
CELL MECHANICS
1. Introduction (1h)

2. Physical principles (7h)

2.1.  Forces at molecular and cell level  

2.2. Thermal forces, diffusion, and chemical forces

2.3. Motor proteins (types, working principles)

3. Mechanics of the Cytoskeleton and Mechnaotransduction (6h)

3.1. Cytoskeleton structure 

3.2. Force generation by the cytoskeleton and cell motility

3.3. Cellular mechanotransduction (basic principles and examples)

5. Experimental techniques to study cell mechanics (10 h)

5.1. Optical, magnetic and acoustic tweezers 

5.2. Super-resolution optical microscopy techniques (STED, PALM) 

5.3. Lab visit and experimental optical tweezers – cell mechanics session at CNR-IOM
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2.1.  Forces at molecular and cell level

• Physical forces and their magnitudes at the single-molecule level

• Modeling complex mechanical devices as protein machines by using three elements: 

Spring, Dashpot, Mass 

• Mass, Stiffness and Damping of Proteins
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• Motor proteins and other molecular machines are able to move and do work because they generate force. 

It is the force which drives change and motion.

https://www.mechanobio.info/cytoskeleton-dynamics/what-are-motor-proteins/

• Where this force comes from ? What effect does it have on proteins and cells ?

Which is the magnitude of forces acting on molecules ?

• Modeling complex mechanical devices as protein machines by using three elements:                               

Spring, Dashpot, Mass  

Important NOTE:

Proteins and other biomolecules are so small that the inertial forces are comparatively small and can usually 

be ignored, whereas the viscous forces from the surrounding fluid are usually large and dominate the 

mechanical responses. 

2.1.  Physical forces and their magnitudes at the single-molecule level 3

https://www.mechanobio.info/cytoskeleton-dynamics/what-are-motor-proteins/


J. Howard – Book, Ch. 2

Range:

pN - nN
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Physical forces and their magnitudes at the single-molecule level (Examples)



Physical forces and their magnitudes at the single-molecule level (Examples)

Elastic 

F= k ∙ x , where: k – spring constant (stiffness), x – displacement

Example: motor protein k= 1 pN/nm, 

spring strained trough distance x= 5 nm → F= 5 pN

Viscous

F= ɣ ∙ v, where : ɣ- drag coefficient , v – relative velocity between object and liquid

ɣ= 6πηr, with η – liquid viscosity, r – radius of a spherical particle

Example: globular protein with diameter r= 3 nm, molecular mass MM= 100 kDa, ɣ~ 60 pN s/m (at T= 20 C), 

average thermal speed: v ~ 8 m/s → F ~ 480 pN

consequence of thermally driven collisions from the surrounding solvent molecules

J. Howard – Book, Ch. 2
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model for myosin II



Physical forces and their magnitudes at the single-molecule level (Examples)

Collisional and thermal

Example: Protein – water molecule collision / s: F= Δp/ Δ t 

Water molecule : mass m ~ 0.3 x 10-23 g, average speed associated with its kinetic energy : v ~ 600 m/s 

→momentum: p ~ 18 x 10-24 kg m/s.

Assuming the interaction is perfectly elastic the force for one collision 

F= 2 x18 x10-12 pN  - very small

However, the number of collisions / s is much much bigger ( > 1013 ), such that the instantaneous thermal force acting on 

a 100 kDa protein is on the order of the viscous force: F ~ 500 pN, and drives diffusion.

J. Howard – Book, Ch. 2
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Some Important Constants:

Boltzman constant KB ~ 1.4 x 10-23 m2 kg / s2 K

Da = u (unified atomic mass); u ~ 1.66 x 10-24 g

Avogadro’s number  NA ~ 6 x 1023 p/ mol

𝑉 =
3𝐾𝐵𝑇

𝑚



Optical forces

Optical pressure due to the momentum of light (photons :  p=hν/c)

Example: if an object absorbs one green photon / second, the corresponding force is:

F= Δp/ Δ t ~ 1.3 10 -15 pN   - very small    

where: E= h ν= 4 10 -19 J, the energy of the photon; h= 6.63 10 -34 m 2 kg / s  - Planck constant; 

ν = 6 1014 Hz - light frequency, c= 3 108 m/s – light speed in vacuum

A laser beam of power P=1 mW has about N ~ 2.5 10 15 photons ! → F (1mW) ~ 3.25 pN 

still small but enough to make an effect on small obejcts (e.g. laser pointer beam focused on a black wall)

Gravity

Example: protein 100 kDa = 166 10 -21 g, the gravitational force F= 1.7 10 -9 pN very small

F= mg, m – mass, g – gravitational acceleration; for a Red Blood Cell we have F ~ 1 pN

Centrifugal

Ultracentrifuges → acceleration ac ~ 10 5 g, associated force on protein 100 kDa is still modest: F= 1.7 10-6 pN, but this is 

large enough to cause the protein to drift at an average speed of ~ 3 μm/s → protein sedimentation through a distance 

of 100 mm (typical length of centrifuge tube) in about 10 h.

Physical forces and their magnitudes at the single-molecule level (Examples) - 2 7



Electrostatic F= qE

Example: force experienced by a potassium K+ traveling through an ion channel of the plasma membrane.

Charge q= 160 10-21 C; plasma membrane – electric field accross a typical plasma membrane : E= 15 10 6 V/m 

(60 mV potential accross the 4 nm thick membrane) -- > F= 2.4 pN

Similar force exists between two monovalent ions in water that are separated by 1 nm .

Van der Waals forces are also electrostatic – they arise form the separation induced by nearby atoms. 

These forces can be as high as 100 pN for 1 nm2 of protein-protein surface interface

Magnetic

Very small at the molecular level because molecules interact very weakly with magnetic fields.

Example: max force on a proton, the nucleus with the largest magnetic moment , in the strongest nuclear magnetic 

resonance (NMR) machines is only of the order of 10-12 pN.

Thus even with a huge protein with 3000 aminoacids and 60000 atoms subject to a very strong magnetic field the 

magnetic force is < 10 -6 pN. 

Homework: calculate / verify the values for the forces

Physical forces and their magnitudes at the single-molecule level (Examples) - 2 8



J. Howard – Book, Ch. 2
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J. Howard – Book, Ch. 2
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Modeling complex mechanical devices as protein machines by using three elements: 

Spring, Dashpot, Mass 

A protein or other molecules can be thought as a mechancial device composed of atoms that have 

mass, connected by bonds that have elasticity, like springs, and moves in liquid environment, facing 

viscosity like dashpots.

All mechanical devices can be built with three fundamental mechanical elements: 

SPRING, DASHPOT, MASS.
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MASS DASHPOT SPRING

Motion of a MASS, a DASHPOT and a SPRING under the influence of a constant external force

x(t)= ½ at2

v(t)= at

= a

12

= v

= x

x(t)= vt



Example. The force generated by the bacterial motor.

The bacterial flagelar motor should generate a force to move an E. Coli bacterium  through 

water at a constant velocity v= 25 μm/s , which is the force to do this ?

Dashpot:

F= ɣ ∙ v ɣ = 3πD η ~10 mPa s μm 

η~ 1 mPa s – water  viscosity, D ~ 1 μm (diam of E. Coli)

F ~  0.25 pN

E. Coli bacterium

13

v= 25 μm/s 



Motion of Combinations of Mechanical Elements

A) DASHPOT and MASS. Model for the movement of a cell or a protein through a liquid 

𝑣 𝑡 =
𝐹

𝛾
1 − exp −

𝑡

𝜏
𝑚
𝑑𝑣

𝑑𝑡
+ 𝛾𝑣 = 𝐹

J. Howard – Book, Ch. 2
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Time constant

𝜏 =
𝑚

𝛾

𝜏 = 𝑚/𝛾

Eq of motion Solution



Example.  Inertia of a bacterium

Consider a bacterium swimming through water at a constant velocity v(0)= 25 μm/s. How long will it 

continue to coast after its motor has stopped ?

𝜏 =
𝑚

𝛾

𝑚 ≈ 0.33 ∙ 10−15 kg

ɣ = ~10 mPa s μm
𝑣 𝑡 = 𝑣(0) ∙ exp −

𝑡

𝜏

𝝉 = 𝟎. 𝟑𝟑 ∙ 𝟏𝟎−𝟕 s !!!

𝒙𝒔𝒕𝒐𝒑 = 0׬
τ
v 0 ∙ exp −

t

τ
dt = v 0 ∙ τ ≈ 𝟎. 𝟖 ∙ 𝟏𝟎−𝟑 nm

Less than the diameter of a water molecule

BACTERIA HAS VERY LITTLE INERTIA TO KEEP IT MOVING FORWARD

15



Example. The persistance of protein movements

𝜏 =
𝑚

𝛾

For a globular protein of 100 kDa, the time constant τ is: 

τ ~ 3 ps

m= 166 10-24 kg, ɣ= 60 pN s / m

J. Howard – Book, Ch. 2
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This means that after the protein gains speed due to molecular collisions with solvent molecules, 

the velocity persists for only a very short time as other collisions rapidly randomize the protein’s 

direction of travel.

Given that the average instantaneous speed of such a protein is 8.6 m/s, the avearge distance that 

the protein moves before its speed is randomized by molecular collisions is only 0.24 A.



Motion of Combinations of Mechanical Elements

B) SPRING and DASHPOT in parallel. 

Model for a compliant low- mass object that is deformed in a liquid, such as a 

protein that undergoes a large-scale conformational change. 

It can be used also to model a viscoelastic material, such as 

skin, that takes finite time to adopt a new shape.

𝛾
𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹 𝑥 𝑡 =

𝐹

𝑘
1 − exp −

𝑡

𝜏
𝜏 =

𝛾

𝑘

17

Time constant

𝜏 = 𝛾/𝑘



Example. The timescale of protein conformational changes.

Globular protein 100 kDa, Local chemical changes, such as breaking of the bonds between two proteins 

is ps, whereas the global conformational changes of the whole protein occurs much more slowly.

𝑘 = 4 pN/nm𝛾 = 60 𝑝𝑁 𝑠 /𝑚

𝜏 =
𝛾

𝑘
𝝉 = 𝟏𝟓 𝒏𝒔

Protein held in a strained 
conformation due to an internal 
strut (montante/serratura)

Latch (serratura) Open  latch

Protein relax, 
changes shape →
unstrained 
conformation

The global conformation changes occur in nanoseconds, while the breaking of the bonds occurs in picoseconds

18



Motion of Combinations of Mechanical Elements

C) MASS and SPRING in serie. Model to describe the vibrations of the atomic bonds. 

𝑥 𝑡 =
𝐹

𝑘
1 − cos 𝜔𝑡 𝜔 =

𝑘

𝑚
𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑘𝑥 = 𝐹

Harmonic motion

J. Howard – Book, Ch. 2
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Example. Vibration of chemical bonds → bonds stiffness

Chemical bonds can be thought as having stiffness (chemical bonds vibrate at frequency ω=2πν, 

which can be detected spectroscopically when the molecule absorbs light of the same frequency as 

the molecular vibration). 

The fundamental vibration frequency of the H-Cl bond in HCl is ν= 89.6 1012 Hz (2990 cm-1)

The corresponding wavelength is λ= c / ν= 3.53 μm

The appropriate mass m~1.63 10 -27 kg (appox mass of the hydrogen nucleus)

Stiffness k= m ω2= 517 N/m – very stiff !!!

Example. Protein vibrations → proteins creep rather than ring

Consider the motor protein myosin. Motor domain has a mass m~160 x 10-24 kg and stiffness              

k ~ 4 pN/nm. The vibration frequency is calculated to be: ν ~ 10 9 Hz, which means a period of 

oscillation T= 1 ns. By contrast, the relaxation time (calculated before) is 15 ns.

Does the protein oscillate when it detaches from the actin filament or does it creep exponentially 

into its relaxed state ? 

The answer requires solution of the full model, with mass, spring, and dashpot, and the solution 

shows that the protein creeps rather than rings.

20

𝜔 =
𝑘

𝑚



Motion of Combinations of Mechanical Elements

MASS and SPRING with DAMPING. 

Simple mechanical model of a protein undegoing a large scale conformational change that is damped by the 

surrounding fluid, and possibly by internal viscosity. 

This model captures the main qualitative features of more complex models in that it can display oscillatory 

of monotonic motions depending on the strength of the damping.

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝛾

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹

Elastic solid in liquid

The solution depends on wether the damping is:

small

or 

large
𝛾2

4𝑚𝑘
> 1

𝛾2

4𝑚𝑘
< 1
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J. Howard – Book, Ch. 2



𝛾2 < 4𝑚𝑘

𝜸𝟐 > 𝟒𝒎𝒌

Unrealistic case :

Globular protein MM= 10 MDa 

Stiffness k= 400 pN/nm  (very rigid)

Damping 𝛾= 60 pN s/m

Realistic case: 

protein undergoing a large scale conformational change that 

is damped by the surrounding fluid, and by internal viscosity. 

Globular protein MM=100 kDa ; Stiffness k= 4 pN/nm ; 

damping 𝛾= 60 pN s/m 

The inertial forces are usually very small at the microscopic and molecular levels, so that the overdamped case usually applies.
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𝛾2 < 4𝑚𝑘 𝜸𝟐 > 𝟒𝒎𝒌

Unrealistic case :

Globular protein MM= 10 MDa 

Stiffness k= 40 pN/nm  (very rigid)

Damping 𝛾= 60 pN s/m

Realistic case: 

protein undergoing a large scale conformational change that 

is damped by the surrounding fluid, and by internal viscosity. 

Globular protein MM=100 kDa ; Stiffness k= 4 pN/nm ; 

damping 𝛾= 60 pN s/m 

The inertial forces are usually very small at the microscopic and molecular levels, so that the overdamped case usually applies.
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Examples

Energy of chemical bonds: 

the dissociation energy is seen as being approximately equal with the potential energy in the bond:

𝑈 =
1

2
𝑘𝑑2 , where d is the extension required to break the bond, d~ 0.05 nm. 

For H-Cl, the stiffness k ~ 517 N/m → U ~ 646 x 10-21 J = 650 pN ∙ nm → U ~ 161 KBT 

KB = 1.38 ∙ 10-23 J/K; T- temperatue, e.g. T=300 K ; 

1 KB T ~ 4 ∙ 10-21 J= 4 pN ∙ nm

Energy stored in protein conformational changes: 

Myosin molecule. The stifness is about k ~ 4*10-3 N/m (or 4 pN/nm)

For a conformational change of d=5 nm the total energy 𝑈 =
1

2
𝑘𝑑2 = 50 pN nm = 50 ∙ 10 -21 J  , U ~ 12.5 KBT  

This energy is approximately half of the chemical energy derived from hydrolisis of the gamma phosphate bond of ATP.

We can generalize this argument to global conformational changes of other protein machines:

The energies are on the order of 10 to 100 x 10-21 J (2.5 to 25  KBT ), conformational changes are on the order of 1 to 10 nm. 

Therefore the stifnesses are on the order of 0.2 to 200 pN/nm. 
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Purpose: 

Get a feelling for what proteins are like mechanical devices ? 

Questions: 

• How rigid the proteins are ? 

• How quickly do they move and change shape ? 

• What happens when a protein is struck by a force: does it ring like a fork (underdamped motion), 

or does it creep monotonically into a new shape (overdamped motion ?).

Material properties of the proteins: 

density, elasticity / density, viscosity

272.1.3. Mass, Stiffness and Damping of Proteins

J. Howard – Book, Ch. 3



Proteins are composed of relatively light components:  

carbon, oxygen, nitrogen, and hydrogen

Proteins are about 40 % denser than water, with different 

proteins having slighlty different densities.

The average density of proteins is consider to be:           

ρ= 1.38 x 103 kg/m3

The SI of mass is kg, but in biochemistry the mass of proteins 

and other biomolecules is usually expressed as molecular 

mass, defined as the mass in grams of a mole of the molecules. 

The unit is the Dalton :  1 Da = 1.66 x 10-24 g

Ex: A protein of 100 kDa has a mass,   m= 166 x 10-21 g

The volume V, occupied by such a protein is: V ~ 120 nm3 .

The density of proteins is such that each kDa of protein 

occupies a volume of about 1.2 nm3 .

Mass of Proteins 𝑚 = 𝜌𝑉 28



For a homogenous and isotropic solid:

E : constant [N/m2] [Pa] 

E - Young’s modulus or elastic modulus

• Young’s modulus E is a material property:                        

it does not depend on the object size or shape

𝐹

𝐴
= 𝑬

∆𝐿

𝐿

A solid strained by a tensile force.

29Elasticity of Proteins

𝐹 = k ∆𝐿 =
𝐴𝐸

𝐿
∆𝐿

strainpressure

F ~ ΔL ; Hooke’s law 

K – stiffness

• The stiffness, k, of an object does depend on 

the size and shape. 

k : constant [N/m] 

extensionforce

J. Howard – Book, Ch. 3



Young’s moduli of different materials

For many materials (e.g. metals, plastics and structural 

proteins) the Hooke’s law applies only for 

forces that cause strains up to:

At higher forces the material yelds and the yeld pressure 

is called tensile strength.

Other materials such as rubber and proteins like elastin 

and titin can be strained up to 100 % or more.

30

∆𝐿

𝐿
=  0.1- 1 %

J. Howard – Book, Ch. 3

F= k ΔL



In general proteins are neither homogenous nor isotropic due to their complex atomic structure.

Therefore, care must be taken when considering their mechanical properties.

• For a nonhomogeneous, nonisotropic solid, there are as many as 21 elastic parameters for every point in 

the material. An exact description of the elasticity of a material could therefore be as complex as the full 

atomic description.

• By contrast, an homogeneous and isotropic material is characterized by just two parameters: the Young’s 

modulus and Poisson’s ratio.

Q: Is it valid to think of proteins as having material properties, or must we always think in terms of their 

atomic structures? 

This question is related to the domain concept of structural biology in which proteins are thought of as 

comprising fairly rigid domains joined by more flimsy connecting regions. 

In this picture the hinging and twisting of domains is attributed to the less substantial thickness of 

connections, in the same way that a rubber dumbbell bends about its linking rod not because the rod is 

composed of a weaker material but because it has a reduced cross-sections. 

The domain concept encompasses the idea that protein have material properties.  

31Some specifications (optional)



Are there experiments to support the notion that proteins can be thought of as mechanically isotropic, at least  to a 

first approximation ? 

Actin and tubulin: globular proteins which polimerize to form cytoskeletal filaments, Young’s moduli are found to be 

approx independent of the direction of the applied force. Young’s moduli of several filamentous proteins are similar 

despite their quite different atomic structures . This suggests the existence of a material property that is independent 

of the atomic details.

On the other hand, wet hair shows significant mechanical anisotropy – Young’s modulus measured using 

longitudinal forces is an order of magnitude greater than that measured using transverse forces, due to the 

orientation of the constituent coiled coils.

The concept that proteins have material properties derives support from both structural and mechanical studies.   

The simplicity of the material desciption over the atomic one makes it a useful conceptual tool for understanding 

protein mechanics.

Material description can be readily tested and refined by mechanical experiments on proteins; by contrast the tools 

necessary for relating mechanical measurements by atomic description of proteins via molecular dynamics 

simulations are still under development. 

32Some specifications (continued)



The Global Motion of Proteins is Overdamped; 33

The behavior / motion of an object in response to mechanical force can be osciallatory (underdamped) or 

monotonic (overdamped), depending on the relative magnitudes of the inertial and viscous forces. 

These in turn depend on the material properties: mass, stiffness and damping, which were described previously. 

To answer which type of motion is, we use a scaling argument: as the dimension of an object gets smaller, the 

viscous forces increase relative to the inertial forces, and as a result, the global motions of small, comparatively soft 

objects such as proteins in aqueus solution are expected to be overdamped. 

Let us consider a crude mechancial model of a globular protein as a homogeneous and isotropic cube with side L, density 

ρ, and Young’s modulus E, damped by fluid viscosity η.

The mass: m= ρV= ρL3. The stiffness: k=EL

The drag force associated with a global conformational change that alters the shape of a protein: F = - ɣ v, with ɣ= 3π η L.

Overdamped: 𝛾2

4𝑚𝑘
> 1

𝛾2

4𝑚𝑘
≅ 25

𝜂2

𝜌𝐸𝐿2
> 1
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How small must a protein be to ensure that its motion is overdamped and that it does not oscillate when subject to 

an external force ? 

For the middle rigid proteins the Young’s moduli, E ~ 1 GPa; the density, ρ ~ 103 kg/m3 , viscosity of water η ~ 1mPa s. 

→

This length corresponds to a medium-sized globular protein of ~ 1000 amino acids. Thus the model predicts that 

global motions of rigid globular proteins or protein domains of molecular weight less than 100 kDa should be 

overdamped. 

𝛾2

4𝑚𝑘
≅ 25

𝜂2

𝜌𝐸𝐿2
> 1

𝜂2

𝜌𝐸
≈ 1 nm2

Overdamped:

𝐿 < 5 nm

The Global Motion of Proteins is Overdamped; 
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𝛾2

4𝑚𝑘
≅ 25

𝜂2

𝜌𝐸𝐿2
> 1

Also the motions of larger proteins is overdamped because: 

• The rigidity of allosteric, energy-transducing proteins such as motor proteins and the ribosome is likely to be 

much less than that of rigid proteins like those of the cytoskeleton. Let us consider a protein undergoing a 

x=2 nm (modest) conformational change. Assuming this is associated to a large amount of mechancial work, 

say W=25 KbT (equal to the free energy of hydrolysis of the gamma phosphate bond of one molecule of ATP) 

we have W= ½ kx2  and the stiffness k= 2W/x= 0.05 N/m, much smaller than the stiffness of a rigid protein of 

length 10 nm and Young’s modulus 2 Gpa. This value of stiffness leads to a much greater characteristic length 

L= 50 nm, implying that even the motion of a ribosome, one of the largest protein machines, would be 

overdamped. ( !!! k= E L !!!)

Morover, since we consider a small value for the conformational change and a large value for the work, even 

this low stiffness is likely to be an overestimate; indeed the stiffness of motor proteins is on the order ot only 

1 pN/nm (0.001 N/m) → arguing once more that that protein motions are overdamped.

The Global Motion of Proteins is Overdamped; 



362.1.3. The Global Motion of Proteins is Overdamped; 
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Based on the scaling argument , since cells have linear dimensions about 1000 larger than those of proteins, 

one might expect that cells undergo underdamped motions.

Experimentally it is shown that this is not the case: the motions of the cells are very highly damped.

For example, the cytoplasm of macrophages that have ingested 1 um diameter magnetic particles can be 

perturbed using a weak external magnetic field. The particles reorient extremely slowly, with time constant of 

minutes. The apparent intracellular viscosity is very high, approx 1000 Pa s and the motion is highly 

overdamped. Because actin gels crosslinked with the actin binding protein ABP have similar viscoelastic 

properties to cells, it is likely that the viscoelasticity of cells arises from the stiffness and damping on 

cytoskeletal filaments. Since the long cytoskeletal filaments are highly damped, so too are cells.

The cytoskeletal filaments form a gel with a mesh size of about 50 nm. Small solutes and proteins can readily 

diffuse through the pores, but the motion of larger particles, such as ribosomes and organelles is severlely 

restricted. 

2.1.7. The Motions of Cytoskeleton and Cells are also Overdamped

𝛾2

4𝑚𝑘
≅ 25

𝜂2

𝜌𝐸𝐿2
> 1



2.1. Forces at molecular and cell level

2.1.1. Physical forces and their magnitudes at the single-molecule level

2.1.2. Modeling complex mechanical devices as protein machines by using three elements: 

Spring, Dashpot, Mass 

2.1.3. Mass, Stiffness and Damping of Proteins
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