

<u>1</u>

Microglia (as opposed to Macroglia=astrocytes, oligod.)

- Most like tissue macrophages elsewhere in body; not of neuroectodermal origin, like all macroglia
- · Chief mediators of immune responses in brain
- CNS is not completely isolated from immune reactions
- Microglia derive from marrow monocyte lineage
- Have phenotypic markers similar to tissue macrophages:
 - CD68, HAM-56, IL-1alpha,beta, class II MHC, OX-42

Ependymal cells

- Line ventricles of brain and spinal cord canal
- Ciliated, columnar epithelium, with cilia and adherens junctions; but express glial markers
- May extend cytoplasmic processes into brain parenchyma
- Recent controversy as to whether Ependymal cells (versus subependymal astrocytes) are adult neural stem cells (resolved: NCS derive from astrocytes)

Astrocytes

- Astrocytes contact virtually every cell component in brain
 - Other astrocytes (gap junctions)
 - Ependymal cells
 - Neurons (somas, processes, synapses)
 - Oligodendroglia
 - Capillary endothelial cells

Discovery of the BBB

- 1885: Paul Ehrlich discovered that when a particular blue dye was injected into the blood-stream of an animal, tissues of the whole body <u>EXCEPT the brain and spinal cord</u> turned blue.
- To explain this phenomenon, the investigators suggested that a "Blood-Brain-Barrier" prevented some materials from leaving the brain capillaries and actually entering the brain tissue.

What is the Blood Brain Barrier?

- Structural and functional barrier which impedes and regulates the influx of most compounds from blood to brain
- Formed by brain microvascular endothelial cells (BMEC), astrocyte end feet and pericytes
- Essential for normal function of CNS
- Regulates passage of molecules in and out of brain to maintain neural environment.
- Responsible for metabolic activities such as the metabolism of Ldopa to regulate its concentration in the brain.

- Autoregulation (works down to 50 mmHg)
- Vasculature responds both to pressure and to neuronal activity
- Blood-Brain Barrier (primarily formed by tight junctions between capillary endothelial cells; help from pericytes and astrocyte foot processes)
- Breaching of BBB due to ischemic damage to endothelium -->edema-->mass effect->herniation

Differences between BMEC and normal endothelial cells

- Structural differences:
 - Absence of fenestrations
 - More extensive tight junctions (TJ)
- Functional differences:
 - Impermeable to most substances
 - Sparse pinocytic vesicular transport
 - Increased expression of transport and carrier proteins: receptor mediated endocytosis
 - No gap junctions, only tight junctions
 - Limited paracellular and transcellular transport

Junction Adhesion Molecules:

- 40kDa
- Integral membrane protein, single transmembrane region
- · Belongs to immunoglobulin superfamily
- · Localizes at tight junctions
- Involved in cell-to-cell adhesion and monocyte transmigration through BBB
- Regulates paracellular permeability and leukocyte migration
- Also found on circulating leukocytes, platelets and lymphoid organs.

Barrier function of JAM

- **Homotypic** binding between JAM molecules on adjacent endothelial cells acts as a barrier for circulating leukocytes
- **Heterotypic** binding of endothelial JAM to leukocyte JAM might guide transmigration of leukocytes across interendothelial junctions
- So factors that decrease leukocyte migration must either strengthen homotypic interactions or weaken heterotypic interactions.

Adherens Junction

- Complex between membrane protein cadherin and intermediary proteins called catenins
- Cadherin-catenin complex joins to actin cytoskeleton
- Form adhesive contacts between cells.
- Assemble via homophilic interactions between extracellular domains of calcium ion dependent cadherins on surface of adjacent cells

Astrocyte end feet

- Star shaped glial cells
- Provides biochemical support for BMEC
- Influence of morphogenesis and organization of vessel wall
- Factors released by astrocytes involved in postnatal maturation of BBB
- Direct contact between endothelial cells and astrocytes necessary to generate BBB (Rubin et al, 1991)
- Co-regulate function by the secretion of soluble cytokines such as (LIF, leukemia inhibiting factor), Ca²⁺ dependent signals by intracellular IP-3 and gap junction dependent pathways, and second messenger pathways involving extracellular diffusion of purinergic messenger.

Normal BBB transport

- Diffusion
- Facilitated transport by carrier systems
- · Receptor mediated endocytosis
- Paracellular transfer more common than transcellular transfer

- blood gases (O₂, CO₂, carbon monoxide)
- blood sugars (D-glucose, D-hexose)
- Electrolytes (Na+, K+, Cl-, etc.)
- some amino acids
- small molecule drugs (alcohol, caffeine, nicotine, morphine, heroin, cocaine, etc.)
- However, large carrier molecules required to deliver medications, cannot cross BBB.

Materials that do NOT easily Escape Brain Capillaries and Enter Brain Tissue

- Microorganisms
- Large molecules
- · Molecules that are not very lipid soluble
- · Molecules with a high electrical charge
- Hormones that work outside the CNS •
- T-cells and B-cells of the immune system •
- Drugs bound to plasma proteins (99%) •

Factors which cause increase in BBB during pathophysiology

- Factors produced by astrocytes Glutamate,

 - Aspartate
 - Taurine ATP
 - Endothelin-1
 - NO
 - MIP-2
 - Tumor necrosis factor alpha TNF-α _
 - Interleukin beta IL-β
 - Paracrine signals secreted by endothelium cells or nerve terminals of neurons running close to blood vessels
 - Bradykin
 - 5HT
 - _ Histamine
 - Thrombin
 - UTP
 - UMP
 - Substance P
 - _ Qionolonic acid - Platelet activating factor
- Free radicals