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The formation of chemical synapses involves reciprocal

induction and independent assembly of pre- and postsynaptic

structures. The major events in presynaptic terminal

differentiation are the formation of the active zone and the

clustering of synaptic vesicles. A number of proteins that are

present in the presynaptic active zone have been identified.

Recent studies of various mutants have clarified the in vivo

functions of some of the main players. Time-lapse imaging

studies have captured dynamic and transient events in the

transport of synaptic components, and therefore provided

insight into the early stages of synaptogenesis.
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Abbreviations
Bsn Bassoon

CAST CAZ-associated structural protein

GFP green fluorescent protein

KIF1A kinesin motor protein

munc mammalian homolog of unc

RIM Rab3-interacting molecule

Sec5 secretion-5

SNARE soluble N-ethylmaleimide-sensitive component attachment

protein receptor
SV synaptic vesicle

SYD synapse defective

Syt synaptotagmin

UNC uncoordinated

VAMP synaptobrevin

Introduction
In mature chemical synapses, the ultrastructure of pre-

synaptic terminals consists of densely populated synaptic

vesicles forming orderly clusters around the electron-

dense structures known as the presynaptic active zones.

Active zones are tightly associated with the plasma mem-

brane where they are juxtaposed against the postsynaptic

density, and their function is to mediate neurotransmitter

release. Recycling of synaptic vesicles takes place at the

plasma membrane flanking the active zones.

Biochemical purifications have identified three main

protein complexes, and each has a key function at the

presynaptic active zone [1–4] (Figure 1). The core

SNARE (soluble N-ethylmaleimide-sensitive compo-

nent attachment protein receptor) complex includes

syntaxin, synaptobrevin (VAMP), and synaptosomal-

associated protein-25 (SNAP25), and is the basic machin-

ery necessary for vesicle docking and fusion with the

plasma membrane. A second protein complex that

includes mainly Munc18/UNC-18 (mammalian uncoor-

dinated 18/uncoordinated-18), Munc13/UNC-13, and

synaptotagmin (syt) interacts with the SNARE complex

and regulates the exocytosis of vesicles. The third com-

plex has somewhat variable contents, usually including

Piccolo, Bassoon (Bsn), Rab3-interacting molecules

(RIMs)/UNC-10, Liprin/synapse defective-2 (SYD-2),

CAZ (presynaptic cytomatrix at the active zone)-

associated structural protein (CAST/ERC), Velis (verte-

brate LIN-7 homolog), and Mints (Munc 18-interacting

protein) [5�,6,7]. This complex is proposed to form a

cytomatrix structure at the active zone that tethers vesi-

cles and organizes the distribution of endocytosis and

exocytosis machineries. UNC-18/Munc18 and UNC-13/

Munc13 can also be found associated with RIM/UNC-10,

Bassoon, and other matrix complexes [6]. Further inter-

actions among the three basic protein complexes through

inter- and intra-molecular binding create a highly orga-

nized network that underlies the orderly arrangement of

presynaptic terminals (Figure 1). As the functions of the

SNARE complex in exocytosis have been reviewed

extensively, we review here the current progress on the

in vivo function of the other active zone proteins and

the transport of presynaptic components.

The functions of cytomatrix proteins at the
active zones
Bassoon and Piccolo are two large proteins that share

extensive homology (Figure 1, Table 1; [3]). They are

present at the active zones of both excitatory and inhi-

bitory synapses, with overlapping expression in most

brain regions. The zinc-finger domains of Bassoon and

Piccolo can bind to the prenylated Rab3A-associated

protein-1 (PRA1) in vitro [8]. The central region of

Bassoon and Piccolo that contains multiple coiled-coil

domains is important for anchoring both proteins to the

plasma membrane of the active zone [5�]. Piccolo contains

additional motifs that allow it to interact with both
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cytoskeletal and signaling molecules that regulate vesicle

cycling (Table 1; [8–11]). The large size of Bassoon and

Piccolo and their interactions with multiple synaptic

proteins support their scaffolding role in the cytomatrix

at the presynaptic active zone.

Altrock et al. and Dick et al. [5�,12�] recently examined

the in vivo functions of Bassoon using a mouse strain

carrying a deletion in the central region of the protein.

Although homozygous Bsn mutant mice are viable and

normal at birth, half of them develop epileptic seizures

and die with no obvious brain architecture abnormalities.

Different types of synapses display variable defects. The

total number and morphology of synapses in the hippo-

campus and cerebellum are not altered. However, exci-

tatory glutamatergic synapses in the hippocampus are

partially inactive because of a failure of vesicle fusion.

The epileptic seizures in Bsn mutant mice are also

suggestive of a decrease in the inhibitory synaptic func-

tion, although it is unclear whether or not this is a direct

effect of the loss of Bassoon function.

In the retina, Bassoon is required for both the formation

and the function of photoreceptor synapses. Photorecep-

tor synapses have specialized active zones that contain a

large-surface electron-dense ribbon band extending

from the neurotransmitter release site into the cyto-

plasm. Bassoon is localized to the base of the ribbons

close to the release site [13]. The Bsn mutant retina

shows a significant reduction in the total number of

photoreceptor synapses, and the remaining synapses

display structural defects where the ribbons are unable

to anchor into the presynaptic active zone region and

hence float freely in the cytoplasm. Ectopic ribbon sites

and postsynaptic processes are also detected in retinal

neurons, which could be a secondary defect triggered by

the loss of normal synaptic connectivity. The reduction

in the number of synapses and the presence of aberrant

active zone structures are compatible with impaired

retina function. In Bsn mutant mice, the retina still

responds to short light flashes as indicated by an electro-

retinographic recording (ERG). However, the amplitude

and oscillation of certain ERG waves are reduced, which

Figure 1
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Schematic of the proteins that are present in the presynaptic cytomatrix at the active zone. Three major protein complexes (see text) have been
identified to structure the cytoskeleton near the active zone and to facilitate docking, priming and fusion of synaptic vesicles (Modified with permission

from [57]).
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suggests that the synaptic transmission from the ribbon

synapse is perturbed.

The alteration of synaptic morphology and function in the

Bsn mutant demonstrates an in vivo role for Bassoon in

facilitating vesicle exocytosis. The lack of morphological

and functional defects in the majority of central nervous

system (CNS) synapses could be because the deletion in

the central region does not completely abolish the func-

tion of Bassoon, or because the loss of Bassoon function is

compensated for by Piccolo. Indeed, the expression of

Piccolo increases 1.5 times in the Bsn mutant [5�]. Piccolo

mutants have not yet been reported. The differential

effect of the loss of Bassoon function is consistent with

the heterogeneity of synapses. In photoreceptor ribbon

synapses, Bassoon apparently plays a prominent part in

synapse formation. The heterogeneity might also exist in

subpopulations of the same types of synapses, as only a

fraction of glutamatergic synapses are inactive in the

CNS. It is conceivable that synapses in the cerebellum

and hippocampus of Bsn mutants develop more flexibility

to compensate for the loss of individual proteins and

individual synapses in the region.

Bassoon and Piccolo associate with another set of active

zone proteins that are known as CAST/ERC, Liprin-a/

SYD-2, RIM/UNC-10, Munc13/UNC-13, and Munc18/

UNC-18 (Figure 1, Table 1; [7,14��]). RIM/UNC-10 and

Munc13/UNC-13 regulate exocytosis through their inter-

actions with the core SNARE complex. CAST/ERC,

RIM/UNC-10 and Liprin-a/SYD-2 can bind to each other

directly in vitro [6,15–17]. Co-expression of CAST and

Liprin-a in cultured hippocampal neurons enhances the

restriction of Liprin-a at the synaptic sites. The loss of

function of the liprin proteins in Caenorhabditis elegans and

Drosophila leads to altered active zone morphology, a

Table 1

The structure and in vitro biochemical interactions of the scaffolding active zone proteins.

Protein Motifs Partners Structure

Bassoon
(mammal)

C2H2 zinc-finger PRA1 (Prenylated
Rab3-interacting protein) [1]

CC1 CC2 QCC3

CAST

PRA1

ZnCoiled-coil (cc) CAST [7]

Piccolo

(mammal)

Q domain Abp1 (actin/dynamin-

binding protein) [8]

CC1 CC2 C2B

Abp1

Q PDZ

cAMP-GEFII

Zn

PRA1

C2A

RIM

Profilin

GIT

Proline-rich

CAST

CC3
C2H2 zinc-finger PRA1 [1,11]

Coiled-coil (cc) CAST [7]

Other region GIT (Arf GTPase

activating protein) [10]

Proline rich region Profilin (actin

monomer-binding protein) [1]

PDZ domain cAMP-GEFII (guanine nucleotide

exchange factor) [9]C2 domain

RIM [9]

CAST/ERC

(mammal)

Coiled-coil (cc) Liprin [16],

Bassoon/Piccolo [7]

CC1 CC3 CC4CC2

Bassoon/Piccolo

Liprin RIM
PDZ-binding site RIM [6]

Liprin-a
(mammal)

Coiled-coil (cc) RIM [15],

CAST [16], GIT [58]

CC(1-5) SAM(1-3)

RIM CAST GIT

LARKIF1A
KIF1A (kinesin motor

protein) [59]

SYD-2

(C elegans)

SAM (sterile

alpha motif)

domains

LAR (receptor tyrosine

phosphatase) [19]

Dliprin

(Drosophila)

RIM (mammal) Zinc-fingers GTP-Rab3 [15],

Munc-13 [15]

Zn PDZ C2A C2B

Munc13-1 LiprinRIM-BPcAMP-GEFII

Rab3A SynaptotagminPiccoloCASTPDZ domain CAST [6]

UNC-10

(C. elegans)

C2 domain Piccolo [9], Synaptotagmin

[15], Liprin [15]

Other regions cAMP-GEFII [60], RIM-BP

(Rim-binding protein) [15]

Listed are reported binding partners for the major presynaptic active zone proteins. The structural motifs for each protein are illustrated

in the diagrams, and the arrows point to the proteins that bind the specific domain.
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failure of synapse formation, and reduced synaptic trans-

mission [18,19]. How the CAST/Liprin/RIM complex

associates with Bassoon and Piccolo is not well under-

stood. It is also not known if these active zone cytomatrix

proteins depend on each other for localization in vivo.

The physical interactions among these active zone pro-

teins might help to anchor the exocytosis event at the

active zone cytomatrix regions through CAST and Liprin.

Among the identified active zone components, only

Bassoon and Piccolo have no obvious homolog in inverte-

brates. Therefore, the CAST/Liprin/RIM complex can at

least function independently of Bassoon and Piccolo.

UNC-18/Munc18: regulators of vesicle
docking and/or priming?
Synaptic vesicles go through the processes of docking

(contact with the plasma membrane at active zones) and

priming (become competent for vesicle fusion) before

releasing neurotransmitters (Figure 1; [2]). The formation

of the core SNARE complex alone is sufficient for the

fusion and release of neurotransmitter in vitro, but not

in vivo. RIM/UNC-10, Munc13/UNC-13, and Munc18/

UNC-18 are proposed to modulate the formation of the

SNARE complex in vivo [20]. Whereas UNC-13/Munc13

and UNC-10/RIM modulate the priming of synaptic

vesicles by promoting SNARE complex formation in

C. elegans, Drosophila, and mouse [15,21–25], the role of

Munc18/UNC-18 is more controversial [26]. Weimer

et al. [27��] recently demonstrated that UNC-18 plays a

part in mediating the docking of synaptic vesicles in C.
elegans, where unc-18 is a single gene. In unc-18 mutants, a

reduced fraction of synaptic vesicles contact the plasma

membrane near the active zone. The reduction in synap-

tic activity as assessed by physiological recording is more

severe than the decrease in the fraction of docked vesi-

cles, which suggests that only some of the docked vesicles

are fusion-competent. Syntaxin undergoes conforma-

tional change from the ‘closed’ to ‘open’ form to allow

the formation of the SNARE complex [26]. UNC-18/

Munc18 binds specifically to the closed form of syntaxin

[26]. There has been speculation that UNC-18/Munc-18

promotes exocytosis through either the trafficking or the

activation of syntaxin. Surprisingly, the role of UNC-18 in

C. elegans does not involve syntaxin directly [27��].
Although the syntaxin level is reduced by 50% in

unc-18 mutants (a phenotype consistent with that of

the Munc18-1 knockout mouse [28]), syntaxin localizes

normally in unc-18 mutants. Increasing the level of either

a wild type or a constitutively open form of syntaxin in

unc-18 mutants cannot ameliorate the defects in synaptic

activity. The increase in the syntaxin levels in unc-18
mutants is also unlikely to restore the docking of vesicles

at the active zone. Normal vesicle docking has been

observed in studies with Drosophila syntaxin null mutants

[23]. The role of UNC-18 in C. elegans synapses resembles

the function of Munc18-1 in chromaffin cells, where it is

required for docking, but not the release of, dense core

vesicles [29]. UNC-18/Munc-18 might mediate docking

through its physical interaction with other synaptic pro-

teins, such as Doc and Mint [20]. Whether UNC-18/

Munc-18 homologs in other organisms also function

independently of or indirectly through syntaxin remains

to be examined. Furthermore, the analysis of C. elegans
unc-18 mutants does not rule out the roles of proteins in

the family of UNC-18 in priming. For example, in CA1

hippocampal synapses Munc18-1 is required for vesicle

fusion, but not docking [28].

Quantal transport and assembly of the
presynaptic active zone
A fundamental issue relating to synapse formation is how

the synaptic components get to the synaptic sites. In an

early study in this area [30], experimenters using VAMP-

green fluorescent protein (GFP) on cultured hippocampal

neurons observed a type of vesicular packet that appeared

to contain many cytoplasmic and membrane-associated

protein precursors for synaptic vesicles and active zones

[30]. Such packets are actively transported in the axons,

and are stabilized specifically at sites of synaptic contact.

This study has led to the hypothesis that presynaptic

components are united early in their biogenesis and

sorting pathways, and that membrane remodeling upon

synaptic contact subsequently produces the uniform vesi-

cles typical of mature synapses. Recent studies using

slightly different methods have revealed additional trans-

porting packets. In particular, the active zone components

are transported separately from synaptic vesicles, and

are detected earlier than synaptic vesicles at nascent

synapses.

Bassoon and Piccolo are among the earliest protein com-

ponents detected at nascent synapses [31]. Shapira et al.
[14��] recently showed that many components of the

protein complexes forming the matrix (Bassoon, Piccolo,

CAST) and functional units (RIM/UNC-10, Munc13/

UNC-13 and Munc18/UNC-18) at the active zones could

be detected on the same dense core vesicles that are

transported along the microtubules to the termini. By

fluorescent staining with the antibodies against Piccolo,

Bassoon, and RIM, it can be seen that the content, or the

level of individual proteins, in a packet appears to vary.

Quantification of the protein levels suggests that 2–3 of

such active zone packets can deposit sufficient materials

to build an active zone at the nascent synaptic termini.

The active zone packets, visualized using Bsn-GFP,

appear to be highly motile in young neuronal cells, which

coincides with the developmental stage of synaptogenesis

[14��]. Initially, the Bsn-GFP packets are present in

variable sizes, and are not restricted to nascent active

zones. During development, the bigger packets with

decreased motility are likely to develop into functional

synaptic sites. This suggests that prior to synapse forma-

tion, the building materials for presynaptic active zones
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have been pre-assembled and that they can be deposited

upon contact with postsynaptic partners to assemble a

functional synapse in a timely fashion.

Synaptic vesicle dynamics: early stage
It is fair to say that the life of a synapse lies in its capacity

to accommodate synaptic vesicles and to arrange them in

an orderly manner. How are synaptic vesicles generated?

Decades of biochemical and cell biological studies have

revealed two distinct sources that supply synaptic vesicles

(Figure 2; [32]). One is the Golgi apparatus, where

vesicles are synthesized de novo and transported by

anterograde motor proteins to the synaptic terminals.

Such vesicles are usually called synaptic vesicle precur-

sors, because they contain proteins that are often not

present in the mature synaptic vesicles. The second

source is the local plasma membrane, where synapses

are derived through endocytosis of the membrane.

Studies in mouse, Drosophila, and C. elegans have provided

in vivo confirmation of the two pathways. For example,

the loss-of-function mutations in kinesin motor protein

(KIF1A) and UNC-104 kinesin motor proteins cause

retention of synaptic vesicles and precursors in neuronal

cell bodies [33,34]. Mutants that are defective in the

genes that function in endocytosis, such as dynamin,

synaptojanin, and recently endophilin [35�,36�], exhibit

drastic reduction and abnormal arrangement of synaptic

vesicles at synapses [37–39]. It remains largely unknown,

however, how the synaptic vesicle precursors mature and

where the very first source of vesicles that enables the

endocytosis pathway comes from. Recent progress in

combining time-lapse microscopic imaging in normal

and mutant neurons has opened up a valuable venue to

begin to address these questions.

How early do functional vesicles appear? An excellent

imaging study using VAMP-GFP and FM4-64 (N-[3-

triethylammoniumpropyl]-4-[6-(4-[diethylamino] phe-

nyl) hexatrienyl] pyridinium dibromide) [40�] has

observed active vesicular traffic at the growth cone, a

stage preceding any synaptic contacts. In the cultured rat

visual cortical neurons, VAMP-GFP containing vesicles

are present in motile growth cone filopodia. Such vesicles

contain a number of synaptic proteins that are found in

mature synaptic vesicles. They are able to fuse with the

plasma membrane and recycle, raising the possibility that

the rare fusion events of such vesicles to plasma mem-

brane might be sufficient to trigger the endocytosis that

is necessary for replenishing the synaptic vesicle pool at

mature synapses. Furthermore, these vesicles move bi-

directionally at a speed that is slower than that of KIF1A,

which suggests that the synaptic vesicle (SV) transport

might use multiple motors or different motors at different

stages (Figure 1).

Further insight into synaptic vesicle biogenesis has come

from an elegant genetic analysis on the exocyst complex

in the Drosophila nervous system. The exocyst is a multi-

subunit protein complex that is necessary for direct

vesicle fusion to specific membrane sites [41,42]. Com-

ponents of the exocyst complex are present in growth

cones [43–45]. Murthy et al. [46��] generated null mutant

flies that lack the exocyst complex because of a deletion

in the Sec5 (secretion 5) gene. In these flies, neurons

arrest at the neurite outgrowth stage, and neuromuscular

junctions fail to grow once maternal Sec5 has run down,

which suggests an essential role for exocyst in the addi-

tion of new material to the membrane. Using a genetic

method that allows them to determine the efficacy of

Figure 2
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addition of newly synthesized proteins in sec5 null neu-

rons, the authors show that vesicles containing newly

synthesized Syt-GFP are present along the length of

the axon, but are rarely seen in the synaptic boutons.

Yet, as revealed by immunocytochemical and electrophy-

siological assays, synaptic vesicles are concentrated at the

synapses and vesicle exocytosis is normal in Sec5 mutant

synaptic boutons. Thus, this study suggests two distinct

vesicle fusion mechanisms (Figure 2). Abolishing exocyst

function causes a failure of the newly synthesized

Syt-GFP labeled vesicles to be retained in the synapses

because they cannot fuse with the membrane. It remains

to be analyzed how the morphology and the chemical

content of the Sec5-dependent Syt-GFP vesicles differ

from those of the Sec5-independent synaptic vesicles at

the synaptic terminal.

A new role for b-catenin: localizing
synaptic vesicles
At mature synapses, synaptic vesicles are divided into

three functional pools by their mobility and their electro-

physiological capacity: the readily releasable pool (RRP),

the resting pool, and the reserve pool [47]. Morpholog-

ically, the RRP corresponds to the vesicles docked at the

membrane, and the resting and reserve pools to the

undocked vesicles. Actin is the major cytoskeletal ele-

ment involved in tethering the undocked vesicles [48],

and the actin binding phosphoprotein synapsin has an

essential role in maintaining the reserve pool [49–51].

Using conditional mouse mutants, a recent study has

revealed a surprising role of b-catenin in synaptic vesicle

localization [52��]. b-catenin is involved in two classical

signaling pathways: the cadherin mediated cell adhesion

at membrane junctions in which it interacts with a-cate-

nin and bridges cadherins to actin, and the Wnt signaling

pathway in which it acts along with T cell factor/lymphoid

enhancer binding factor (TCF/LEF) to control gene

transcription. The involvement of b-catenin at the post-

synaptic development and, in particular, in dendritic

spine dynamics has been intensely examined in hippo-

campal neurons, where it functions mainly through its

regulation of cadherin-mediated cell adhesion [53]. By

ablating the function of b-catenin selectively in hippo-

campal pyramidal neurons, Bamji et al. [52��] found a 40%

reduction in the number of undocked pools of synaptic

vesicles at the synapse, accompanied with an increase in

the total number of synapses. Time-lapse imaging in the

cultured neurons lacking b-catenin reveals that synaptic

vesicle proteins are diffusely localized, but that the loca-

lization and the number of other presynaptic active zone

components including Bassoon and N-cadherin are not

affected. These observations suggest that the increase in

synapse number is likely to be a compensatory effect to

counteract the reduction in synaptic vesicle number.

Furthermore, the fluorescent puncta from synaptophy-

sin-GFP exhibit rapid and random movements that are

different from the previously reported transport packets.

These results support the conclusion that b-catenin has a

specific role in localizing synaptic vesicles during pre-

synaptic assembly. Interestingly, this function of b-cate-

nin does not depend on the domains of b-catenin that are

known to interact with a-catenin or TCF/LEF; rather it

requires its PDZ (PSD-95/Discs-large/ZO1) binding

domain [52��]. The known PDZ domain-binding partners

of b-catenin include Veli and SCAM/MAGI-1 (synaptic

scaffolding molecule/membrane-associated guanylate

kinase with inverted domain organization) [54,55].

Disrupting the Veli PDZ domain has only slight effects

on SV localization, which suggests that b-catenin has

other PDZ domain binding partners [52��].

Conclusions
With the increasing effort put into generating knockout

mutant mice, the in vivo functions of biochemically

identified molecules at synapses are being gradually

defined and clarified. These studies, together with the

information from model invertebrate organisms, have

helped us to learn the themes and variations that underlie

synapse formation. Combining live imaging analysis with

genetic mutant studies provides an invaluable and more

accurate assessment of the dynamic cellular process in

both wild type and mutant cells. Cells constantly produce

synaptic components, which are constantly transported

along the axons and are ready to assemble synapses at

targeted sites. A plethora of cell surface molecules in

target recognition have been identified in recent years

[56]. An exciting frontier is how the target recognition

event leads to local trapping of the mobile transport

materials and how the synaptic precursors mature during

the synaptic assembly.
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