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Unmasking the messenger
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Synaptic plasticity, learning, and memory require high
temporal and spatial control of gene expression. These
processes are thought to rely mainly on asymmetric mRNA
transport to synapses. Already in the early days of studying
mRNA transport, Wilhelm and Vale proposed a multi-step
process in 1993. Since then, we have gained important novel
insights into how these individual steps are controlled by
research performed in various cell types and organisms. Here,
we present the latest view on how dendritic mRNA
localization is achieved and how local translation at the
synapse is regulated. In particular, we propose that the
recently observed heterogeneity of RNA-protein particle
assembly in neurons might be the key for how precise gene
expression in the brain is achieved. In addition, we focus on
latest data dealing with translational activation of
translationally repressed mRNPs at a synapse that
experiences learning-induced changes in its morphology and
function. Together, these new findings shed new light on
how precise regulatory mechanisms can lead to synaptic
plasticity and memory formation.

Spatial accumulation of mRNAs in the cytoplasm has been
generally recognized as a way to regulate gene expression. It rep-
resents—in addition to nuclear events—an important control
mechanism with special relevance in polarized cells. Especially in
neurons, with axons and dendrites reaching long distances from
the cell body, localized mRNAs contribute significantly to synap-
tic plasticity and memory consolidation (reviewed in ref. 1). In
this context, local protein synthesis allows to alter individual syn-
apses both functionally as well as structurally in an experience-
dependent manner. Research has employed various model sys-
tems (i.e., from whole organisms to a variety of cell types) in
order to understand the mechanism(s) by which locally restricted
mRNA accumulation and subsequent local protein synthesis is
achieved. It is now generally accepted that selective mRNA trans-
port together with regulated local translation at the synapse are
central to this pathway. However, we are just starting to unravel

the molecular mechanisms that enable this system to respond
dynamically in an experience-shaped manner.

Wilhelm and Vale (1993)1 were the first to propose that
mRNA transport consists of multiple, consecutive steps. Their
model was based on the findings of Carson and colleagues, who
described the formation and unidirectional transport of RNA par-
ticles after microinjection of MBP mRNA into oligodendrocytes.2

The following four-step model had been suggested at the time:

(1) formation of ribonucleoproteins (mRNPs) by interaction
of mRNA with RNA-binding proteins (RBPs);

(2) transport of mRNPs to their destination site;
(3) anchoring of mRNPs;
(4) local translation.

Since then, this model has been modified accordingly.3-6 With
slight amendments, these reviews still follow the same basic
model while research has continued to add further mechanistic
insight into individual steps. A more recent update has been pre-
sented in the concept of the “RNA signature,” i.e., intrinsic
mRNA localization signals, combined with the sushi-belt
model.7 According to this concept, specific mRNAs assemble
into mRNPs based on their “RNA signature” and then patrol
individual synapses instead of being anchored at the synapse.

In this review, we highlight several recent findings that have
significantly extended the knowledge of individual steps of RNA
localization in dendrites. In particular, we focus on the heteroge-
neity of neuronal mRNP particles, and discuss how the local
availability of mRNAs for translation at their target site might be
regulated.

Neuronal RNA Particles are Heterogeneous

Intrinsic localization elements (LEs) within a given mRNA,
commonly referred to as cis-acting signals, are recognized by spe-
cific RBPs (i.e., trans-acting factors), resulting in the formation
of an mRNP. In neurons, cis-acting signals are usually located in
the 30-UTR of the transcript and can either simply be represented
in the primary RNA sequence, e.g., in the hnRNP A2 response
element (A2RE) or ZBP1 sequence (e.g., b-actin zipcode).8,9

Alternatively, they comprise more complicated secondary (and
tertiary) structures in form of RNA stem loops, such as the Stau-
fen recognition sequence (SRS) or possibly a combination of
both primary sequences and higher order structures (Fig. 1). In
this context, it is currently unknown whether a distinct LE might
be recognized by one or more RBPs in a synergistic manner as
recently proposed.10,11 Similarly, there is a long-lasting
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discussion about how complex and distinct the composition of
individual mRNP particles might be, e.g., with respect to the
associated RBPs or the number and (unique or diverse) identity
of associated cargo mRNAs. Recent research has revealed that the
composition of mRNP granules is far more heterogeneous than
originally assumed. By biochemical analysis, characterizing the
proteome of Staufen2 (Stau2) and Barentsz (Btz) containing
RNA particles—two key RBPs involved in dendritic RNA trans-
port—the majority of the associated proteins was found to be
specific for the respective RBP.12 Interestingly, the individual
composition of RNA granules is also seen on the level of associ-
ated RNAs as these individual RBP-containing granules have
been shown to be associated with distinct sets of mRNAs. For
instance, Arc mRNA was found to be preferentially associated
with Btz. CaMKIIa mRNA, on the other hand, was primarily
found in Staufen2-containing particles,12 even though it shares
the same cis-acting signal for transport as Arc mRNA.8 Similarly,
Farris et al. have detected CaMKIIa and Arc mRNA in distinct
particles in the dentate gyrus using FISH.13 These data confirm
earlier findings demonstrating that individual mRNPs preferen-
tially contain only one RNA species.14,15 Applying sophisticated
fluorescence microscopy, these two studies could also

demonstrate that the copy number of an individual mRNA per
dendritic particle is rather low (»1–2 RNAs per particle).14,15

Whether this might indicate that certain mRNAs could possibly
be transported as dimers, as previously reported for oskar mRNA
in the Drosophila oocyte16 remains to be seen. Interestingly, the
number of RNA molecules in an mRNP appears to be subject to
dynamic changes. It depends on both the granule’s relative
position in the dendrite (with the soma and proximal region
displaying higher numbers of RNA per particle than distally
localized RNA granules), and on synaptic activity.17,18 This
raises the intriguing possibility that local translation of distinct
RNA species in the course of synaptic plasticity can be con-
trolled by elaborate fine-tuning mechanisms in response to
extrinsic signals. This is particularly interesting considering the
fact that Arc mRNA, in contrast to other neuronal localized
RNA species that are constitutively expressed (such as
CaMKIIa or MAP2 mRNA), belongs to the family of immedi-
ately early genes (IEG), i.e., genes that are expressed quickly
and only for a short time upon a specific stimulus. This
implies that gene expression including RNA translation at the
synapse can be “turned off” in order to keep the system
responsive for further stimulation (see also below).

Figure 1. Distinct classes of mRNAs bearing distinct localization elements (LEs) are assembled with the help of specific RBPs (RBP1, RBP2, RBP3) into het-
erogeneous mRNPs. Those LEs are represented either as a linear primary sequence element (indicated by boxes) or a stem-loop for higher-order struc-
tures, respectively. mRNPs may change in their composition (“RNP maturation”) before and/or during their translocation process along microtubules
(“translocation”) before they are either locally anchored or when they patrol synapses (anchoring/”sushi-belt?”). Translational repression is relieved upon
synaptic activation (“unmasking”). Here, mRNA bound proteins (RBPs and probably also cap- and polyA-binding proteins, indicated by the little black
and orange circle, respectively) dissociate from the mRNP, resulting in the mRNA being translated by ribosomes. Eventually, translation will terminate
and the mRNA locally degraded or alternatively repacked into an mRNP.
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In summary, research over the last few years has highlighted
how heterogeneous and diverse individual mRNPs can be.
Recently, the list of potential candidates of localized mRNAs has
significantly grown. A large-scale sequencing approach revealed
2550, mostly previously undetected, local mRNAs in axons and
dendrites of the hippocampal neuropil, with most of these
mRNAs coding for proteins involved in synaptic function.19 It
can be expected that (many of) these mRNAs are regulated both
spatially and temporally (possibly using different mechanisms) in
order to achieve a precise control of gene expression at the
synapse.

Dendritic mRNPs are Translationally Repressed

mRNA transport to the synapse has been suggested to be
tightly linked with translational repression thereby ensuring local
protein synthesis (ref. 20; see also accompanying News and
Views, ref. 21). Consequently, this model implies the need for
translational repression to be relieved upon synaptic activity (see
below). However, we are just beginning to understand how the
translation of the multitude of different neuronal localized
mRNAs is orchestrated. Several different mechanisms how
mRNA translation is controlled in neurons have been described
(for extensive reviews, see refs. 22 and 23). One well-accepted
mechanism is the association of RBPs as translational regulators
with the mRNA (see ref. 24). For example, the RBP Fragile X
Mental Retardation Protein (FMRP) has been recently shown
to bind directly to the 80S ribosome in vitro in a manner that
blocks tRNA binding and therefore interferes with transla-
tion.25 In addition, miRNAs have been suggested to be
involved in the translational control of mRNA.26-28 Impor-
tantly, RBPs and miRNAs may also act together to modulate
miRNA-mediated repression. For example, degradation of
high-affinity mRNA targets of HuD in response to mTORC1
signaling has recently been shown to result in increased con-
centrations of freely available HuD that can now sequester
miR-129. This relieves miR-129 mediated repression of Kv1.1
translation.29

It is still experimentally unresolved whether transported
mRNAs in dendrites are already associated with ribosomes.
On one hand, it was recently suggested that neuronal mRNPs
are associated with polyribosomes. These are thought to be
stalled during the translation elongation phase and to become
re-activated upon synaptic activity,30 arguing for at least par-
tial translation before translational repression. On the other
hand, many localized transcripts are reported to have several
predominantly nuclear proteins associated.12,31,32 As the ribo-
some is likely to remove those nuclear proteins, this supports
the hypothesis that mRNPs are kept in a translationally
repressed state.

An almost puzzling phenomenon has been inferred by recent
findings that some mRNAs localizing to dendrites contain
introns in their 30-UTR suggesting additional levels of regulation
of mRNA localization and stability.33,34 Current reports even
refer to up to 16% of all human 30-UTRs (reviewed in ref. 35) as

being annotated to contain an intron. The most prominent
example so far is the Arc mRNA containing 2 intronic sequences
in its 30-UTR.34 Recently it has been suggested that localization
and stability of the Arc mRNA is regulated by eIF4AIII, a mem-
ber of the exon junction complex (EJC).34 The EJC, consisting
of Btz, eIF4AIII, Magoh and Y14, is deposited onto mRNA
upon pre-mRNA splicing in the nucleus and is also supposed to
be removed upon translation.36-38 eIF4AIII and Magoh, two
other core members of the EJC, have also been identified as part
of Btz-containing particles indicating translational repression of
the associated mRNAs.

These results clearly show that nuclear events are linked
with cytoplasmic mRNA targeting and translational con-
trol.39,40 Interestingly, data obtained in the Drosophila oocyte
indicate that these nuclear events can be even a pre-requisite
for correct mRNA localization. Deposition of the EJC by
pre-mRNA splicing provides a transport signal for the oskar
mRNA in the oocyte.41,42 While it had been shown before
that splicing of the first intron and presence of the EJC are
required for the correct localization of the mRNA to the pos-
terior pole,42 the Ephrussi lab recently identified a sequence
flanking the first intron, termed SOLE (spliced oskar localiza-
tion element). Upon pre-mRNA splicing, it generates a 28 nt
stem-loop structure that is required for oskar mRNA motility.
So far, no analogous localization element has been identified
in neurons, though this represents a thought-provoking possi-
bility to be considered.

mRNP Transport to its Destination

Currently, it is not clear how and to what extent RNPs
undergo changes in composition once they have been exported to
the cytoplasm. Theoretically, mRNPs can be subject to dynamic
changes at any time point (Fig. 1). For sure, motor proteins
together with potential adaptor proteins are subsequently
recruited to those mRNPs in the cytoplasm. We have recently
reviewed different possibilities how transport into the dendritic
arbour and entry into dendritic spines at the activated synapse
might occur.7 In brief, it is generally assumed that dendritic
localization of mRNA is achieved by interaction of mRNPs with
microtubules and their associated motor proteins. In order to
enter the dendritic spines in the region of activated synapses, two
alternative models have been proposed. In one model, the last
step of translocation is performed by the actin cytoskeleton
known to be present at the base of dendritic spines. Alternatively,
actively growing microtubules that extend into the head of den-
dritic spines have been suggested to be responsible for entry into
dendritic spines.43,44 Several groups have reported that move-
ment of RNA granules depend on kinesins and myosins
(reviewed in ref. 45). Importantly, while some data indicate
that FMRP directly links the mRNA to kinesin,46 no adap-
tors or mediators linking other mRNPs to motor proteins
have been identified so far. Here, we would like to refer the
interested reader to detailed reviews covering this topic (e.g.,
refs. 45, 47, and 48).
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In the past, several laboratories have tackled the task to study
the dynamic behavior of mRNA granules as they move along
dendrites by live cell imaging using (at least in parts) overexpres-
sion.49-51 Recently, the Singer lab has gone one step further to
visualize the dynamic behavior of a single endogenous mRNA
(b-actin) in the mouse employing the MS2 system.17 Their data
indicate that a subset (»10%) of RNA granules appear to traffic
actively with an average speed of »1.3 mm/sec. These particles
exhibit a slight net anterograde movement—a similar phenome-
non had been described earlier by Bullock et al. in Drosophila for
dynein-mediated transport along microtubules.52 It will be inter-
esting to see whether similar “classes” or mRNAs might display a
similar kinetic behavior and how this is integrated with synaptic
activation.

Local Availability of mRNA for Translation at its
Destination Site

As discussed above, mRNA “on the move” is translationally
repressed. Hence, mechanisms are required to “unmask” the
mRNA upon synaptic activity in order to make it available or
accessible for local translation. Most recently, two back-to-back
publications by the Singer laboratory provide first indications on
how this activation might be achieved in response to synaptic
stimulation. First, using single molecule FISH, they could ele-
gantly demonstrate that b-actin mRNA appears “obscured” by a
proteinaceous complex.18 Similar to protease treatment, synaptic
activity resulted in increased accessibility of the mRNA. Their
data also indicate that this masking of mRNA might indeed, at
least in parts, be executed by associated repressive RBPs, such as
FMRP or ZBP1.18 In their second paper, they employed live cell
imaging using their endogenous MS2-system to illustrate that
the process of synaptic activation possibly includes rearrange-
ments of mRNPs.17 First, they detect an increased rate of particle
splitting over merging upon synaptic activation. Second, the
number of particles carrying a single mRNA increased, suggest-
ing at least partial disassembly of large mRNP particles upon
activation.

Currently, (at least) two models exist to explain how mRNA is
retained at or recruited to synapses subsequent to transport. In
the synaptic anchoring model, the local actin cytoskeleton and/or
associated (motor) proteins have been suggested to act as an
anchor to retain mRNAs at the synapse.4 In Drosophila, dynein
was described to anchor transcripts after apical transport.53 How-
ever, the list of anchoring molecules might not be complete yet.
In the alternative sushi-belt model, mRNAs continuously patrol
individual synapses supported by bidirectional transport until
they are recruited by an active synapse.7 Detailed insights into
how mRNA is “unmasked” and made available for translation at
the synapse upon synaptic stimulation will certainly improve our
understanding of memory formation. Possible underlying mech-
anisms can include, for example, dissociation of repressive RBPs
via posttranslational modifications and/or by termination of
miRNA-mediated translational silencing. In future, it will be
interesting to see, how synaptic activity is mechanistically linked

to unpacking events and what exact molecular changes occur on
the level of mRNPs.

Fate of mRNA after Translation

In order to achieve synaptic plasticity, it is not only
important to “turn on” translation at the synapse by processes
such as unmasking, but also to switch off protein synthesis at
indicated times. What is the fate of mRNA once it has been
translated? This aspect of mRNA metabolism in neurons is
not yet well studied. In principle, (at least) two scenarios are
possible: An mRNA can either face degradation after it has
served its purpose, or it can be re-packaged into mRNPs in
association with repressive RBPs in order to switch off trans-
lation (Fig. 1).

A mechanism implying translation and synaptic activity
dependent mRNA degradation has recently been proposed by
the group of Oswald Steward. They showed that newly synthe-
sized mRNA accumulates at site of synaptic activation in the hip-
pocampus in response to NMDA receptor activation. This is
mediated by direct transport of newly synthesized mRNA to acti-
vated synapses in combination with preferential degradation of
mRNA at synaptically inactive domains.13

So far, only indirect evidence for the hypothesis of mRNA
repackaging exists. Based on recent studies by McKnight
et al.,54,55 mRNP formation is suggested to be reversible.23

The McKnight lab showed that at least in a cell-free system,
low complexity domains of RBPs are able to mediate the for-
mation of hydrogel-like particles resembling RNA granules in
a reversible manner. This is in agreement with data presented
by Singer and colleagues,18 who interpret the initial burst
and subsequent decrease of b-actin mRNA accessibility after
chemical stimulation of long-term potentiation (cLTP) as
“re-masking.” It would indeed be tempting to speculate that
“masked” is the default state of localized mRNA (as suggested
by 18) and “unmasking” needs to be actively induced. Future
work will show whether this also applies to other dendritic
mRNAs and whether mRNP assembly and disassembly is in
general a dynamic, reversible process at the synapse. As it has
been shown that phosphorylation of translational repressors
can result in their dissociation and subsequent translation of
their associated mRNA,20 one could speculate that phosphor-
ylation or other reversible post-translational modifications
play a role in dendritic RNP (re-)assembly.

Conclusions

For some, it might come as a surprise that the—at the
time—visionary model for mRNA transport by Wilhelm and
Vale1 after more than two decades is generally still in accor-
dance with today’s view. While our understanding of some
of these steps have not significantly progressed in the last
few years (e.g., transport along microtubules or anchoring/
recruitment at the synapse), other steps have been elucidated
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in fascinating detail, not least due to advances in imaging or
biochemical techniques. First, neuronal RNA granules are
much more heterogeneous in composition and therefore con-
sequently in assembly than previously thought. One could
easily imagine that a modular composition of RNA granules,
possibly mediated by distinct classes of intrinsic RNA sorting
signals (“RNA signatures”) would allow for precise differen-
tial neuronal gene expression of operational groups of
mRNAs both in space and time. The recruitment of distinct
mRNA regulators (i.e., RBPs, miRNAs) to distinct tran-
scripts based on their individual “RNA signature” could
therefore allow control of local mRNA availability at the
synapse upon synaptic stimulation. In future, it will be inter-
esting to see these regulatory principles unravelled and to
learn if other, so far less understood steps, are also differen-
tially regulated.
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