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General State-Space Solution



General State-Space Solution

Consider a linear discrete-time free (no inputs) dynamic system:

x(k + 1) = A(k)x(k) , x(k0) = x0

Clearly, x(k), k > k0 can be determined by iterating the state
equation:

x(k0) = x0
x(k0 + 1) = A(k0)x(k0)

x(k0 + 2) = A(k0 + 1)x(k0 + 1) = A(k0 + 1)A(k0)x(k0)
...

x(k) = A(k − 1)A(k − 2)A(k − 3) · · ·A(k0 + 1)A(k0)x(k0)

Hence:
x(k) = φ(k, k0, x0) = Φ(k, k0)x0

where the discrete-time state-transition matrix is:

Φ(k, k0) =
k−1
Π

j=k0
A(j) , k > k0 ; Φ(k0, k0) = I
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General State-Space Solution (cont.)

Now, consider a linear discrete-time dynamic system with inputs:

x(k + 1) = A(k)x(k) +B(k)u(k) , x(k0) = x0

Clearly:

x(k0) = x0
x(k0 + 1) = A(k0)x(k0) +B(k0)u(k0)

x(k0 + 2) = A(k0 + 1)x(k0 + 1) +B(k0 + 1)u(k0 + 1)
= A(k0 + 1)[A(k0)x(k0) +B(k0)u(k0)] +B(k0 + 1)u(k0 + 1)
= A(k0 + 1)A(k0)x(k0) +A(k0 + 1)B(k0)u(k0) +B(k0 + 1)u(k0 + 1)

x(k0 + 3) = A(k0 + 2)x(k0 + 2) +B(k0 + 2)u(k0 + 2)
= A(k0 + 2)A(k0 + 1)A(k0)x(k0) +A(k0 + 2)A(k0 + 1)B(k0)u(k0)

+A(k0 + 2)B(k0 + 1)u(k0 + 1) +B(k0 + 2)u(k0 + 2)
...
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General State-Space Solution (cont.)

Therefore, using

Φ(k, k0) =
k−1
Π

j=k0
A(j) , k > k0 ; Φ(k0, k0) = I

one gets

x(k) = φ(k, k0, x0, {u(k0), . . . , u(k − 1)})

= Φ(k, k0)x0 +
k−1∑
j=k0

Φ(k, j + 1)B(j)u(j) , k > k0

which expresses the general solution providing the state movement
of a linear discrete-time dynamic system.

The determination of the state transition matrix Φ(k, k0) is clearly
very important.
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General State-Space Solution (cont.)

• Free state movement. Setting u(k) = 0, ∀ k ≥ k0 gives:

x(k) = φ(k, k0, x0, 0) = φL(k) = Φ(k, k0)x0 , k > k0

• Forced state movement. Setting x0 = 0 gives:

x(k) = φ(k, k0, 0, {u(k0), . . . , u(k − 1)}) = φF (k)

=

k−1∑
j=k0

Φ(k, j + 1)B(j)u(j) , k > k0

The total state movement is thus given by:

φ(k, k0, x0, {u(k0), . . . , u(k − 1)}) = φL(k) + φF (k)

which is a direct consequence of the linearity of the dynamic
system.
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General State-Space Solution (cont.)
Now, let us add the output equation:{

x(k + 1) = A(k)x(k) +B(k)u(k) , x(k0) = x0
y(k) = C(k)x(k) +D(k)u(k)

one gets:
y(k) = C(k)Φ(k, k0)x0

+

k−1∑
j=k0

C(k)Φ(k, j + 1)B(j)u(j) +D(k)u(k) , k > k0

• Free output movement. Setting u(k) = 0, ∀ k ≥ k0 gives:

y(k) = yL(k) = C(k)Φ(k, k0)x0 , k > k0

• Forced output movement. Setting x0 = 0 gives:

y(k) = yF (k) =

k−1∑
j=k0

C(k)Φ(k, j + 1)B(j)u(j) +D(k)u(k) , k > k0

The total output movement is thus given by:

y(k) = yL(k) + yF (k)DIA@UniTS – 267MI –Fall 2020 TP GF – L2–p6
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Time-Invariant Case



State-Space Solution: the Time-Invariant case

• In the time-invariant case, matrices A(k), B(k), C(k), D(k) do
not depend on time-index k, that is they are constant matrices
A,B,C,D .

• Hence, when considering a linear discrete-time free (no inputs)
time-invariant dynamic system:

x(k + 1) = Ax(k) , x(k0) = x0

one gets:
x(k) = φ(k, k0, x0) = Φ(k, k0)x0

where the discrete-time state-transition matrix now takes on
the form

Φ(k, k0) =
k−1
Π

j=k0
A = A(k−k0) , k > k0 ; Φ(k0, k0) = I

• With some abuse of notation, we denote Φ(k − k0) to highlight
the dependence on (k − k0) instead of k and k0 separately.
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State-Space Solution: the Time-Invariant case (cont.)

Now, consider a linear discrete-time time-invariant dynamic system
with inputs:

x(k + 1) = Ax(k) +Bu(k) , x(k0) = x0

Therefore, using

Φ(k − k0) = A(k−k0) , k > k0 ; Φ(k0, k0) = I

one gets

x(k) = φ(k, k0, x0, {u(k0), . . . , u(k − 1)})

= A(k−k0)x0 +
k−1∑
j=k0

Ak−(j+1)Bu(j) , k > k0

The explicit form Φ(k − k0) = A(k−k0) will be used later on to
determine the state and output evolution over time in closed-form.
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State-Space Solution: the Time-Invariant case (cont.)

• Free state movement. Setting u(k) = 0, ∀ k ≥ k0 gives:

x(k) = φ(k, k0, x0, 0) = φL(k) = A(k−k0)x0 , k > k0

• Forced state movement. Setting x0 = 0 gives:

x(k) = φ(k, k0, 0, {u(k0), . . . , u(k − 1)}) = φF (k)

=

k−1∑
j=k0

Ak−(j+1)Bu(j) , k > k0

The total state movement is thus given by:

φ(k, k0, x0, {u(k0), . . . , u(k − 1)}) = φL(k) + φF (k)

which is a direct consequence of the linearity of the dynamic
system.
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State-Space Solution: the Time-Invariant case (cont.)
Now, by adding the output equation:{

x(k + 1) = Ax(k) +Bu(k) , x(k0) = x0
y(k) = Cx(k) +Du(k)

one gets:
y(k) = CA(k−k0)x0

+

k−1∑
j=k0

CAk−(j+1)Bu(j) +Du(k) , k > k0

• Free output movement. Setting u(k) = 0, ∀ k ≥ k0 gives:

y(k) = yL(k) = CA(k−k0)x0 , k > k0

• Forced output movement. Setting x0 = 0 gives:

y(k) = yF (k) =

k−1∑
j=k0

CAk−(j+1)Bu(j) +Du(k) , k > k0

The total output movement is thus given by:

y(k) = yL(k) + yF (k)DIA@UniTS – 267MI –Fall 2020 TP GF – L2–p10
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Input-Output Dynamic Description of Linear Systems

Preliminaries
Discrete-time unit impulse sequence

δ(k) =

{
0, k ̸= 0, k ∈ Z
1, k = 0

Discrete-time unit step sequence

1(k) =
{
0, k < 0, k ∈ Z
1, k ≥ 0, k ∈ Z

=⇒ δ(k) = 1(k)− 1(k − 1) ; 1(k) =


∞∑
j=0

δ(k − j), k ≥ 0

0, k < 0
Moreover, an arbitrary sequence {x(k)} can be expressed as

x(k) =

∞∑
j=−∞

x(j)δ(k − j)
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Input-Output Dynamic Description of Linear Systems (cont.)

• Consider a linear
discrete-time system with
scalar input and output

• Moreover, consider the ”external” input/output relationship

y(k) =

∞∑
j=−∞

h(k, j)u(j) (⋆)

Assumption. The sequences {h(k, j)} for any given k and
{u(j)} are such that the relationship (⋆) is well-defined. For
example, {h(k, j)} ∈ l2 and {u(j)} ∈ l2 .

• Under the above assumption, relationship (⋆) is linear.
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Input-Output Dynamic Description of Linear Systems (cont.)
• Denote by h(k, j) the output response at time k produced by a
unit impulse δ(j) applied at time j

• By linearity, the output response at time k produced by a
impulse of amplitude u(j) applied at time j is h(k, j)u(j)

• By linearity, the output response at time k produced by two
impulses of amplitude u(j1) and u(j2) applied at times j1 and
j2 , respectively, is h(k, j1)u(j1) + h(k, j2)u(j2)

Input-Output Model
At time k , the system output y(k) produced by the input
sequence {u(j)} is given by

y(k) =

∞∑
j=−∞

h(k, j)u(j)

where h(k, j) denotes the output response at time k produced by
a unit impulse δ(k − j) applied at time j
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Input-Output Dynamic Description of Linear Systems (cont.)

Properties

• Due to causality, the response to an input sequence has to be
identically zero before the input sequence is applied. Hence:

h(k, j) = 0 , ∀ j, ∀ k < j

Hence:

y(k) =

k∑
j=−∞

h(k, j)u(j)

=⇒ y(k) =

k0−1∑
j=−∞

h(k, j)u(j) +

k∑
j=k0

h(k, j)u(j)

= Y (k; k0 − 1) +
k∑

j=k0

h(k, j)u(j)
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Input-Output Dynamic Description of Linear Systems (cont.)

• The system is at rest at time k0 if

u(k) = 0, ∀ k ≥ k0 =⇒ y(k) = 0, ∀ k ≥ k0

and this implies Y (k; k0 − 1) = 0 .
• Hence, if the system is at rest at time k0 , it follows that

y(k) =

∞∑
j=k0

h(k, j)u(j)

and due to causality, one gets

y(k) =

k∑
j=k0

h(k, j)u(j)
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Input-Output Dynamic Description of Linear Systems (cont.)

• If the system is time-invariant, denoting by {h(k, 0)} the
response to {δ(k)} , it follows that {h(k − j, 0)} is the response
to {δ(k − j)}

• Letting (with some abuse of notation)

h(k − j) := h(k − j, 0)

one gets the well-known convolution formula:

y(k) = u(k) ∗ h(k) =
∞∑

j=−∞
h(k − j)u(j)

or equivalently (via a change of variables)

y(k) = h(k) ∗ u(k) =
∞∑

i=−∞
h(i)u(k − i)
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Input-Output Dynamic Description of Linear Systems (cont.)

• Consider a linear
discrete-time system with
vector input and output

• The scalar case (with all properties) can be generalised as:

y(k) =

∞∑
j=−∞

H(k, j)u(j)

H(k, j) =


h11(k, j) h12(k, j) · · · h1m(k, j)

h21(k, j) h22(k, j) · · · h2m(k, j)

· · · · · · · · ·
hp1(k, j) hp2(k, j) · · · hpm(k, j)


where hrs(k, j) denotes the r-th component of the response at
time k produced by a unit impulse applied at time j on the
s-th component of the input, while all other input components
are set to zero.
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Relationship between State-Space and Input-Output Dynamic
Descriptions

Consider a state-space description with initial state set to zero:{
x(k + 1) = A(k)x(k) +B(k)u(k) , x(k0) = 0
y(k) = C(k)x(k) +D(k)u(k)

Recalling that

y(k) =
k−1∑
j=k0

C(k)Φ(k, j + 1)B(j)u(j) +D(k)u(k) , k > k0

one gets immediately

H(k, j) =


C(k)Φ(k, j + 1)B(j) , k > j

D(k) k = j

0 k < j

which, in the time-invariant case, becomes

H(k − j) =


CAk−(j+1)B , k > j

D k = j

0 k < jDIA@UniTS – 267MI –Fall 2020 TP GF – L2–p18
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Determination of the State/Output Movement

Recall that in the general time-varying case one has:{
x(k + 1) = A(k)x(k) +B(k)u(k) , x(k0) = x0
y(k) = C(k)x(k) +D(k)u(k)

one gets:

y(k) = C(k)Φ(k, k0)x0

+

k−1∑
j=k0

C(k)Φ(k, j + 1)B(j)u(j) +D(k)u(k) , k > k0

where
Φ(k, k0) =

k−1
Π

j=k0
A(j) , k > k0 ; Φ(k0, k0) = I

is the state-transition matrix.
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Determination of the State/Output Movement (cont.)

In the time-invariant case, recall that the solution specialises as
follows: {

x(k + 1) = Ax(k) +Bu(k) , x(k0) = x0
y(k) = Cx(k) +Du(k)

one gets:

y(k) = CA(k−k0)x0

+

k−1∑
j=k0

CAk−(j+1)Bu(j) +Du(k) , k > k0

where the state-transition matrix now is given by:

Φ(k − k0) = A(k−k0) , k > k0 ; Φ(k0, k0) = I
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Response Modes

• Without loss of generality we let k0 = 0 and we ”expand”
matrix Ak−k0 = Ak in ”matrix partial fractions”.

• Clearly
det(zI −A) =

σ

Π
i=1

(z − λi)
ni

where λ1, . . . , λσ are the distinct eigenvalues of A and ni is
the algebraic multiplicity of such eigenvalues.

• Of course
σ∑

i=1
ni = n .

• It can be shown that:

Ak =

σ∑
i=1

[
Ai0λ

k
i 1(k) +

ni−1∑
l=1

Ailk(k − 1) · · · (k − l + 1)λk−l
i 1(k − l)

]
where

Ail =
1
l!

1
(ni − 1− l)!

lim
z→λi

{
dni−1−l

dzni−1−l

[
(z − λi)

ni(zI −A)−1
]}
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Response Modes (cont.)

Hence:

• Ak can be expressed as a sum of terms Aill!

(
k

l

)
λk−l
i which

are called Response Modes
• If an eigenvalue λi has algebraic multiplicity ni , then, in
general, ni response modes

Aill!

(
k

l

)
λk−l
i , l = 0, 1, . . . , ni − 1

can be associated to λi .
• When all eigenvalues of A are distinct, one has
σ = n; ni = 1, i = 1, . . . , n and

Ak =

n∑
i=1

Aiλ
k
i

with Ai = lim
z→λi

[
(z − λi)(zI −A)−1

]
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Response Modes: A different Characterisation

In the special case of distinct eigenvalues of A :

• In such a case: det(zI −A) =
n

Π
i=1

(z − λi) and Ak =
n∑

i=1
Aiλ

k
i

• It can be shown that Ai = viṽ
⊤
i where:

• (λiI −A)vi = 0 : vi right eigenvector associated with λi

• ṽ⊤i (λiI −A) = 0 : ṽ⊤i left eigenvector associated with λi

In fact:

Q := [v1 | v2 | · · · | vn] =⇒ P = Q−1 =


ṽ⊤1
...
ṽ⊤n

 ; ṽ⊤i vj =

{
1 i = j

0 i ̸= j

and then
(zI −A)−1 = [zI −Qdiag [λ1, . . . , λn]Q

−1]−1

= Q[zI − diag [λ1, . . . , λn]]
−1Q−1

= Qdiag [(z − λ1)
−1, . . . , (z − λn)

−1]Q−1 =
n∑

i=1
viṽ

⊤
i (z − λi)

−1
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Response Modes: A different Characterisation (cont.)

• If the initial state vector x0 is ”parallel” to eigenvector vj of
A , then the only response mode showing up int the state
movement is λk

j :

x0 = αvj =⇒ x(k) = Akx0 = v1ṽ
⊤
1 x0λ

k
1 + · · ·+vnṽ

⊤
n x0λ

k
n = αvjλ

k
j

Example: consider A =

[
−1 2
0 1

]
; λ1 = −1, λ2 = 1

=⇒ Q = [v1 | v2] =

[
1 1
0 1

]
, Q−1 =

[
ṽ⊤1
ṽ⊤2

]
=

[
1 −1
0 1

]

Ak = v1ṽ
⊤
1 λ

k
1 + v2ṽ

⊤
2 λ

k
2 =

[
1 −1
0 0

]
(−1)k +

[
0 1
0 1

]
1k

and thus, if x0 = αv1 = α

[
1
0

]
then the response mode 1k does

not show up in the free state response starting from such an initial
state x0
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Calculation of Ak by Similarity Transformation

Consider:

• x(k + 1) = Ax(k) , x(0) = x0 =⇒ x(k) = Akx0

• T ∈ Rn×n, det(T ) ̸= 0 =⇒ x = T x̂, x̂ = T−1x

Hence x̂(k + 1) = T−1Ax(k) = T−1ATx̂(k), x̂0 = T−1x0 which yields

x̂(k) = (T−1AT )
k
T−1x0

Letting J := T−1AT , one gets the closed-form expression for the
free-state response expressed in the original state coordinates

x(k) = TJkT−1x0

Suppose now that the similarity transformation is such that

J = T−1AT

takes on the Jordan Canonical Form.
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Calculation of Ak by Similarity Transformation (cont.)

Case 1. Suppose that matrix A admits the construction of a basis of
n linearly-independent eigenvectors vi associated with the
eigenvalues λi, i = 1, . . . , n (not necessarily distinct).
Thus:

T = [v1|v2| · · · |vn] =⇒ J = T−1AT =


λ1 · · · 0
... . . . ...
0 · · · λn


Hence:

Jk =


λ1

k · · · 0
. . .

0 · · · λn
k



=⇒ x(k) = TJkT−1x0 = T


λ1

k · · · 0
. . .

0 · · · λn
k

T−1x0
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Calculation of Ak by Similarity Transformation (cont.)

Case 2. Consider the general case in which matrix A has multiple
eigenvalues. It is always possible to construct a basis of n

linearly-independent vectors vi such that:

T = [v1|v2| · · · |vn] =⇒ J = T−1AT =


J0 · · · · · · 0
... J1

...
... . . . ...
0 · · · · · · Js


where

J0 =


λ1 · · · 0
... . . . ...
0 · · · λk
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Calculation of Ak by Similarity Transformation (cont.)

and Ji, i ≥ 1 is a ni × ni matrix taking on the special form

Ji =



λk+i 1 0 · · · 0
0 λk+i 1 · · · 0
...

... . . . . . . ...

0 0 · · ·
. . . 1

0 0 · · · · · · λk+i


where not necessarily λk+i ̸= λk+j , i ̸= j and

k + n1 + · · ·+ ns = n

Matrix J is block-diagonal and its special structure makes it
possible to compute Ak in closed-form.
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Calculation of Ak by Similarity Transformation (cont.)

In fact:

Jk =


Jk
0 · · · · · · 0

J1
k

. . .
0 · · · · · · Js

k


where

J0
k =


λ1

k · · · 0
. . .

0 · · · λr
k


Then:

x(k) = TJkT−1x0 = T


Jk
0 · · · · · · 0

J1
k

. . .
0 · · · · · · Js

k

T−1x0
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Calculation of Ak by Similarity Transformation (cont.)

Concerning the computation of Jk
i , i = 1, . . . , s we can write:

Ji = λr+iIi +Ni

where Ii is the identity matrix with dimension ni × ni and Ni is a
matrix of dimension ni × ni having the form:

Ni =



0 1 0 · · · 0
0 0 1 · · · 0
...

... . . . . . . ...

0 0 · · ·
. . . 1

0 0 · · · · · · 0


Matrix Ni is a nilpotent matrix, that is, it holds:

Nk
i = 0, ∀k ≥ ni
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Calculation of Ak by Similarity Transformation (cont.)

On the other hand, one immediately gets:

Jk
i = (λr+iIi +Ni)

k

= λk
r+iI + kλk−1

r+iNi +
k(k − 1)
2! λk−2

r+iN
2
i + · · ·+ kλr+iN

k−1
i +Nk

i

thus getting to discrete-time response modes of the form

λk,

(
k

ni

)
λk−ni
i
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Qualitative Behaviour of Response Modes

•
(

k

ni

)
λk−ni
i with λ ∈ R , multiplicity = 1
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Qualitative Behaviour of Response Modes

•
(

k

ni

)
λk−ni
i with λ ∈ R , multiplicity > 1
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Qualitative Behaviour of Response Modes

•
(

k

ni

)
λk−ni
i with λ ∈ C , multiplicity = 1
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Qualitative Behaviour of Response Modes

•
(

k

ni

)
λk−ni
i with λ ∈ C , multiplicity > 1
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External Description of LTI Dynamic Systems: Transfer Function

Recall the relationship between the state space description and the
impulse response (an external description):{

x(k + 1) = A(k)x(k) +B(k)u(k) , x(k0) = 0
y(k) = C(k)x(k) +D(k)u(k)

Recalling that

y(k) =

k−1∑
j=k0

C(k)Φ(k, j + 1)B(j)u(j) +D(k)u(k) , k > k0

one gets immediately

H(k, j) =


C(k)Φ(k, j + 1)B(j) , k > j

D(k) k = j

0 k < j

which, in the time-invariant case, becomes

H(k − j) =


CAk−(j+1)B , k > j

D k = j

0 k < j
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Transfer Function

Consider the time-invariant dynamic system:{
x(k + 1) = Ax(k) +Bu(k) , x(k0) = 0
y(k) = Cx(k) +Du(k)

Applying the Z Transform to both sides one gets:

z [X(z)− x0] = AX(z) +BU(z)

=⇒ (zI −A)X(z) = z x0 +BU(z)

=⇒


X(z) = (zI −A)−1z x0 + (zI −A)−1BU(z)

Y (z) = CX(z) +DU(z)

=⇒ Y (z) = C(zI −A)−1z x(0) +
[
C(zI −A)−1B +D

]
U(z)

Letting x0 = 0 , it follows that:

Y (z) =
[
C(zI −A)−1B +D

]
U(z) = H(z)U(z)

and H(z) is called transfer function.
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Transfer Function (cont.)

Let’s analyse the structure of the transfer function:

H(z) =



H11(z) · · · H1m(z)
...

...
Hi1(z) · · · Him(z)

...
...

Hp1(z) · · · Hpm(z)


H(z) is a p×m matrix where the i-th component of the output
vector is given by:

Yi(z) =

m∑
j=1

Hij(z)Uj(z) = Hi1(z)U1(z) +Hi2(z)U2(z) + · · ·

Hence:
x(0) = x0
ur(k) = 0, r ̸= j

=⇒ Hij(z) =
Yi(z)

Uj(z)
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Transfer Function of equivalent dynamic systems

Recall: {
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

Let x̂ := T−1x , where T ∈ Rn×n is a generic non-singular n× n

matrix ( det(T ) ̸= 0 ). Then, the equivalent state-space description is
given by:{

x̂(k + 1) = T−1x(k + 1) = T−1ATx̂(k) + T−1Bu(k) = Âx̂(k) + B̂u(k)

y(k) = CTx̂(k) +Du(k) = Ĉx̂(k) +Du(k)

Hence:{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
⇐⇒

{
x̂(k + 1) = Âx̂(k) + B̂u(k)

y(k) = Ĉx̂(k) +Du(k)
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Transfer Function of equivalent dynamic systems (cont.)

Ĥ(z) = Ĉ(zI − Â)−1B̂ + D̂

= C
[
T
(
zI − T−1AT

)−1
T−1

]
B +D

= C
[
T
(
zT−1T − T−1AT

)−1
T−1

]
B +D

= C
[
T
(
T−1(zI −A)T

)−1
T−1

]
B +D

= C
[
TT−1 (zI −A)

−1
TT−1

]
B +D

= C
[
(zI −A)

−1
]
B +D

= H(z)

Hence: the transfer function does not depend on the specific choice
of the state variables
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Transfer Function: Properties

Consider the scalar case, that is, u(k) ∈ R , y(k) ∈ R :

H(z) = C
[
(zI −A)

−1
]
B +D

and

(zI −A)
−1

=


z − a11 −a12 · · · −a1n

−a21 z − a22
...

... . . .
−an1 · · · z − ann


−1
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Transfer Function: Properties (cont.)

The inverse can be expressed as:

(zI −A)
−1

=
1

det (zI −A)
K(z)

where K(z) is the matrix of the algebraic complements.

Clearly:

• det (zI −A) is a polynomial with degree n

• K(z) = [kij(z); i, j = 1, . . . , n] where kij(z) is a polynomial of
degree < n, ∀ i, j

• C (zI −A)
−1

B =
1

det (zI −A)
CK(z)B =

M(z)

φ(z)
where M(z)

is a polynomial of degree < n,
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Transfer Function: Properties (cont.)

Therefore:

H(z) = C (zI −A)
−1

B +D =
M(z)

φ(z)
+D

=
M(z) +Dφ(z)

φ(z)
=

N(z)

φ(z)

where:

• N(z) in general is a polynomial of degree n

• In case of a strictly proper system, that is D = 0 , N(z) in
general is a polynomial of degree < n

• All the above holds if no common factors between N(z) and
φ(z) are present
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Transfer Function: Properties (cont.)

In the presence of common factors between N(z) and φ(z) :

H(z) =
N(z)

φ(z)

• φ(z) is a factor of φ(z) of degree ν < n

• N(z) has degree m < ν and has degree ν only if D ̸= 0 (non
strictly proper systems)
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Transfer Function: Poles and Zeros (scalar case)

• Poles: roots of polynomial φ(z)
• Zeros: roots of polynomial N(z)

• The poles are eigenvalues of A

• An eigenvalue of A might not belong to the set of poles when
common factors are present

• In case of more then one input and/or more than one output
extra-care has to be exercised
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Transfer Function: Example


x(k + 1) =

[
1 1
0 −1

]
x(k) +

[
1
1

]
u(k)

y(k) = [0 1]x(k)

n = 2

Hence:

G(z) = [0 1]
[

z − 1 −1
0 z + 1

]−1 [
1
1

]

= [0 1] 1
(z − 1)(z + 1)

[
z + 1 1
0 z − 1

][
1
1

]

=
(z − 1)

(z − 1)(z + 1) =
1

z + 1

Thus: φ(z) = z + 1 is a factor of φ(z) = (z − 1)(z + 1)
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Transfer Function: Example (cont.)

The state equations have the
form:

x1(k + 1) = x1(k) + x2(k) + u(k)

x2(k + 1) = −x2(k) + u(k)

y(k) = x2(k)

Only the dynamics
{

x2(k + 1) = −x2(k) + u(k)

y(k) = x2(k)
shows up in the

transfer function G(z) =
1

z + 1 and the time-evolution of x1(k) is
not influencing the output y(k) .
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Transfer Function: Example in the Non-Scalar Case


x(k + 1) =

[
0 1
−1 −2

]
x(k) +

[
0 −1/2
1 1/2

]
u(k)

y(k) = [−3 3]x(k)
Hence, one gets:

H(z) = [−3 3]
[

z −1
1 z + 2

]−1 [
0 −1/2
1 1/2

]

= [−3 3] 1
(z + 1)2

[
z + 2 1
−1 z

][
0 −1/2
1 1/2

]

=

[
− 3
z + 1

3(z − 1)
(z + 1)2

][ 0 −1/2
1 1/2

]
=

[3(z − 1)
(z + 1)2

3
z + 1

]
The notion of zeros and poles of a transfer function in the
non-scalar case is more complicated (and less useful though)
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Transfer Function: Alternative Definition in the Scalar Case

x(0) = 0
u(k) = δ(k)

=⇒ U(z) = Z[δ(k)] = 1

Therefore:
H(z) =

Y (z)

U(z)
=

Y (z)

1 = Y (z)

that is:
H(z) = Z[ Impulse Response ]
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Determination of Response
Modes: Examples



Determination of Response Modes: Example 1

Consider:
x(k + 1) =

[
−0.5 2
0 0.1

]
x(k) +

 1

−0.5

 u(k)

y(k) =
[
2 −1.5

]
x(k)

Determine the free-state movement xl(k) = Ak x(0) starting from

the initial state x(0) =
[

10
−10

]
The free-state movement is given by

x(k) = Ak x(0) +
k−1∑
i= 0

Ak−i−1Bu(i)

We are going to determine the free-state movement in two ways:

• by the Z transform
• by calculating the matrix Ak.
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Determination of Response Modes: Example 1 (cont.)

Calculation by the Z transform

xl(k) = Ak x(0) =⇒ Xl(z) = z (z I − A)
−1

x(0)

(z I − A) =

[
z + 0.5 −2
0 z − 0.1

]

=⇒ (z I − A)
−1

=


2

2 z + 1
40

(2 z + 1) (10 z − 1)
0 10

10 z − 1


Hence:

Xl(z) =


20 z (10 z − 21)

(10 z − 1) (2 z + 1)

− 100 z
10 z − 1
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Determination of Response Modes: Example 1 (cont.)

First, we proceed with the inverse Z transform:

Xl(z) =

 Xl 1(z)

Xl 2(z)

 =


20 z (10 z − 21)

(10 z − 1) (2 z + 1)

− 100 z
10 z − 1


Hence:

Xl 1(z) =
20 z (10 z − 21)

(10 z − 1) (2 z + 1)

=⇒ Xl 1(z)

z
=

20 (10 z − 21)
(10 z − 1) (2 z + 1) =

C1
z − 1

10
+

C2
z + 1

2

C1 = lim
z→ 1

10

20 (10 z − 21)
10 (2 z + 1) = −1003 ; C2 = lim

z→− 1
2

20 (10 z − 21)
2 (10 z − 1) =

130
3

thus getting: Xl 1(z) = −1003
z(

z − 1
10
) +

130
3

z(
z + 1

2
)
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Determination of Response Modes: Example 1 (cont.)

Then, it follows that:

Xl(z) =

 −1003
z(

z − 1
10
) +

130
3

z(
z + 1

2
)

− 10 z(
z − 1

10
)


and thus:

xl(k) =


{
−1003

( 1
10

)k

+
130
3

(
− 1
2

)k
}

· 1(k)

− 10
( 1
10

)k

· 1(k)
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Determination of Response Modes: Example 1 (cont.)

Now, as alternative technique, we proceed with calculating the
matrix Ak.

• A =

[
−0.5 2
0 0.1

]
• Eigenvalues: λ1 = −0.5 , λ2 = 0.1 . Hence, matrix A admits a
diagonal similar matrix because the eigenvalues are distinct

• The characteristic polynomial is given by:

pA(λ) = det(λI −A) = (λ+ 0.5)(λ− 0.1)

• A basis of linearly independent eigenvectors is now
determined.
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Determination of Response Modes: Example 1 (cont.)

• Az = λ1z with z =

[
z1
z2

]
[

−0.5 2
0 0.1

][
z1
z2

]
= −0.5·

[
z1
z2

]
=⇒

{
−0.5z1 + 2z2 = −0.5z1

0.1z2 = −0.5z2

For example: z2 = 0 =⇒ z(1) =

[
1
0

]
• Az = λ2z[

−0.5 2
0 0.1

][
z1
z2

]
= 0.1·

[
z1
z2

]
=⇒

{
−0.5z1 + 2z2 = 0.1z1

0.1z2 = 0.1z2

For example: z2 =
3
10z1 =⇒ z(2) =

[
10
3

]
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Determination of Response Modes: Example 1 (cont.)

One now proceeds with calculating the equivalent state-space
representation of matrix A:

T =
[
z(1)

∣∣∣z(2) ] = [ 1 10
0 3

]
=⇒ T−1 =

1
3

[
3 −10
0 1

]

thus obtaining:

Ã = T−1AT =
1
3

[
3 −10
0 1

] −12 2

0 1
10

[ 1 10
0 3

]
=

 −12 0

0 1
10
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Determination of Response Modes: Example 1 (cont.)

The calculation of Ak is now straightforward:

Ak = MÃkM−1 = M


(
−12

)k

0

0
( 1
10

)k

M−1

=

[
1 10
0 3

]
(
−12

)k

0

0
( 1
10

)k

 · 13

[
3 −10
0 1

]

=


(
−12

)k
(
−103

(
−12

)k

+
10
3

( 1
10

)k
)

0
( 1
10

)k
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Determination of Response Modes: Example 1 (cont.)

Finally, from

Ak =


(
−12

)k
(
−103

(
−12

)k

+
10
3

( 1
10

)k
)

0
( 1
10

)k



and x(0) =

[
10
−10

]
, one gets:

xl(k) =


{
−1003

( 1
10

)k

+
130
3

(
− 1
2

)k
}

· 1(k)

− 10
( 1
10

)k

· 1(k)
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Determination of Response Modes: Example 2

Consider: {
x1(k + 1) = x1(k) + 4x2(k)
x2(k + 1) = x1(k) + x2(k)

Setting x(0) =
[
1
1

]
, show in two different ways that

lim
k→∞

x1(k)

x2(k)
= 2

We are going to determine the free-state movement yielding
x1(k), x2(k), ∀k ≥ 0 in two ways:

• by the Z transform
• by calculating the matrix Ak.
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Determination of Response Modes: Example 2 (cont.)

Using the Z transform:

{
zX1(z)− z = X1(z) + 4X2(z)

zX2(z)− z = X1(z) +X2(z)
=⇒


X1(z) =

z(z + 3)
(z + 1)(z − 3)

X2(z) =
z2

(z + 1)(z − 3)
Hence: 

x1(k) =

[(
−12

)
(−1)k +

3
2 3

k

]
1(k)

x2(k) =

[1
4 (−1)

k +
3
4 3

k

]
1(k)

=⇒ lim
k→∞

x1(k)

x2(k)
= lim

k→∞

(3
2

)
3k(3

4

)
3k

= 2
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Determination of Response Modes: Example 2 (cont.)

Using the calculation of Ak :

A =

[
1 4
1 1

]
=⇒ det(λI−A) = λ2−2λ−3 = 0 =⇒

distinct
eigenvalues
λ1 = 3,
λ2 = −1

ker(A− 3I) =

{[
2
1

]}

ker(A+ I) =

{[
−2
1

]} =⇒

T =

[
−2 2
1 1

]

T−1 = −14

[
1 −2
−1 −2

]
Thus

Ã = T−1AT =

[
−1 0
0 3

]
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Determination of Response Modes: Example 2 (cont.)

By some algebra:

Ak = T Ãk T−1 =


1
2 3

k +
1
2 (−1)

k 3k − (−1)k

1
4
(
3k − (−1)k

) 1
2 3

k +
1
2 (−1)

k


and then:

x(k) = Akx(0) =


x1(k) =

[(
−12

)
(−1)k +

3
2 3

k

]
1(k)

x2(k) =

[1
4 (−1)

k +
3
4 3

k

]
1(k)

=⇒ lim
k→∞

x1(k)

x2(k)
= lim

k→∞

(3
2

)
3k(3

4

)
3k

= 2
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