18 Cenni sulle varietà differenziabili

Vogliamo qui mostrare come si può adattare la teoria svolta, e in particolare il teorema di Stokes-Cartan, alle varietà differenziabili. A differenza del solito, non dimostreremo per esteso tutti i risultati di questa sezione; il lettore interessato potrà consultare, ad esempio, il libro di Spivak. Consideriamo un sottoinsieme \mathcal{M} di \mathbb{R}^N .

Definizione. L'insieme \mathcal{M} è una varietà differenziabile M-dimensionale, con $1 \leq M \leq N$ (o brevemente una M-varietà) se, preso un punto \boldsymbol{x} in \mathcal{M} , esistono un intorno aperto A di \boldsymbol{x} , un intorno aperto B di B in B e un diffeomorfismo $\varphi: A \to B$ tali che $\varphi(\boldsymbol{x}) = 0$ e

(a)
$$\varphi(A \cap \mathcal{M}) = \{ y = (y_1, ..., y_N) \in B : y_{M+1} = ... = y_N = 0 \},$$
 oppure

(b)
$$\varphi(A \cap \mathcal{M}) = \{ y = (y_1, ..., y_N) \in B : y_{M+1} = ... = y_N = 0 \text{ e } y_M \ge 0 \}.$$

Si può vedere che (a) e (b) non possono valere contemporaneamente. I punti \boldsymbol{x} per i quali sia verificata la (b) costituiscono il **bordo** di \mathcal{M} , insieme che indicheremo con $\partial \mathcal{M}$. Se $\partial \mathcal{M}$ è vuoto, si parla di M-varietà senza bordo; altrimenti, \mathcal{M} si dice essere una M-varietà con bordo.

Innanzitutto vediamo che il bordo di una M-varietà, con $M \geq 2$, è esso stesso una varietà differenziabile, di dimensione minore.

Teorema. L'insieme $\partial \mathcal{M}$ è una (M-1)-varietà senza bordo:

$$\partial(\partial\mathcal{M}) = \emptyset$$
.

Dimostrazione. Preso un punto \boldsymbol{x} in $\partial \mathcal{M}$, esistono un intorno aperto A di \boldsymbol{x} , un intorno aperto B di 0 in \mathbb{R}^N e un diffeomorfismo $\varphi:A\to B$ tali che $\varphi(\boldsymbol{x})=0$ e

$$\varphi(A \cap \mathcal{M}) = \{ y = (y_1, ..., y_N) \in B : y_{M+1} = ... = y_N = 0 \text{ e } y_M \ge 0 \}.$$

Ragionando sul fatto che le condizioni (a) e (b) della definizione non possono valere contemporaneamente per alcun punto di \mathcal{M} , si dimostra che deve essere

$$\varphi(A \cap \partial \mathcal{M}) = \{ y = (y_1, ..., y_N) \in B : y_M = y_{M+1} = ... = y_N = 0 \}.$$

Vediamo ora che, data una M-varietà \mathcal{M} , in corrispondenza ad ogni suo punto \boldsymbol{x} è possibile trovare una M-parametrizzazione locale. Nel seguito supporremo sempre che sia $M \geq 2$.

Teorema. Per ogni $\boldsymbol{x} \in \mathcal{M}$, esiste un intorno A' di \boldsymbol{x} tale che $A' \cap \mathcal{M}$ si può M-parametrizzare con una funzione $\sigma : I \to \mathbb{R}^N$, dove I è un rettangolo di \mathbb{R}^M del tipo

$$I = \left\{ \begin{array}{ll} [-\alpha, \alpha]^M & \text{se } \boldsymbol{x} \notin \partial \mathcal{M}, \\ [-\alpha, \alpha]^{M-1} \times [0, \alpha] & \text{se } \boldsymbol{x} \in \partial \mathcal{M}, \end{array} \right.$$

 $e \ \sigma(0) = \boldsymbol{x}.$

Dimostrazione. Consideriamo il diffeomorfismo $\varphi: A \to B$ della definizione data all'inizio e prendiamo un $\alpha > 0$ tale che il rettangolo $B' = [-\alpha, \alpha]^N$ sia contenuto in B. Ponendo $A' = \varphi^{-1}(B')$, si ha che A' è un intorno di \boldsymbol{x} (infatti, l'insieme $B'' =]-\alpha, \alpha[^N$ è aperto e quindi anche $A'' = \varphi^{-1}(B'')$ lo è, e $\boldsymbol{x} \in A'' \subset A'$). Possiamo allora prendere il rettangolo I come nell'enunciato e definire $\sigma(\boldsymbol{u}) = \varphi^{-1}(\boldsymbol{u}, 0)$. Si vede subito che σ è iniettiva e $\sigma(I) = A' \cap \mathcal{M}$. Inoltre, $\varphi_{(1,\dots,M)}(\sigma(\boldsymbol{u})) = \boldsymbol{u}$ per ogni $\boldsymbol{u} \in I$; quindi, $\varphi'_{(1,\dots,M)}(\sigma(\boldsymbol{u})) \cdot \sigma'(\boldsymbol{u})$ è la matrice identità, per cui $\sigma'(\boldsymbol{u})$ deve avere rango M, per ogni $\boldsymbol{u} \in I$.

Nota. Nella dimostrazione abbiamo visto che \mathcal{M} può essere ricoperto da una famiglia di aperti del tipo A'', in modo tale che per ognuno di essi c'è una M-parametrizzazione locale σ , definita su un aperto contenente I e ivi iniettiva, tale che $A'' \cap \mathcal{M} \subset \sigma(I)$. Restringendo eventualmente gli A'', questa proprietà continua a valere prendendo al posto di A'' una palla aperta $B(\boldsymbol{x}, \rho_{\boldsymbol{x}})$. Inoltre, se \boldsymbol{x} è un punto del bordo $\partial \mathcal{M}$, la M-parametrizzazione σ è tale che i punti interni di una sola faccia del rettangolo I vengono mandati su $\partial \mathcal{M}$.

Vogliamo ora definire un'orientazione per \mathcal{M} , che automaticamente ne indurrà una anche per $\partial \mathcal{M}$. Dato $\boldsymbol{x} \in \mathcal{M}$, sia $\sigma : I \to \mathbb{R}^N$ una M-parametrizzazione locale con $\sigma(0) = \boldsymbol{x}$. Siccome $\sigma'(\boldsymbol{u})$ ha rango M, per ogni $\boldsymbol{u} \in I$, abbiamo che i vettori

$$\left[\frac{\partial \sigma}{\partial u_1}(\boldsymbol{u})\,,\,\ldots\,,\frac{\partial \sigma}{\partial u_M}(\boldsymbol{u})\right]$$

costituiscono una base di uno spazio vettoriale di dimensione M che chiameremo spazio tangente a \mathcal{M} nel punto $\sigma(\boldsymbol{u})$ e indicheremo con $\mathcal{T}_{\sigma(\boldsymbol{u})}\mathcal{M}$ (in particolare, se $\boldsymbol{u}=0$, si ha lo spazio tangente $\mathcal{T}_{\boldsymbol{x}}\mathcal{M}$).

Ora, fissato $\boldsymbol{u} \in I$, il punto $\sigma(\boldsymbol{u})$ può appartenere anche alle immagini di altre M-parametrizzazioni locali. Ci può essere una $\tilde{\sigma}: J \to \mathbb{R}^N$ tale che $\sigma(\boldsymbol{u}) = \tilde{\sigma}(\boldsymbol{v})$, per un certo $\boldsymbol{v} \in J$. Sappiamo che si può cambiare l'orientazione di ciascuna di tali $\tilde{\sigma}$ con un semplice cambio di variabile. Possiamo quindi scegliere queste M-parametrizzazioni locali in modo che le basi dello spazio tangente $\mathcal{T}_{\sigma(\boldsymbol{u})}\mathcal{M} = \mathcal{T}_{\tilde{\sigma}(\boldsymbol{v})}\mathcal{M}$ ad esse associate siano orientate concordemente; questo significa che la matrice che permette di passare da una base all'altra ha determinante positivo. Chiameremo **coerente** una tale scelta.

Una scelta coerente delle M-parametrizzazioni locali è quindi sempre possibile localmente, cioè in un intorno del punto \boldsymbol{x} . A noi interessa però poter fare questa scelta globalmente, per **tutte** le possibili M-parametrizzazioni locali di \mathcal{M} . Non sempre questo è possibile. Ad esempio, si pò vedere che ciò non si può fare per il nastro di Möbius, che è una 2-varietà.

Nel caso che sia possibile scegliere tutte le M-parametrizzazioni locali di \mathcal{M} in modo coerente, diremo che \mathcal{M} è **orientabile**. Da ora in poi supporremo sempre che \mathcal{M} sia orientabile e che tutte le M-parametrizzazioni locali siano state scelte in modo coerente. Diremo in questo caso che \mathcal{M} è stata **orientata**.

Una volta orientata \mathcal{M} , vediamo ora come si può definire, a partire da questa, un'orientazione su $\partial \mathcal{M}$. Dato $\boldsymbol{x} \in \partial \mathcal{M}$, sia $\sigma: I \to \mathbb{R}^N$ una M-parametrizzazione locale con $\sigma(0) = \boldsymbol{x}$; ricordiamo che in questo caso I è il rettangolo $[-\alpha, \alpha]^{M-1} \times [0, \alpha]$. Essendo $\partial \mathcal{M}$ una (M-1)-varietà, lo spazio vettoriale tangente $\mathcal{T}_{\boldsymbol{x}}\partial \mathcal{M}$ ha dimensione M-1 ed è un sottospazio di $\mathcal{T}_{\boldsymbol{x}}\mathcal{M}$, che ha dimensione M. Esistono quindi due versori in $\mathcal{T}_{\boldsymbol{x}}\mathcal{M}$ ortogonali a $\mathcal{T}_{\boldsymbol{x}}\partial \mathcal{M}$. Indicheremo con $\nu(\boldsymbol{x})$ quello dei due che si ottiene come derivata direzionale $\frac{\partial \sigma}{\partial v}(0) = d\sigma(0)\boldsymbol{v}$, per un certo $\boldsymbol{v} = (v_1, ..., v_M)$ con $v_M < 0$. A questo punto, scegliamo una base $[v^{(1)}(\boldsymbol{x}), ..., v^{(M-1)}(\boldsymbol{x})]$ in $\mathcal{T}_{\boldsymbol{x}}\partial \mathcal{M}$ tale che $[\nu(\boldsymbol{x}), v^{(1)}(\boldsymbol{x}), ..., v^{(M-1)}(\boldsymbol{x})]$ sia una base di $\mathcal{T}_{\boldsymbol{x}}\mathcal{M}$ orientata concordemente con quella già scelta in questo spazio. Procedendo in questo modo per ogni \boldsymbol{x} , si può vedere che $\partial \mathcal{M}$ risulta orientata, e si dice che a $\partial \mathcal{M}$ è stata assegnata l'**orientazione indotta** da quella di \mathcal{M} .

Supporremo ora che \mathcal{M} , oltre ad essere orientata, sia **compatta**. Data una M-forma differenziale $\omega: U \to \Omega_M(\mathbb{R}^N)$, con U contenente \mathcal{M} , vorremmo definire cosa si intende per integrale di ω su \mathcal{M} .

Nel caso in cui $\omega_{|\mathcal{M}}$, la restrizione di ω all'insieme \mathcal{M} , sia nulla al di fuori del supporto di una singola M-parametrizzazione locale $\sigma:I\to\mathbb{R}^N$, poniamo semplicemente

$$\int_{\mathcal{M}} \omega = \int_{\sigma} \omega.$$

In generale, abbiamo visto che \mathcal{M} si può ricoprire con degli aperti A'' di \mathbb{R}^N , che possiamo supporre essere palle aperte, per ognuno dei quali c'è una M-parametrizzazione locale iniettiva $\sigma: I \to \mathbb{R}^N$ con $A'' \cap \mathcal{M} \subset \sigma(I)$. Essendo \mathcal{M} compatta, esiste un sottoricoprimento finito: sia esso dato da $A_1'', ..., A_n''$. L'insieme aperto $V = A_1'' \cup ... \cup A_n''$ contiene quindi \mathcal{M} . Abbiamo bisogno del seguente risultato.

Teorema. Esistono delle funzioni $\phi_1, ..., \phi_n : V \to \mathbb{R}$, di classe C^{∞} , tali che, per ogni \boldsymbol{x} e ogni $k \in \{1, ..., n\}$, si ha:

(i)
$$0 \leq \phi_k(\boldsymbol{x}) \leq 1$$
,

(ii)
$$\boldsymbol{x} \notin A_k'' \Rightarrow \phi_k(\boldsymbol{x}) = 0$$
,

e, per
$$\boldsymbol{x} \in \mathcal{M}$$
,
(iii) $\sum_{k=1}^{n} \phi_k(\boldsymbol{x}) = 1$.

Dimostrazione. Sia $A_k'' = B(\boldsymbol{x}_k, \rho_{\boldsymbol{x}_k})$, con k = 1, ..., n. Consideriamo la funzione $f : \mathbb{R} \to \mathbb{R}$ definita da

$$f(u) = \begin{cases} \exp\left(\frac{1}{u^2 - 1}\right) & \text{se } |u| < 1, \\ 0 & \text{se } |u| \ge 1, \end{cases}$$

e poniamo

$$\psi_k(\boldsymbol{x}) = f\left(\frac{||\boldsymbol{x} - \boldsymbol{x}_k||}{\rho_k}\right).$$

Allora, per ogni $\boldsymbol{x} \in V$, si ha che $\psi_1(\boldsymbol{x}) + ... + \psi_n(\boldsymbol{x}) > 0$ e possiamo definire

$$\phi_k(\boldsymbol{x}) = \frac{\psi_k(\boldsymbol{x})}{\psi_1(\boldsymbol{x}) + ... + \psi_n(\boldsymbol{x})}$$

Si può allora verificare che valgono le proprietà richieste.

Le funzioni $\phi_1, ..., \phi_n$ si dicono essere una **partizione dell'unità**. Essendo ognuna delle $\phi_k \cdot \omega_{|\mathcal{M}}$ nulla al di fuori del supporto di una singola M-parametrizzazione locale, possiamo definire l'integrale di ω su \mathcal{M} in questo modo:

$$\int_{\mathcal{M}} \omega = \sum_{k=1}^{n} \int_{\mathcal{M}} \phi_k \cdot \omega.$$

Si può dimostrare che tale definizione non dipende né dalla scelta (coerente) delle singole M-parametrizzazioni locali, né dalla particolare partizione dell'unità.

Possiamo finalmente enunciare l'analogo del teorema di Stokes-Cartan.

Teorema. Se $\omega: U \to \Omega_M(\mathbb{R}^N)$ è una M-forma differenziale di classe C^1 e \mathcal{M} una (M+1)-varietà compatta orientata contenuta in U, si ha:

$$\int_{\mathcal{M}} d\omega = \int_{\partial \mathcal{M}} \omega$$

(purché su $\partial \mathcal{M}$ si consideri l'orientazione indotta).

Dimostrazione. Supponiamo dapprima che ci sia una M-parametrizzazione locale $\sigma:I\to\mathbb{R}^N$ tale che

$$\sigma(I) \cap \partial \mathcal{M} = \emptyset$$

e $\omega_{|\mathcal{M}}$ sia nulla al di fuori di $\sigma(I)$. Per l'iniettività di σ e la continuità di ω , si ha che ω si annulla in tutti i punti del supporto di $\partial \sigma$, per cui

$$\int_{\mathcal{M}} d\omega = \int_{\sigma} d\omega = \int_{\partial \sigma} \omega = 0.$$

D'altra parte, siccome ω è nulla su $\partial \mathcal{M}$,

$$\int_{\partial \mathcal{M}} \omega = 0.$$

Quindi, in questo caso l'uguaglianza è verificata.

Supponiamo ora che ci sia una M-parametrizzazione locale $\sigma: I \to \mathbb{R}^N$ che mandi i punti interni di un'unica faccia I_j di I sul bordo di \mathcal{M} e che $\omega_{|\mathcal{M}}$ sia nulla al di fuori di $\sigma(I)$. Allora si ha sempre

$$\int_{\mathcal{M}} d\omega = \int_{\sigma} d\omega = \int_{\partial \sigma} \omega \,,$$

e siccome ω è nulla sul supporto di $\partial \sigma$ tranne che per i punti provenienti da I_j , i quali appartengono a $\partial \mathcal{M}$, si ha che

$$\int_{\partial \sigma} \omega = \int_{\partial \mathcal{M}} \omega.$$

Quindi, anche in questo caso l'uguaglianza è verificata.

Consideriamo ora il caso generale. Con la partizione dell'unità trovata sopra, ognuna delle $\phi_k \cdot \omega$ è di uno dei due tipi appena considerati. Essendo

$$\sum_{k=1}^{n} d\phi_k \wedge \omega = d\left(\sum_{k=1}^{n} \phi_k\right) \wedge \omega = d(1) \wedge \omega = 0,$$

si ha dunque

$$\int_{\mathcal{M}} d\omega = \sum_{k=1}^{n} \int_{\mathcal{M}} \phi_k \cdot d\omega$$

$$= \sum_{k=1}^{n} \int_{\mathcal{M}} d\phi_k \wedge \omega + \sum_{k=1}^{n} \int_{\mathcal{M}} \phi_k \cdot d\omega$$

$$= \sum_{k=1}^{n} \int_{\mathcal{M}} d(\phi_k \cdot \omega)$$

$$= \sum_{k=1}^{n} \int_{\partial \mathcal{M}} \phi_k \cdot \omega$$

$$= \int_{\partial \mathcal{M}} \omega.$$