PROVA SCRITTA DI ANALISI MATEMATICA 3 Anno accademico 2019/2020 — CdL MATEMATICA Prima simulazione — 27.12.2019

1. Risolvere il seguente problema:

$$\begin{cases} y''(x) + 5y'(x) + 4y(x) = e^x \\ y(0) = 1, \quad y(1) = 0. \end{cases}$$

Svolgimento. Cerco dapprima le soluzioni dell'equazione omogenea y'' + 5y' + 4y = 0. Il polinomio caratteristico $\lambda^2 + 5\lambda + 4$ ha come radici -1 e -4, per cui le soluzioni sono del tipo

$$y(x) = ae^{-x} + be^{-4x}$$
.

Ora cerco una soluzione particolare dell'equazione $y'' + 5y' + 4y = e^x$.

Primo modo - per simiglianza. La cerco nella forma $y(x) = \alpha e^x$. Facendo i calcoli,

$$y''(x) + 5y'(x) + 4y(x) = \alpha e^x + 5\alpha e^x + 4\alpha e^x = 10\alpha e^x$$

e si vede subito che deve essere $\alpha = \frac{1}{10}$, per cui la soluzione è

$$y(x) = \frac{1}{10} e^x.$$

Secondo modo - variazione delle costanti. Cerco una soluzione della forma

$$y(x) = a(x)e^{-x} + b(x)e^{-4x}$$
.

Vedo che

$$y'(x) = a'(x)e^{-x} - a(x)e^{-x} + b'(x)e^{-4x} - 4b(x)e^{-4x}.$$

Impongo che sia

$$a'(x)e^{-x} + b'(x)e^{-4x} = 0.$$

Allora

$$y''(x) = -a'(x)e^{-x} + a(x)e^{x} - 4b'(x)e^{-4x} + 16b(x)e^{-4x},$$

e sostituendo nell'equazione differenziale trovo che deve essere

$$[-a'(x)e^{-x} + a(x)e^{x} - 4b'(x)e^{-4x} + 16b(x)e^{-4x}] + 5[-a(x)e^{-x} - 4b(x)e^{-4x}] + 4[a(x)e^{-x} + b(x)e^{-4x}] = e^{x},$$

ossia, semplificando,

$$-a'(x)e^{-x} - 4b'(x)e^{-4x} = e^x.$$

Pertanto, y(x) sarà soluzione di $y'' + 5y' + 4y = e^x$ se

$$\left\{ \begin{array}{l} a'(x)e^{-x} + b'(x)e^{-4x} = 0, \\ -a'(x)e^{-x} - 4b'(x)e^{-4x} = e^x. \end{array} \right.$$

Risolvendo il sistema, trovo $a'(x) = \frac{1}{3}e^{2x}$, $b'(x) = -\frac{1}{3}e^{5x}$, da cui

$$a(x) = \frac{1}{6}e^{2x}, \qquad b(x) = -\frac{1}{15}e^{5x}.$$

Una soluzione particolare è quindi

$$y(x) = \left[\frac{1}{6}e^{2x}\right]e^{-x} + \left[-\frac{1}{15}e^{5x}\right]e^{-4x} = \frac{1}{10}e^{x}.$$

Ora imponiamo le condizioni iniziali e troviamo

$$a = \frac{9 + e^5}{10(1 - e^3)}, \qquad b = -\frac{9e^3 + e^5}{10(1 - e^3)}$$

La soluzione del problema dato è pertanto

$$y(x) = \frac{9 + e^5}{10(1 - e^3)} e^{-x} - \frac{9e^3 + e^5}{10(1 - e^3)} e^{-4x} + \frac{1}{10} e^x.$$

2. Calcolare il volume del solido E così definito:

$$E = \{(x, y, z) \in \mathbb{R}^3 : |z| \le x^2 + y^2 + 1 \le 5\}.$$

Svolgimento. Passo alle coordinate cilindriche, imponendo

$$x = \rho \cos \theta$$
, $y = \rho \sin \theta$,

per cui

$$|E| = \int_0^{2\pi} \left(\int_0^2 \left(\int_{-(\rho^2 + 1)}^{\rho^2 + 1} \rho \, dz \right) d\rho \right) d\theta$$
$$= 2\pi \int_0^2 2\rho(\rho^2 + 1) \, d\rho$$
$$= 2\pi \left[\frac{(\rho^2 + 1)^2}{2} \right]_0^2 = \pi(25 - 1) = 24\pi.$$

3. Trovare una parametrizzazione $\sigma: I \to \mathbb{R}^3$ dell'insieme

$$\mathcal{M} = \{(x, y, z) \in \mathbb{R}^3 : x + y = z^2 \le 9, \ x - 1 \le y \le x + 1\},$$

dove I è un rettangolo di \mathbb{R}^2 . Calcolare quindi l'area di tale superficie.

Svolgimento. Definisco u = z e v = y - x, per cui

$$x = \frac{u^2 - v}{2}$$
, $y = v + \frac{u^2 - v}{2} = \frac{u^2 + v}{2}$.

Allora trovo $\sigma:[-3,3]\times[-1,1]\to\mathbb{R}^3,$ definita da

$$\sigma(u,v) = \left(\frac{u^2 - v}{2}, \frac{u^2 + v}{2}, u\right).$$

Ora calcolo

$$\frac{\partial \sigma}{\partial u}(u,v) = (u,u,1), \qquad \frac{\partial \sigma}{\partial v}(u,v) = (-\frac{1}{2},\frac{1}{2},0),$$
$$\frac{\partial \sigma}{\partial u}(u,v) \times \frac{\partial \sigma}{\partial v}(u,v) = (-\frac{1}{2},-\frac{1}{2},u).$$

Pertanto, l'area della superficie σ è uguale a

$$\begin{split} \int_{[-3,3]\times[-1,1]} \left\| \frac{\partial \sigma}{\partial u}(u,v) \times \frac{\partial \sigma}{\partial v}(u,v) \right\| \, du \, dv &= \int_{-3}^{3} \left(\int_{-1}^{1} \sqrt{\frac{1}{2} + u^{2}} \, dv \right) du \\ &= \sqrt{2} \int_{-3}^{3} \sqrt{1 + 2u^{2}} \, du \\ &= \left[\frac{1}{\sqrt{2}} u \sqrt{1 + 2u^{2}} + \frac{1}{2} \sinh^{-1}(\sqrt{2}u) \right]_{-3}^{3} \\ &= 3\sqrt{38} + \sinh^{-1}(3\sqrt{2}) \, . \end{split}$$

4. Sia $\omega: \mathbb{R}^3 \to \Omega_1(\mathbb{R}^3)$ la 1-forma differenziale definita da

$$\omega(x_1, x_2, x_3) = x_2 x_3 \cos(x_1 x_3) dx_1 + \sin(x_1 x_3) dx_2 + x_1 x_2 \cos(x_1 x_3) dx_3.$$

Trovare una 0-forma differenziale $\tilde{\omega}$ tale che $d\tilde{\omega} = \omega$. Calcolare quindi $\int_{\gamma} \omega$, dove $\gamma : [0,1] \to \mathbb{R}^3$ è la curva definita da

$$\gamma(t) = (t^3, t^2, t).$$

Svolgimento. La forma differenziale ω determina il campo di vettori $F: \mathbb{R}^3 \to \mathbb{R}^3$ definito da

$$F(x_1, x_2, x_3) = (x_2 x_3 \cos(x_1 x_3), \sin(x_1 x_3), x_1 x_2 \cos(x_1 x_3)).$$

Facendo i conti, si verifica che rot $F(x_1, x_2, x_3) = (0, 0, 0)$ per ogni $(x_1, x_2, x_3) \in \mathbb{R}^3$, per cui F è irrotazionale. Pertanto, ω è chiusa. Per il teorema di Poincaré, essendo il suo dominio stellato, essa è anche aperta. In altre parole, F è

conservativo, cioè esiste una funzione $f: \mathbb{R}^3 \to \mathbb{R}$ tale che F = grad f. Per determinare tale funzione, vediamo che deve essere

$$\frac{\partial f}{\partial x_1}(x_1, x_2, x_3) = x_2 x_3 \cos(x_1 x_3),
\frac{\partial f}{\partial x_2}(x_1, x_2, x_3) = \sin(x_1 x_3),
\frac{\partial f}{\partial x_3}(x_1, x_2, x_3) = x_1 x_2 \cos(x_1 x_3).$$

Dalla seconda, vediamo che $f(x_1, x_2, x_3) = x_2 \sin(x_1 x_3) + g(x_1, x_3)$, per una certa funzione $g: \mathbb{R}^2 \to \mathbb{R}$. Derivando rispetto a x_1 e rispetto a x_3 , rispettivamente, si vede che $\frac{\partial g}{\partial x_1}(x_1, x_3) = \frac{\partial g}{\partial x_3}(x_1, x_3) = 0$, per ogni $(x_1, x_3) \in \mathbb{R}^2$. Ne segue che g deve essere costante, ossia

$$f(x_1, x_2, x_3) = x_2 \sin(x_1 x_3) + c$$
 $(c \in \mathbb{R})$.

A questo punto risulta agevole calcolare

$$\int_{\gamma} F \cdot d\ell = f(\gamma(1)) - f(\gamma(0)) = f(1, 1, 1) - f(0, 0, 0) = \sin(1).$$