldehyde or ketone with HCN gives a cyanohydrin.

Nucleophilic Addition of CN⁻

Cyanohydrins can be reconverted to carbonyl compounds by treatment with base.
 This process is just the reverse of the addition of HCN: deprotonation followed by elimination of ⁻CN.

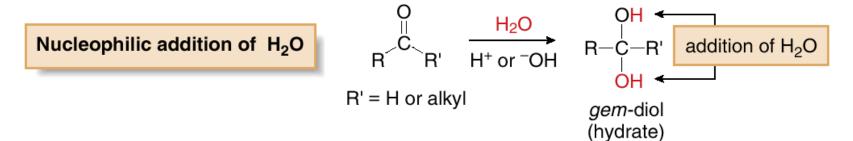
 The cyano group of a cyanohydrin is readily hydrolyzed to a carboxy group by heating with aqueous acid or base.

Hydrolysis of a cyano group
$$R-C-R'$$
 H_2O H_2O $R-C-R'$ $C\equiv N$ A $COOH$

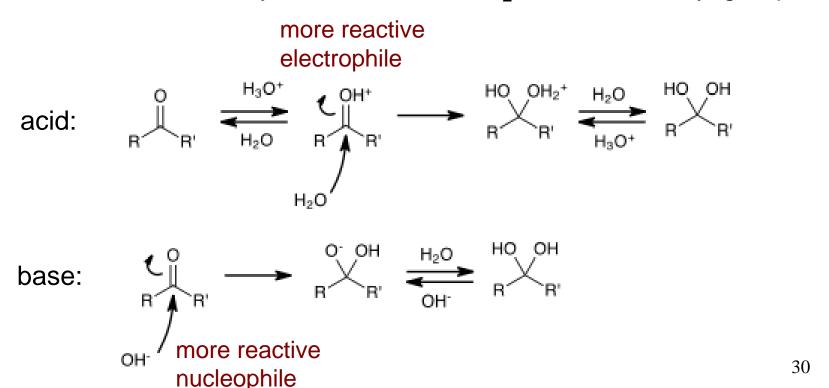
Nucleophilic Addition of CN⁻

Linamarin and Amygdalin are two naturally occurring cyanohydrin derivatives.

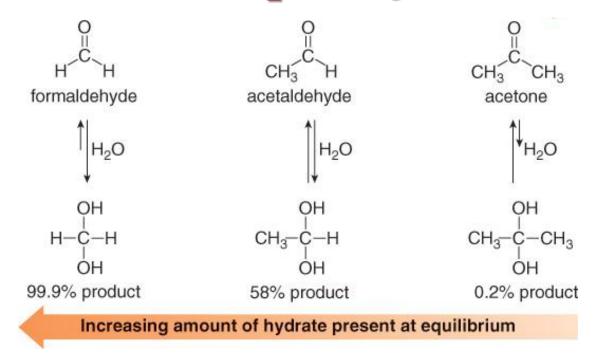
 Both compounds are toxic because they are metabolized to cyanohydrins, which are hydrolyzed to carbonyl compounds and HCN gas.


Addition of H₂O—Hydration

Nucleophilic addition of H₂O


R' = H or alkyl

$$H_2O$$
 H^+ or $-OH$
 $R-C-R'$ addition of H_2O
 OH
 gem -diol (hydrate)


Addition of H₂O—Hydration

Both acid and base catalyze the addition of H₂O to the carbonyl group.

Addition of H₂O—Hydration

 Gem-diol product yields are good only when unhindered aldehydes or aldehydes with nearby electron withdrawing groups are used.

Addition of Alcohols—Acetal Formation

Acetal formation

acetal

Example two new
$$\sigma$$
 bonds

$$CH_3CH_2 \ H + CH_3OH \ (2 equiv)$$

$$CH_3CH_2 \ H + H_2O$$

32

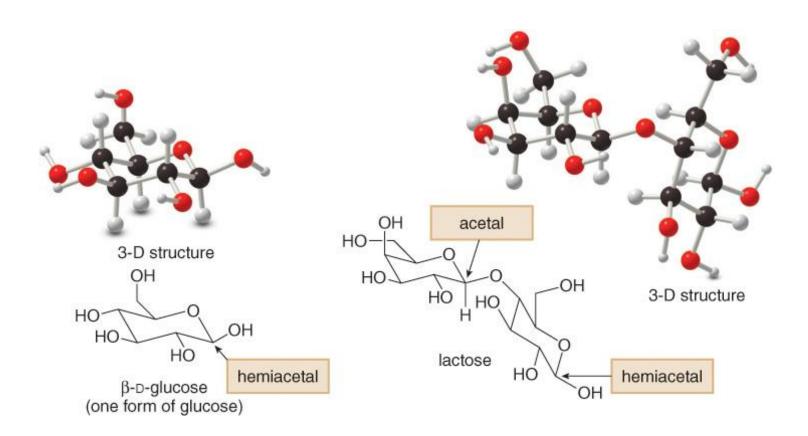
Addition of Alcohols—Acetal Formation

$$\stackrel{AH}{\longrightarrow} \stackrel{H_2O}{\longrightarrow} \stackrel{OR"}{\longrightarrow} \stackrel{-H_2O}{\longrightarrow} \stackrel{P}{\longrightarrow} \stackrel{R'}{\longrightarrow} \stackrel{R'}$$

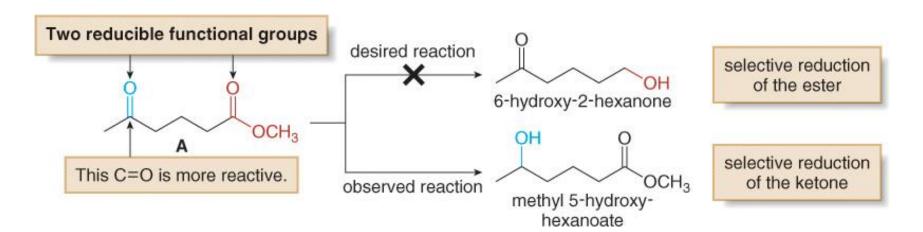
Acetal Hydrolysis

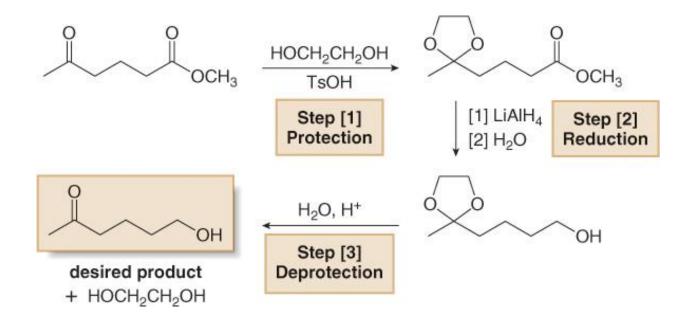
Cyclic Hemiacetals and Acetals

Cyclic hemiacetals are formed by intramolecular cyclization of hydroxy


aldehydes.

[Equilibrium proportions of each compound are given.]


Cyclic hemiacetals can be converted to acetals by treatment with an alcohol and acid.


Introduction to Carbohydrates

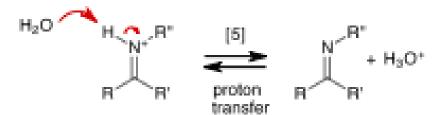
- Carbohydrates, commonly referred to as sugars and starches, are polyhydroxy aldehydes and ketones, or compounds that can be hydrolyzed to them.
- Many carbohydrates contain cyclic acetals or hemiacetals. Examples include glucose and lactose.

Acetals as Protecting Groups

Addition of Amines

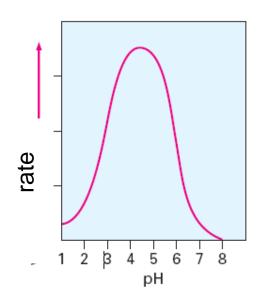
 Treatment of an aldehyde or a ketone with a 1ry amine affords an imine (also called a Schiff base).

The N atom of an imine is
$$sp^2$$
 hybridized, making the C—N—R bond angle 120°, (not 180°).


Treatment of an aldehyde or a ketone with a 2ry amine affords an enamine.

Imines and Enamines: Mechanism

1. Amine addition


2. Elimination of water

a: NH₃, R"NH₂

b: R"R""NH

Addition of Amines – Effect of pH

General pH-rate profile for addition of amines to carbonyl compounds

protonation activates the electrophile

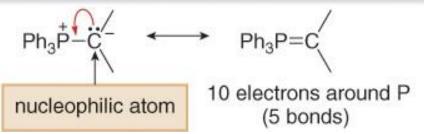
$$R-NH_2 + H_3O^+ = R-NH_3^+ + H_2O$$

protonation deactivates the nucleophile 41

Addition of Amines

Imine and Enamine Hydrolysis

- Because imines and enamines are formed by a reversible set of reactions, both can be converted back to carbonyl compounds by hydrolysis with mild acid.
- The mechanism of hydrolysis is the exact reverse of the mechanism written for formation of imines and enamines.

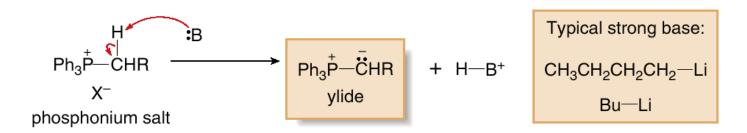

Hydrolysis of imines and enamines forms aldehydes and ketones.

Imine hydrolysis
$$CH_3$$
 $C=NCH_2CH_2CH_2CH_3$ CH_3 CH_3 $CH_2CH_2CH_3$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

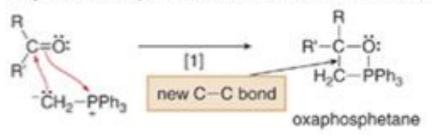
Other Amines

Two resonance structures for the Wittig reagent

phosphonium ylids (Wittig reagents)


Examples
$$CH_3$$
 $C=O$
 $Ph_3\dot{P}$
 CH_2
 CH_2
 CH_2
 CH_3
 CH_3
 CH_4
 CH_4
 CH_5
 CH_5
 CH_6
 CH_7
 CH_8
 CH

Preparation of phosphorus ylides (phosphoranes)


Step [1] S_N 2 reaction of triphenylphosphine with an alkyl halide forms a phosphonium salt.

Ph₃P: + RCH₂ X
$$\longrightarrow$$
 Ph₃ $\stackrel{+}{P}$ - CH₂R + X triphenylphosphine nucleophile phosphonium salt

Step [2] Deprotonation of the phosphonium salt with a strong base (:B) forms the ylide.

Step [1] Nucleophilic addition forms a four-membered ring.

Step [2] Elimination of Ph3P=O forms the alkene.

Advantage: the Wittig reaction always gives a single constitutional isomer.

Limitation: a mixture of stereoisomers is sometimes formed.

How To Determine the Starting Materials for a Wittig Reaction Using Retrosynthetic Analysis

Example What starting materials are needed to synthesize alkene A by a Wittig reaction?

Possibility [1]

Possibility [2]

Cleave this bond.

Cleave this bond.

$$CH_3$$
 CH_3
 CH_3

51

α,β-Unsaturated Carbonyl Compounds

Conjugate Addition

general mechanism:

examples:

Oxidation

mechanism

Keto-Enol Tautomerism. Reaction at the α -Carbon

α -halogenation:

mechanism:

Enolates. Reaction at the α -Carbon

Example: 2-methylcyclohexanone