

TRASCRITTOMICA Schedule lectures – AA 2019/2020

The human genome is highly structured

The human genome:

- 22 autosome paires
- 2 Sex chromosome pairs (XX o XY) Total haploid genome 3x10⁹

The human genome is highly structured

136 million base pairs Sex-reversal, autosomal Ovarian cancer Hyperglycinemia, nonketotic Albinism brown and rufous ppression of tumorigenicity, pancreas Interferon, alpha, deficiency Diaphyseal medullary stenosis Leukemia Melanoma Cyclin-dependent kinase inhibitor Trichoepithelioma, multiple familial Venous malformations, multiple cutaneous and mucosal Immotile cilia syndrome Arthrogryposis multiplex congenita, distal, type 1 Cartilage-hair hypoplasia Galactosemia X-ray repair Acromesomelic dysplasia, Maroteaux type Fanconi anemia, complementation group G Myopathy, inclusion body, autosomal recessive Hypomagnesemia with secondary hypocalcemia Hyperoxaluria, primary, type II Friedreich ataxia Cardiomyopathy Geniospasm Deafness, autosomal recessive Bleeding diathesis Choreoacanthocytosis Hemophagocytic lymphohistiocytosis, familial Prostate-specific gene Chondrosarcoma, extraskeletal myxoid Bamforth-Lazarus syndrome Pseudohermaphroditism, male, with gynecomastia Tyrosine kinase-like orphan receptor Brachydactyly, type B1 HDL deficiency, familial Nephronophthisis (infantile) Fanconi anemia, type C Neuropathy, sensory and autonomic, type 1 Xeroderma pigmentosum Fructose intolerance Epithelioma, self-healing, squamous Basal cell carcinoma, sporadic Leukemia, T-cell acute lymphoblastic Muscular dystrophy, Fukuyama congenital Muscular dystrophy, limb-girdle, type 2H Basal cell nevus syndrome Dysautonomia (Riley-Day syndrome) Sex reversal, XY, with adrenal failure Leukemia transcription factor, pre-B-cell Esophageal cancer Endotoxin hyporesponsiveness Porphyria, acute hepatic Amyotrophic lateral sclerosis, juvenile dominant Lead poisoning, susceptibility to Berardinelli-Seip congenital lipodystrophy Citrullinemia Dystonia, torsion, autosomal dominant Dopamine-beta-hydroxylase deficiency Lethal congenital contracture syndrome Amyloidosis, Finnish type Leukemia, acute undifferentiated Microcephaly, primary autosomal recessive Tuberous sclerosis Leigh syndrome Hemolytic anemia Loukomia Telangiectasia, hereditary hemorrhagic Nail-patella syndrome Ehlers-Danlos syndrome, types I and II Prostaglandin D2 synthase (brain) Joubert syndrome Pituitary hormone deficiency Leukemia, T-cell acute lymphoblastic

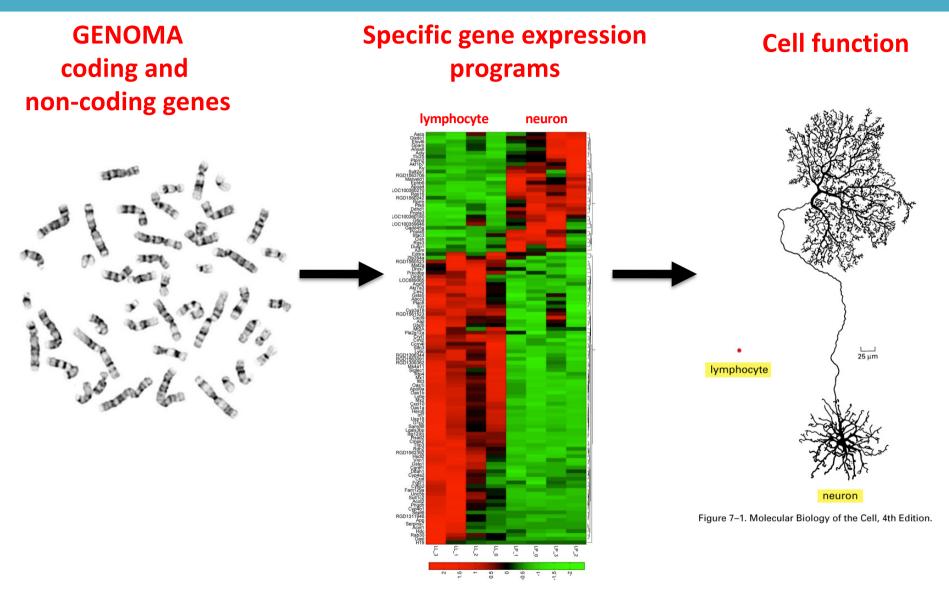
Haploid human genome: 3.2 x 10⁹ bp (3200000000 bp)

- → 22 autosomes
- → 2 sex chromosomes (X ed Y)
- → 19797 protein coding genes (ca 20.000)

Chromosome dimensions: 45-275 Mb;

→ 3,2 x 10⁹ bp: haploid chromosome set

Usage of genetic information:


5.000-10.000 geni espressi da ogni cellula

100.000 different proteins (post- translational modifactions per cell)

108 total protein speecies

ENORMOUSE COMPLEXITY

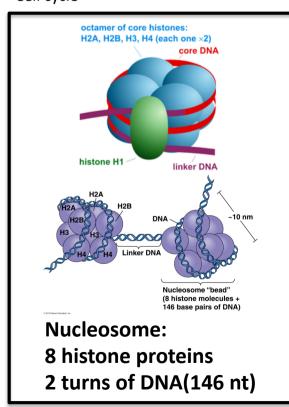
The human genome encodes information that underlies cell specification in multi-cellular organisms

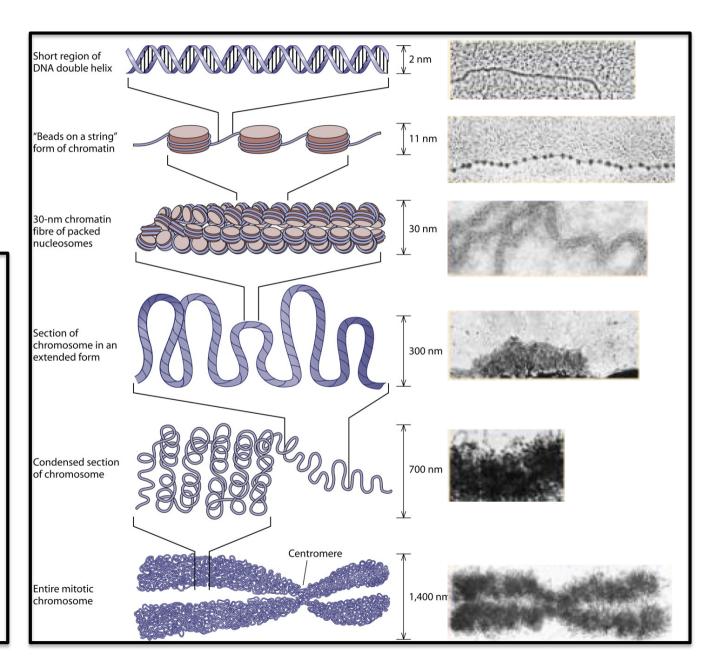
Genetic information must be highly organized

The human genome is highly structured

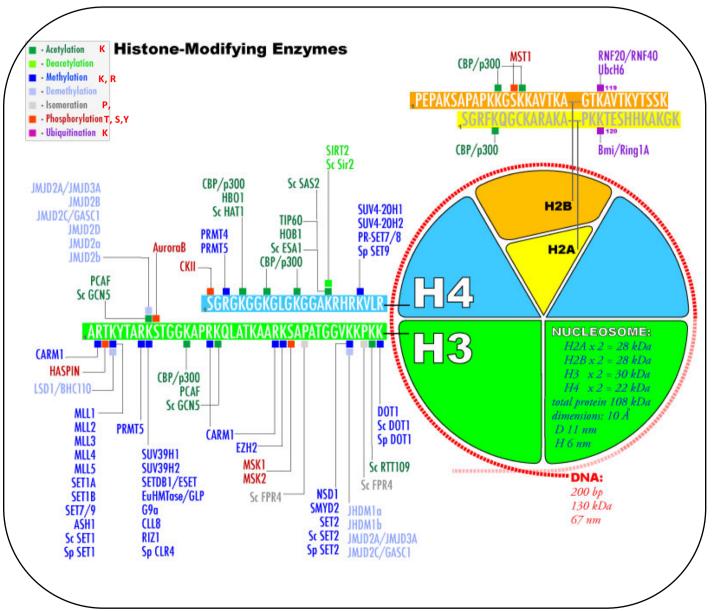
Chromatin: DNA + protein in nucleus Organisation of genetic information

Function:


Packaging of DNA

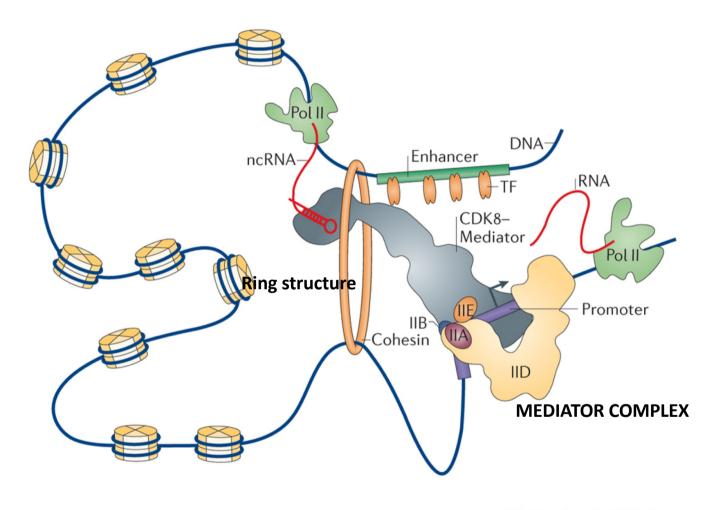

Compaction of DNA

Definition of reagions of gene


Expression (euchromatin) or repression (heterochromatin)

- -Increasing stability of DNA
- -Prevention of damage
- -Control of replication, gene expression
- -Cell cycle

POST-TRANSLATIONAL HISTONE MODIFICATIONS

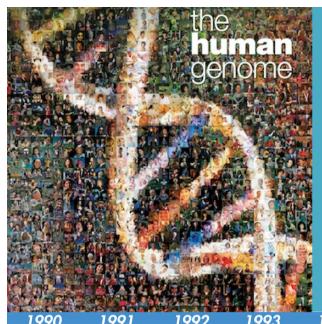

Gene expression
Control by posttranslational
histone modifications

→ Activate transcription (H3K9 acetylation, ...) → Repress transcription (H3K27 trimethylation) can be cell type specific

Sum of all modifications = HISTONE CODE

Specific histone +modifications at promoters Enhancers, along active Genes, site of termination

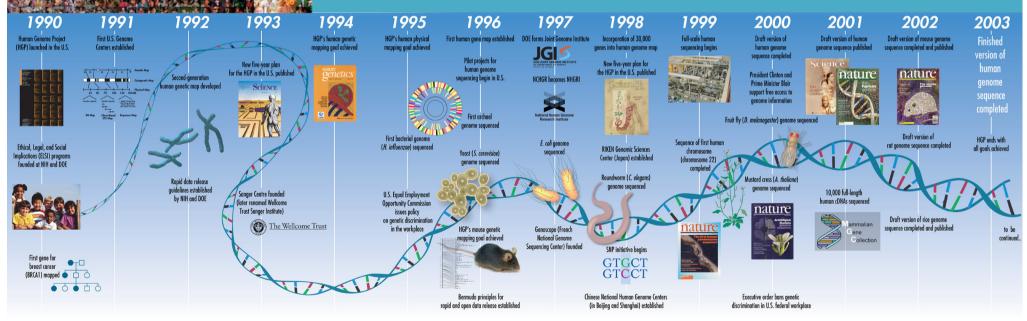
The human genome is highly structured

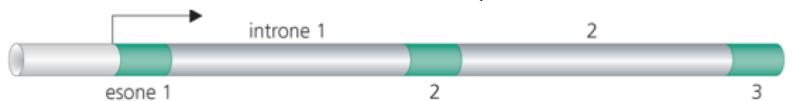

Specific transcription factors can bind promoters and enhancers

RNAs can support the use enhancers

Enhancers are brought In vicinity to promoters and other gene regulatory Elements

→ SPECIFIC 3 DIMENTSIONAL STRUCTURE


Nature Reviews | Molecular Cell Biology


THE GENOME OF MANY ORGANSIMS IS ALREADY SEQUENCED

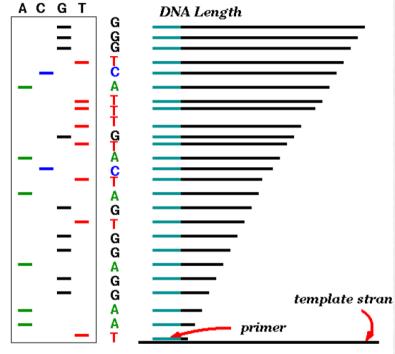
THE HUMAN GENOME PROJECT

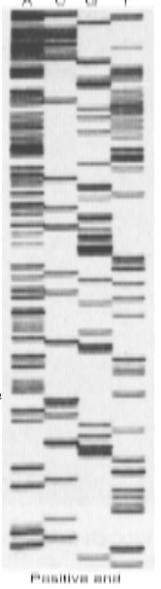
SEQEUNCING GENOMIC DNA

ISOLATE LARGE PIECES OF DNA AND SEQEUNCE!

Dideoxy (Sanger) sequencing

Principle:


Gel electrophoresis: discrimination of 1 bp: size range below 300 bp in the lab


DNA template + 32P-labelled sequencing oligo

4 parallel sequencing reactions:

- 1. dATP, dCTP, dGTP, dTTP + ddATP (low conc)
- 2. dATP, dCTP, dGTP, dTTP + ddCTP (low conc)
- 3. dATP, dCTP, dGTP, dTTP + ddGTP (low conc)
- 4. dATP, dCTP, dGTP, dTTP + ddTTP (low conc)

Synthesis: starts with a32-P labeled DNA oligo stops after incorporating a (marked) ddNTP

Frederic Sanger Nobel Prize 1980

Dideoxy (Sanger) sequencing with Dye termination

Principle:

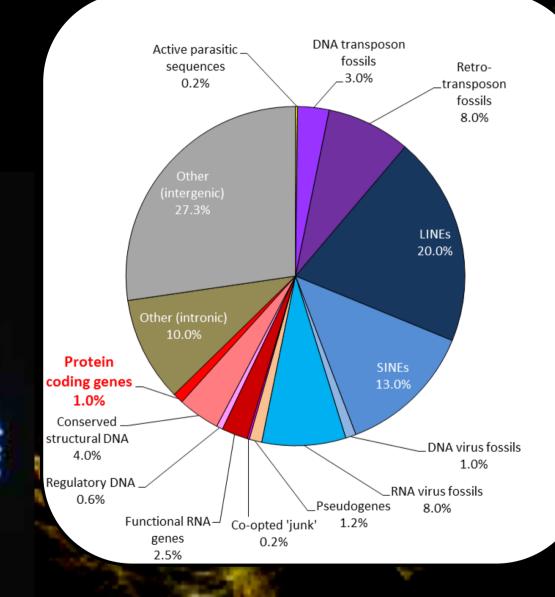

Gel electrophoresis: discrimination of 1 bp: size range below ~1000 bp

DNA template + sequencing oligo

1 sequencing reaction:

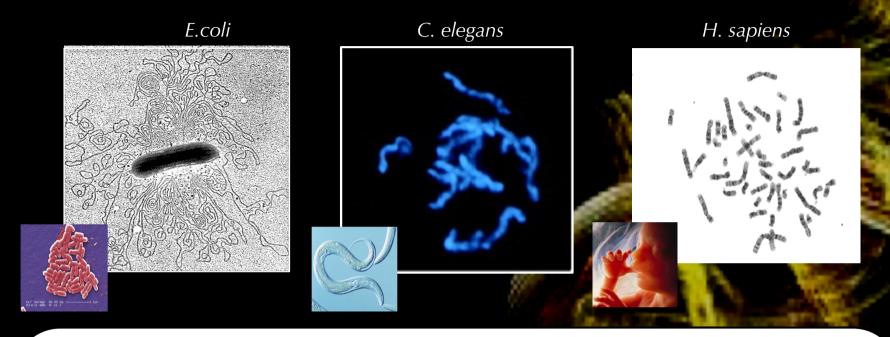
1. dATP, dCTP, dGTP, dTTP + ddATP-Dye1, ddCTP-Dye2, + ddGTP-Dye3+ddTTP-Dye4 (low conc)

Synthesis: starts with DNA oligo stops after incorporating a (marked) ddNTP



98% OF GENOMIC DNA DOES NOT ENCODE FOR PROTEINS

ca 50% transposable elements


1-2% protein coding genes

0.5-1% pseudogenes

Almost all genomic sequences are subjected to transcription

THE NUMBER OF PROTEIN CODING GENES IS RELATVLY LOW

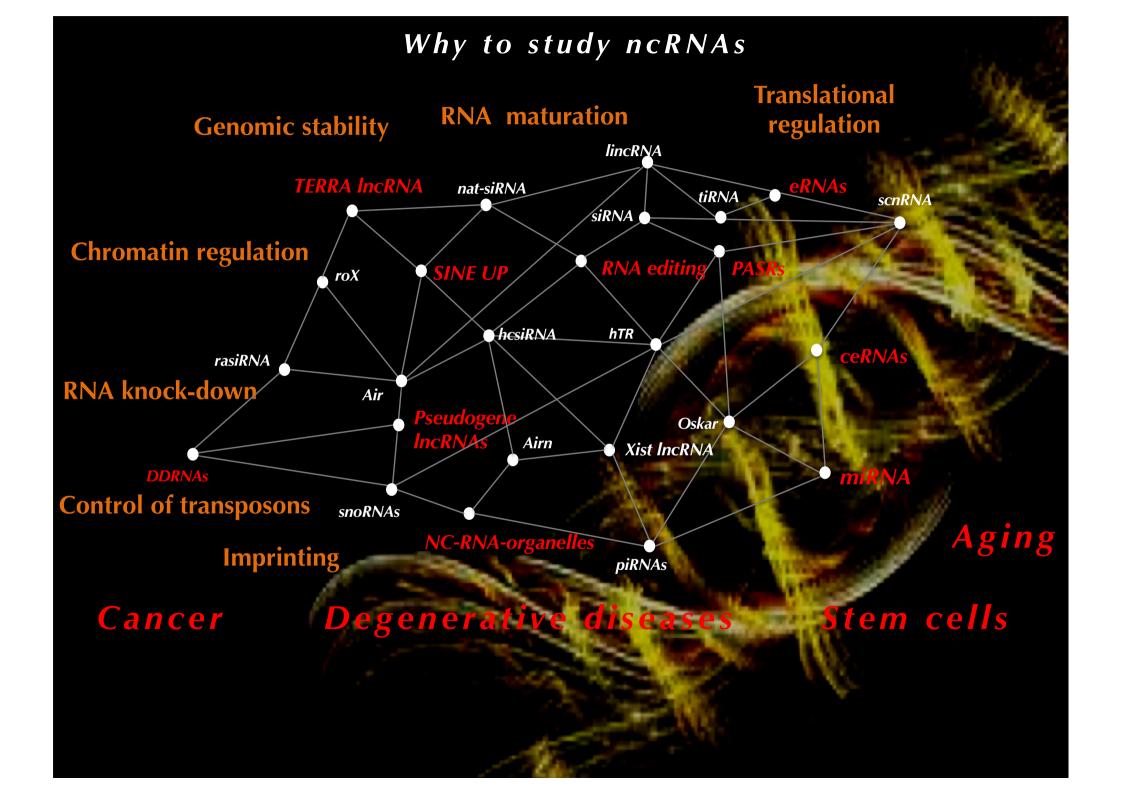
 Genome
 5x106 bp
 1x108 bp
 3x109 bp

 Chromosomes
 1
 6
 23

Coding genes 6692 20541 21995

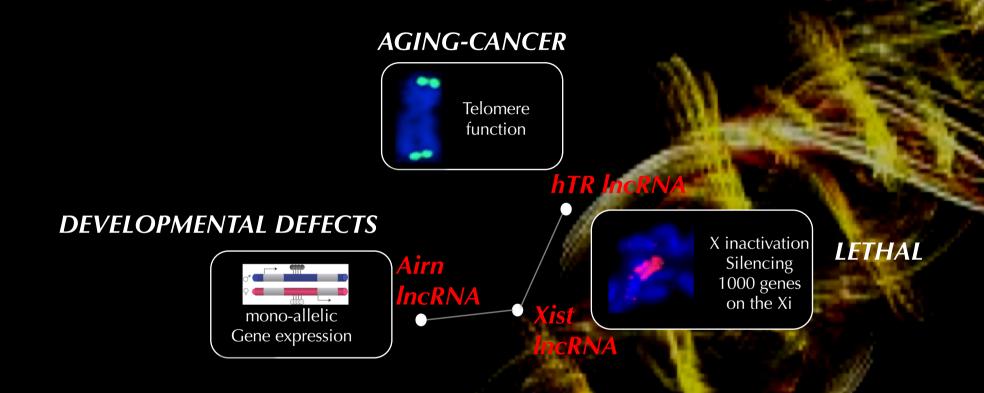
ncDNA

non-coding RNA genes


miRNAs

pseudogenes

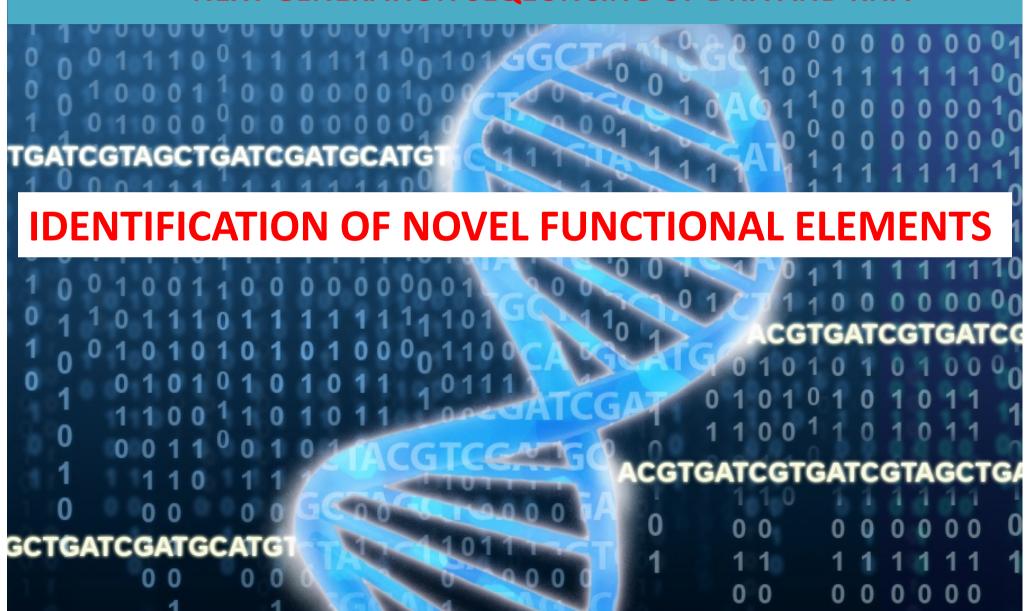
????????????


ENSEMBL 11/2014

WHAT INFORMATION INCREASES ORGNAISMAL COMPLEXITY ncDNA derived information?

Why to study ncRNAs

1. There are things proteins cannot do



2. they have high relevance for development and pathology

Classic Sanger sequencing is inefficient and slow:

→ Establishement of massive parallel sequencing

NEXT GENERATION SEQEUNCING OF DNA AND RNA

NEXT GENERATION SEQEUNCING OF DNA AND RNA

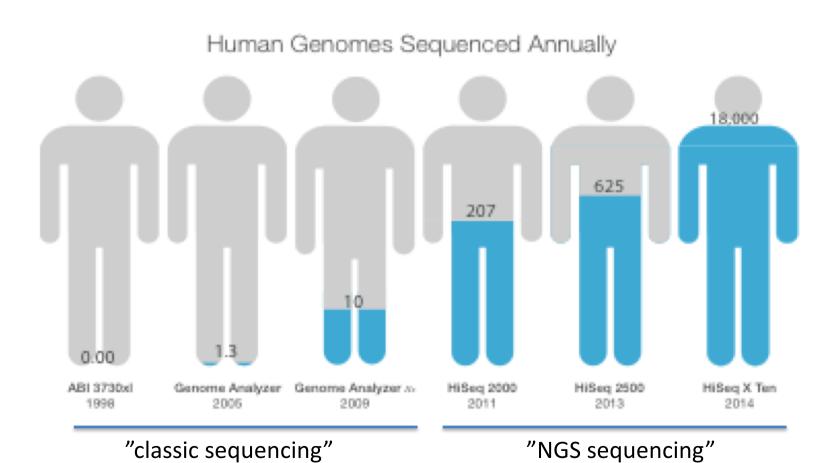
→IDENTIFICATION OF ALL GENES → IDENTIFICATION OF ALL CODING AND NON-CODING TRANSCRIPTS →IDENTIFICATION OF REGUALTORY ELEMENTS

HOW CAN "NEW" = *FUNCTIONAL ELEMENTS* - (GENES/TRANSCRIPTS) BE DEFINED?

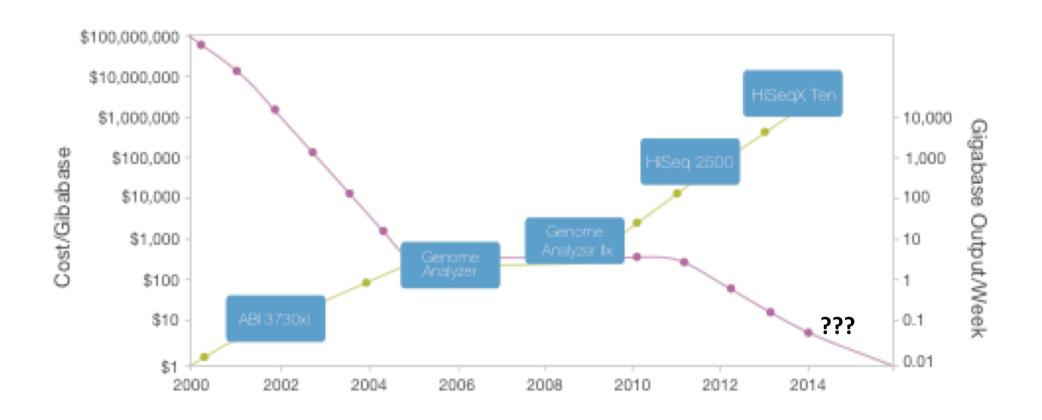
- DNA Sequencing (Human genome project, DNA-Seq)
- 2. Landscape of transcription: Sequencing of RNA (total RNA, small/large RNA, CAGE)
- 3. DNA methylation: High representation reduced representation bisulfite sequencing (RRBS)
- 4. Local chromatin structure:
- determination of DNAsel hypersensitivity (DnaseSeq)
- nucelosome occupancy (MNase-seq)
- ChIP-seq (chromatin modifications, transcription factors)
- 3 Dimensional space interaction

GENE REGUALTION AS INDICATOR OF POSSIBLE FUNCTIONAL RELEVANCE OF IncRNA FUNCTION

RNA


Promoter

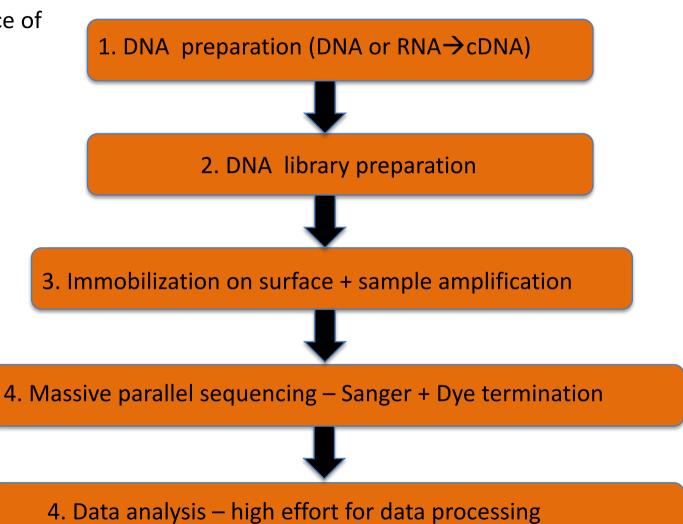
Enhancer


IIB--Cohesin Mediator

1990: TO UNDERSTAND LIFE WE NEED TO IDENTIFY ALL RELEVANT GENETIC INFORMATION → LETS SEQUENCE THE GENOME

2003: HUMAN GENOME SEQUENCED

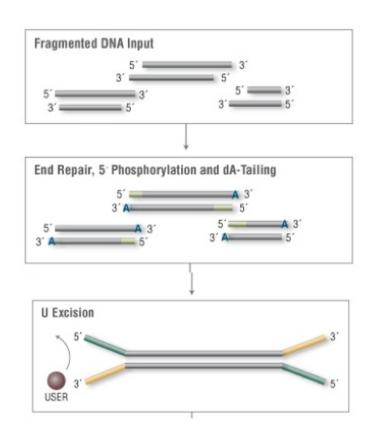
PROGRESS IN SEQUENCING POWER

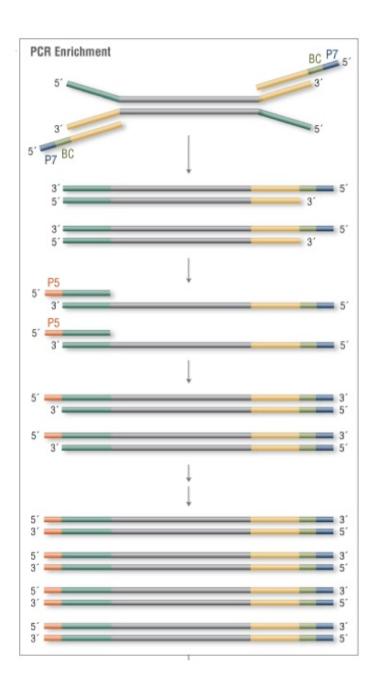

BIOINFORMATICS EFFORT
= PROCESING OF DATA

Next generation sequencing:

MASSIVE PARALLEL SEQUENCING (ILLUMINA)

DNA SEQ – genome sequence of many organisms RNA SEQ – all RNAs of many organisms – also at low anbunance


ChiP seq.....

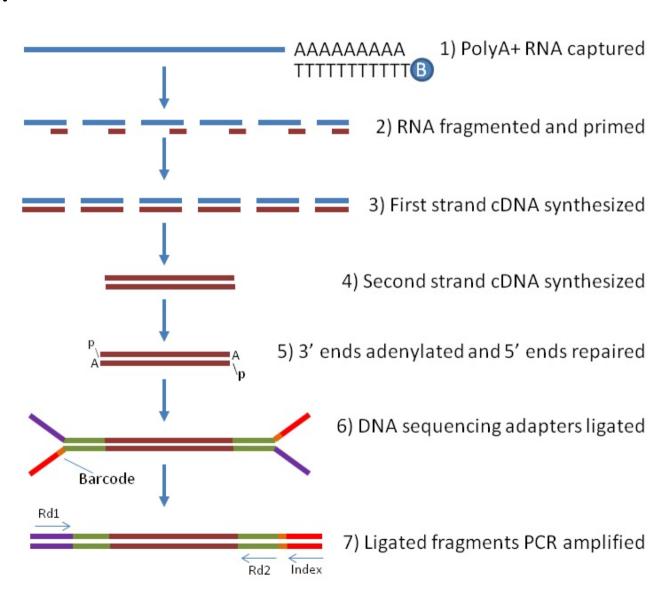


Illumina: massive parallel sequencing Genomic DNA

Generation of DNA libraries:

Application: ChIP Seq Genome Seq Methyl Seq

Illumina: massive parallel sequencing: ALL TRANSCRIPTS


Generation of RNA libraries:

Application:

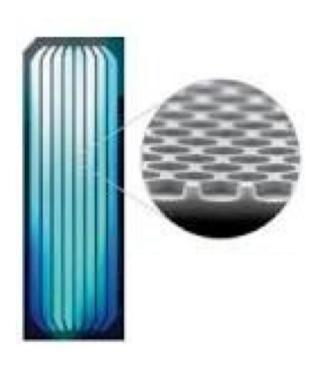
RNA Seq

Important:

Involves cDNA synthesis

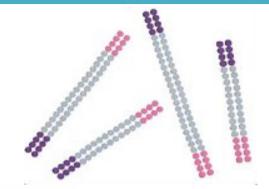
Illumina Massively Parallel Sequencing

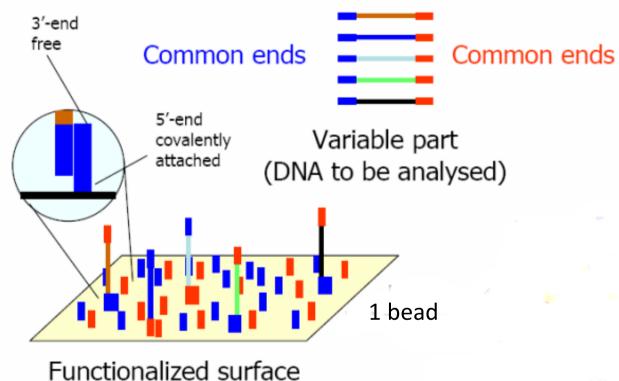
https://www.illumina.com/company/video-hub/pfZp5Vgsbw0.html


HiSeq 2000

The heart of the Illumina Massive Parallel Sequencer is the "FLOW-CELL". A surface with millions of small wells that allow thousands of Sanger-sequencing reaction In parallel = "massive parallel sequencing". In each well a SINGLE MOLECULE of DNA Is amplified and sequenced

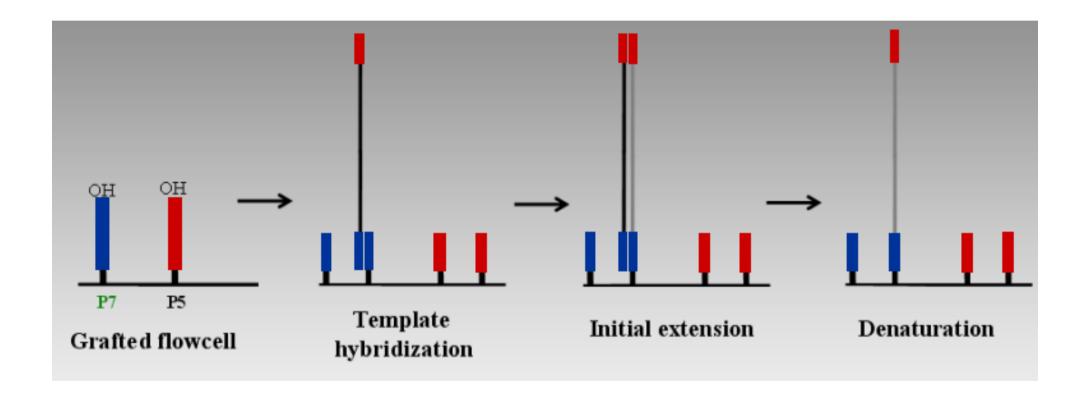
Illumina offers the most potent massive sequencing instruments – leader on the market

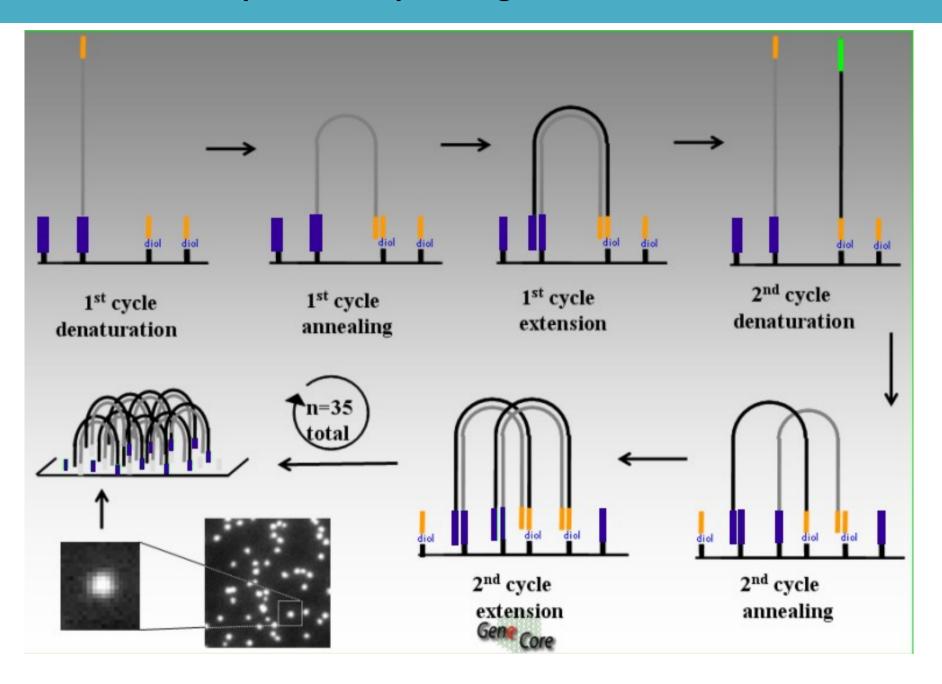

Flow cell contains surface with millions of wells


→ Each well contains beads mounted with 2 species of oligonucleotides that hybridize with adaptor oligos of DNA library

→DNA library will be loaded onto the flow cell in a determined concentration:

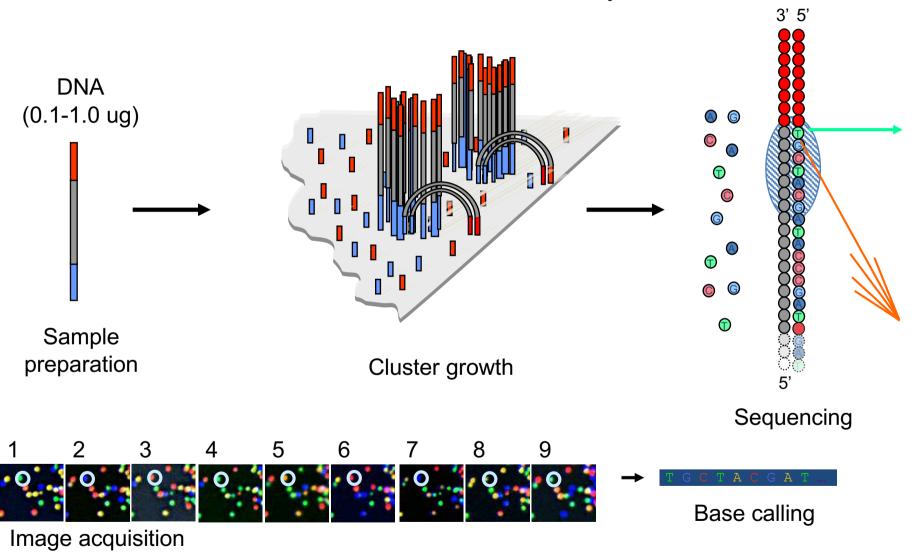
ONLY ONE MOLECULE PER WELL


- -making DNA library (~300bp fragments)
- -ligation of adapters A and B to the fragments

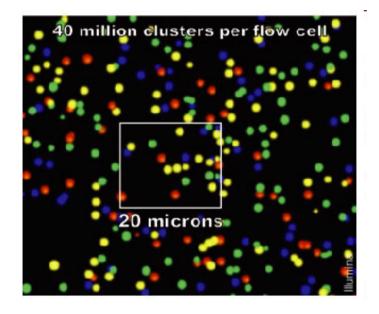


- -binding the ssDNA randomly to the flow cell surface
- -complementary primers are ligated to the surface

Bridge amplification: initiation

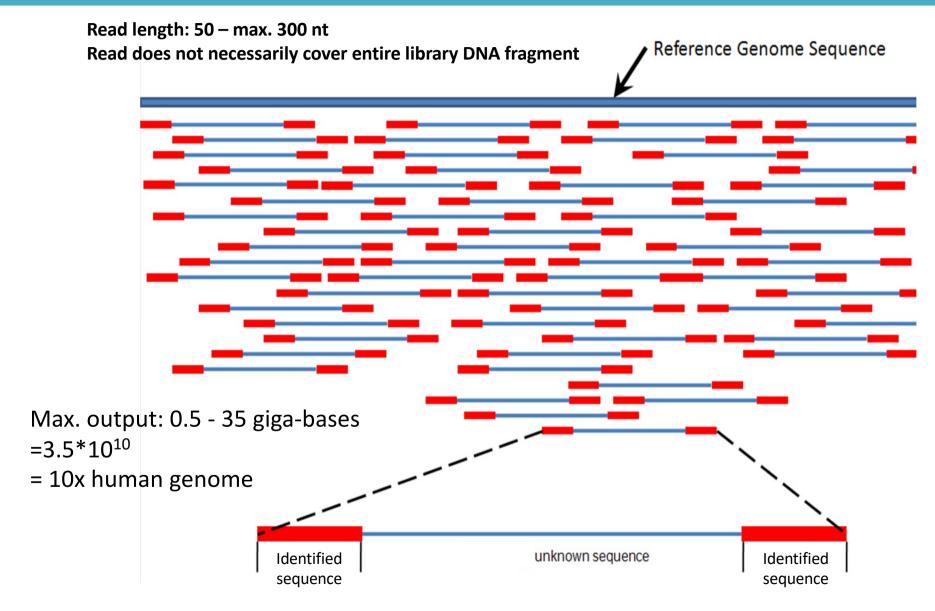


On the surface: complementary oligos

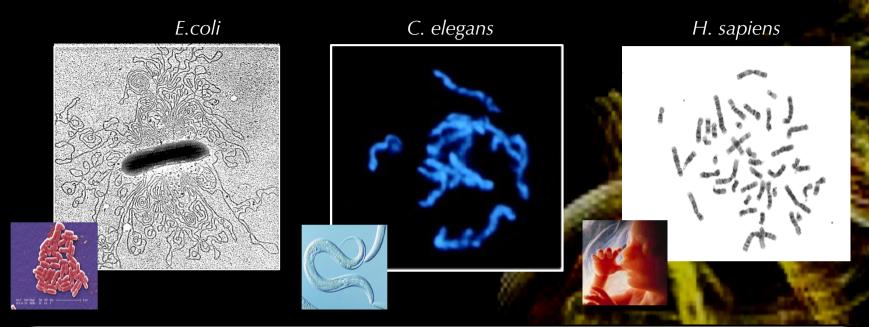

Illumina Sequencing Technology

Robust Reversible Terminator Chemistry Foundation

sequencing by synthesis:


"reverible terminator" nucleotides
blocked + fluorescently labeled

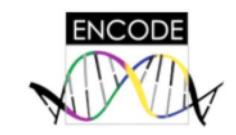
- 1. Synthesis = incorporation of fluorescent nucleotide: blocking synthesis
- 2. dye cleavage + elimination
- 3. wash step
- 4. Scanning of fluorescent signal
- 1. Synthesis = incorporation of fluorescent nucleotide: blocking synthesis


READ LENGTH: ca: 150nt from each primer (2x150nt = 300nt)

Data analysis: obtained sequence reads are aligned along genomic DNA sequence → high number of reads necessary to obtain full sequence coverage

Sequence derived from one amplified cluster

Reason 1: The non-coding genome (r) evolution

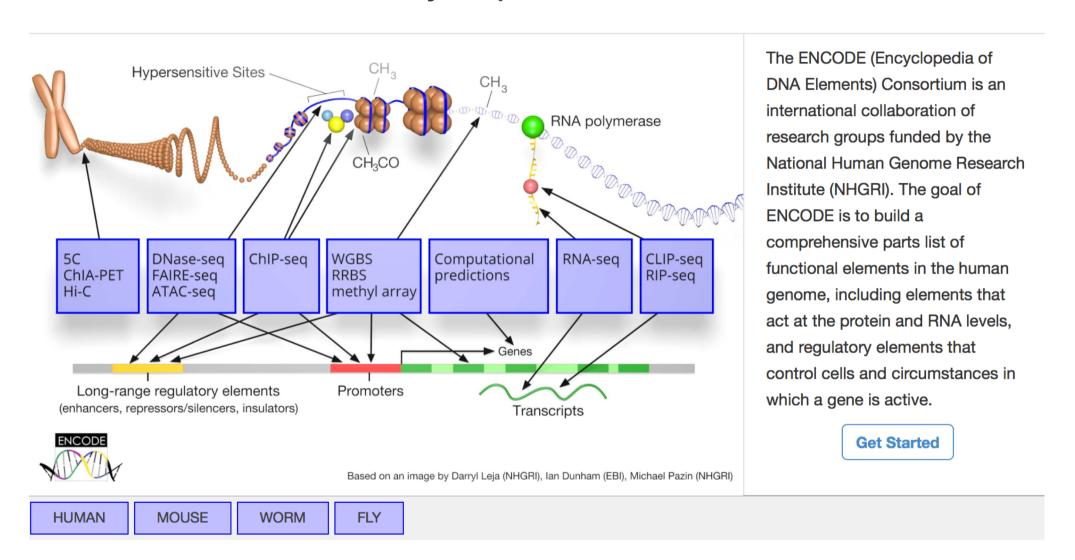

Genome	5x10 ⁶ bp	1x10 ⁸ bp	3x10 ⁹ bp
Chromosomes	1	6	23
Coding genes	6692	20541	21995
ncDNA	5%	60%	98%
non-coding RNA genes	15	23136	ca. 40000
miRNAs	0	224	4274
pseudogenes	21	1522	10616

ENSEMBL 11/2014

The ENCODE PROJECT: IDENTIFCATION OF ALL FUNCTIONAL ELEMENTS IN THE REMAINING 98% OF THE HUMAN GENOME (2003)

The Encyclopedia of DNA Elements (ENCODE) is a public research project launched by the US National Human Genome Research Institute (NHGRI) in September 2003.

Intended as a follow-up to the Human Genome Project (Genomic Research), the ENCODE project aims to identify all functional elements in the human genome.



The project involves a worldwide consortium of research groups, and data generated from this project can be accessed through public databases.

NCODE is implemented in three phases: the pilot phase, the technology development phase and the production phase.

Along the pilot phase, the ENCODE Consortium evaluated strategies for identifying various types of genomic elements. The goal of the pilot phase was to identify a set of procedures that, in combination, could be applied cost-effectively and at high-throughput to accurately and comprehensively characterize large regions of the human genome. The pilot phase had to reveal gaps in the current set of tools for detecting functional sequences, and was also thought to reveal whether some methods used by that time were inefficient or unsuitable for large-scale utilization. Some of these problems had to be addressed in the ENCODE technology development phase (being executed concurrently with the pilot phase), which aimed to devise new laboratory and computational methods that would improve our ability to identify known functional sequences or to discover new functional genomic elements. The results of the first two phases determined the best path forward for analysing the remaining 99% of the human genome in a cost-effective and comprehensive production phase.

ENCODE: Encyclopedia of DNA Elements

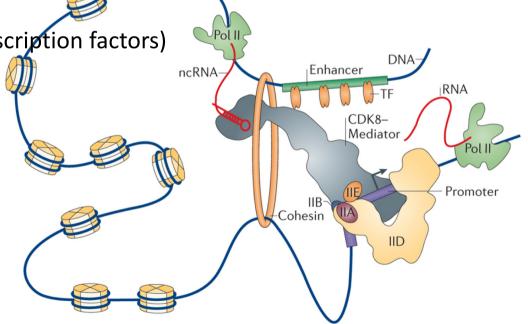
https://www.encodeproject.org

NEXT GENERATION SEQEUNCING OF DNA AND RNA

→ IDENTIFICATION OF ALL GENES → IDENTIFICATION OF ALL CODING AND NON-CODING TRANSCRIPTS

HOW CAN GENES/TRANSCRIPTS BE DEFINED?

- 1. DNA Sequencing (Human genome project, DNA-Seq)
- Landscape of transcription: Sequencing of RNA (total RNA, small/large RNA, CAGE)
- DNA methylation: High representation reduced representation bisulfite sequencing (RRBS)
- 4. Local chromatin structure:


determination of DNAsel hypersensitivity (Dnase Seg)

nucelosome occupancy (MNase-seq)

- ChIP-seq (chromatin modifications, transcription factors)

- 3 Dimensional space interaction

chromatin structure is combined with RNA expression data and DNA sequence to identify all genes/functional elements The presence of regulated chromatin indicates the presence of a real functional element

ENCODE MASSIVE EXPERIMENTAL INPUT

Table 1 Summary of E	Table 1 Summary of ENCODE experiments				
Experiment	Description				
DNA methylation	In 82 human cell lines and tissues: A549, Adrenal gland, AG04449, AG04450, AG09309, AG09319, AG10803, AoSMC, BE2 C, BJ, Brain, Breast, Caco-2, CMK, ECC-1, Fibrobl, GM06990, GM12878, GM12891, GM12892, GM19239, GM19240, H1-hESC, HAEpiC, HCF, HCM, HCPEpiC, HCT-116, HEEpiC, HEK293, HeLa-S3, Hepatocytes, HepG2, HIPEpiC, HL-60, HMEC, HNPCEpiC, HPAEpiC, HRCEpiC, HRE, HRPEpiC, HSMM, HTR8svn, IMR90, Jurkat, K562, Kidney, Left Ventricle, Leukocyte, Liver, LNCaP, Lung, MCF-7, Melano, Myometr, NB4, NH-A, NHBE, NHDF-neo, NT2-D1, Osteoblasts, Ovcar-3, PANC-1, Pancreas, PanIslets, Pericardium, PFSK-1, Placenta, PrEC, ProgFib, RPTEC, SAEC, Skeletal muscle, Skin, SkMC, SK-N-MC, SK-N-SH, Stomach, T-47D, Testis, U87, UCH-1 and Uterus				
TF ChIP-seq	A total of 119 TFs: ATF3, BATF, BCLAF1, BCL3, BCL11A, BDP1, BHLHE40, BRCA1, BRF1, BRF2, CCNT2, CEBPB, CHD2, CTBP2, CTCF, CTCFL, EBF1, EGR1, ELF1, ELK4, EP300, ESRRA, ESR1, ETS1, E2F1, E2F4, E2F6, FOS, FOSL1, FOSL2, FOXA1, FOXA2, GABPA, GATA1, GATA2, GATA3, GTF2B, GTF2F1, GTF3C2, HDAC2, HDAC8, HMGN3, HNF4A, HNF4G, HSF1, IRF1, IRF3, IRF4, JUN, JUNB, JUND, MAFF, MAFK, MAX, MEF2A, MEF2C, MXI1, MYC, NANOG, NFE2, NFKB1, NFYA, NFYB, NRF1, NR2C2, NR3C1, PAX5, PBX3, POLR2A, POLR3A, POLR3G, POU2F2, POU5F1, PPARGC1A, PRDM1, RAD21, RDBP, REST, RFX5, RXRA, SETDB1, SIN3A, SIRT6, SIX5, SMARCA4, SMARCB1, SMARCC1, SMARCC2, SMC3, SP11, SP1, SP2, SREBF1, SRF, STAT1, STAT2, STAT3, SUZ12, TAF1, TAF7, TAL1, TBP, TCF7L2, TCF12, TFAP2A, TFAP2C, THAP1, TRIM28, USF1, USF2, WRNIP1, YY1, ZBTB7A, ZBTB33, ZEB1, ZNF143, ZNF263, ZNF274 and ZZZ3				
Histone ChIP-seq	A total of 12 types: H2A.Z, H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me1, H3K9me3, H3K27ac, H3K27me3, H3K36me3, H3K79me2 and H4K20me1				
DNase-seq	In 125 cell types or treatments: 8988T, A549, AG04449, AG04450, AG09309, AG09319, AG10803, AoAF, AoSMC/serum_free_media, BE2_C, BJ, Caco-2, CD20, CD34, Chorion, CLL, CMK, Fibrobl, FibroP, Gliobla, GM06990, GM12864, GM12865, GM12878, GM12891, GM12892, GM18507, GM19238, GM19239, GM19240, H7-hESC, H9ES, HAc, HAEpiC, HA-h, HA-sp, HBMEC, HCF, HCFaa, HCM, HConF, HCPEpiC, HCT-116, HEEpiC, HeLa-S3, HeLa-S3_IFNa4h, Hepatocytes, HepG2, HESC, HFF, HFF-Myc, HGF, HIPEpiC, HL-60, HMEC, HMF, HMVEC-dAd, HMVEC-dBl-Ad, HMVEC-dBl-Neo, HMVEC-dLy-Ad, HMVEC-dLy-Neo, HMVEC-dNeo, HMVEC-LBl, HMVEC-LLy, HNPCEpiC, HPAEC, HPAF, HPDE6-E6E7, HPdLF, HPF, HRCEpiC, HRE, HRGEC, HRPEpiC, HSMM, HSMMemb, HSMMtube, HTR8svn, Huh-7, Huh-7.5, HUVEC, HVMF, iPS, Ishikawa_Estr, Ishikawa_Tamox, Jurkat, K562, LNCaP, LNCaP_Andr, MCF-7, MCF-7_Hypox, Medullo, Melano, MonocytesCD14+, Myometr, NB4, NH-A, NHDF-Ad, NHDF-neo, NHEK, NHLF, NT2-D1, Osteobl, PANC-1, PanIsletD, PanIslets, pHTE, PrEC, ProgFib, PrEC, RPTEC, RWPE1, SAEC, SKMC, SK-N-MC, SK-N-SH_RA, Stellate, T-47D, Th0, Th1, Th2, Urothelia, Urothelia_UT189, WERI-Rb-1, WI-38 and WI-38_Tamox				
DNase footprint	In 41 cell types: AG10803, AoAF, CD20+, CD34+ Mobilized, fBrain, fHeart, fLung, GM06990, GM12865, HAEpiC, HA-h, HCF, HCM, HCPEpiC, HEEpiC, HepG2, H7-hESC, HFF, HIPEpiC, HMF, HMVEC-dBl-Ad, HMVEC-dBl-Neo, HMVEC-dLy-Neo, HMVEC-LLy, HPAF, HPdLF, HPF, HRCEpiC, HSMM, Th1, HVMF, IMR90, K562, NB4, NH-A, NHDF-Ad, NHDF-neo, NHLF, SAEC, SkMC and SK-N-SH RA				
MNase-seq 3C-carbon copy (5C) GWAS SNP targeting	In GM12878 and K562 In GM12878, K562, HeLa-S3 and H1-hESC 296 noncoding GWAS SNPs were assigned a target promoter				

Ca. 400 Mio \$

GENCODE

Data

Stats

Browser

Blog

GENCODE:

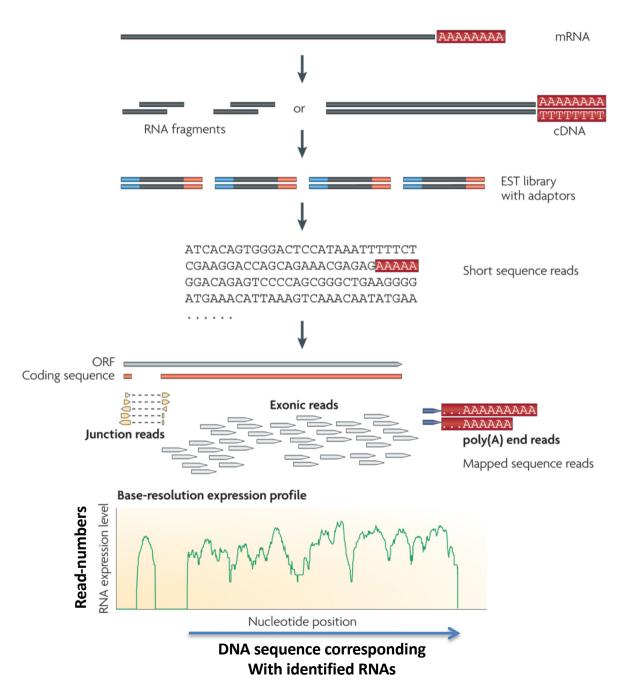
Project that uses ENCODE data for the annotation of functional elements in the genome

http://www.gencodegenes.org/

Statistics about all Human GENCODE releases

For details about the calculation of these statistics please see the README_stats.txt file.

Version 23 (March 2015 freeze, GRCh38) - Ensembl 81, 82

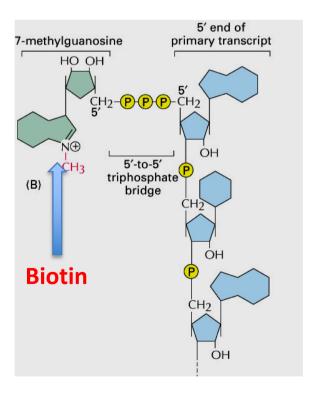

Download release

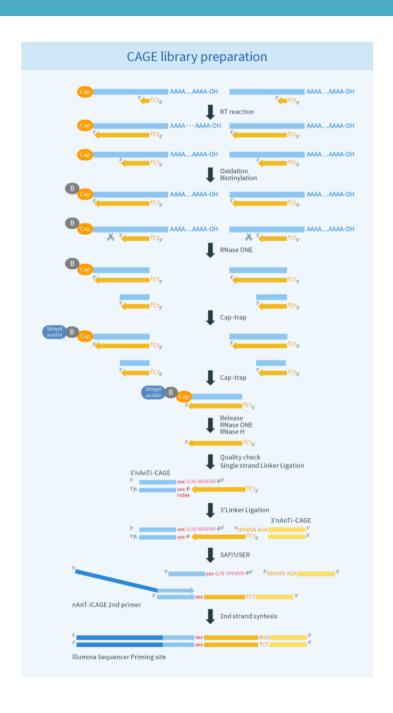
General stats			
Total No of Genes	60498	Total No of Transcripts	198619
Protein-coding genes	19797	Protein-coding transcripts	79795
Long non-coding RNA genes	15931	- full length protein-coding:	54775
Small non-coding RNA genes	9882	- partial length protein-coding:	25020
Pseudogenes	14477	Nonsense mediated decay transcripts	13307
- processed pseudogenes:	10727	Long non-coding RNA loci transcripts	27817
- unprocessed pseudogenes:	3271		
- unitary pseudogenes:	172		
- polymorphic pseudogenes:	59		
- pseudogenes:	21	Total No of distinct translations	59774
Immunoglobulin/T-cell receptor gene segments		Genes that have more than one distinct	13556
- protein coding segments:	411	translations	
- pseudogenes:	227		

^{*} The statistics derive from the gtf files that contain only the annotation of the main chromosomes.

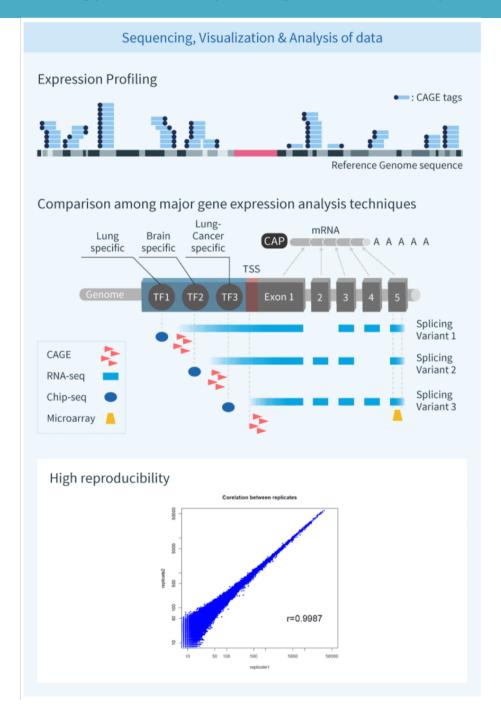
2. RNA SEQ – TO IDENTIFY ALL SORTS OF TRANSCRIPTS

Serial Analysis of Gene Expression (SAGE, superSAGE)

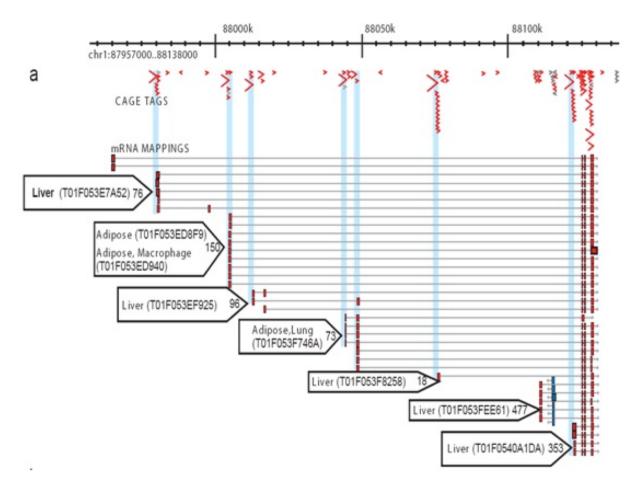



Method can also be used for all transcripts When using a random Primers for reverse transcription

2. RNA Seq variant technology: CAGE (Cap Analysis of Gene Expression)

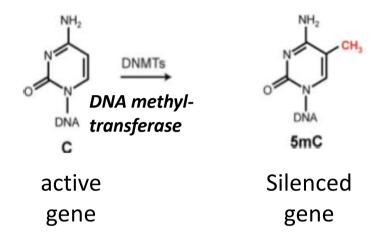

http://www.osc.riken.jp/english/activity/cage/basic/

Unlike a similar technique Serial Analysis of Gene Expression (SAGE, superSAGE) in which tags come from other parts of transcripts, CAGE is primarily used to locate an exact transcription start sites in the genome. This knowledge in turn allows a researcher to investigate promoter structure necessary for gene expression.

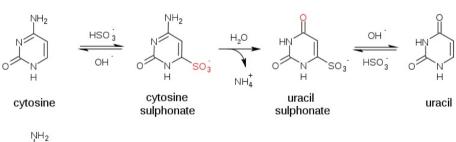


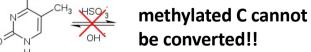
2. RNA Seq variant technology: CAGE (Cap Analysis of Gene Expression)

2. RNA Seq variant technology: CAGE (Cap Analysis of Gene Expression)

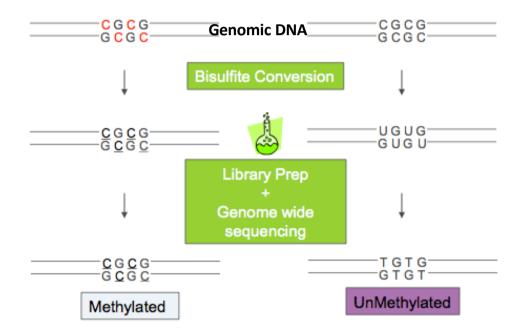


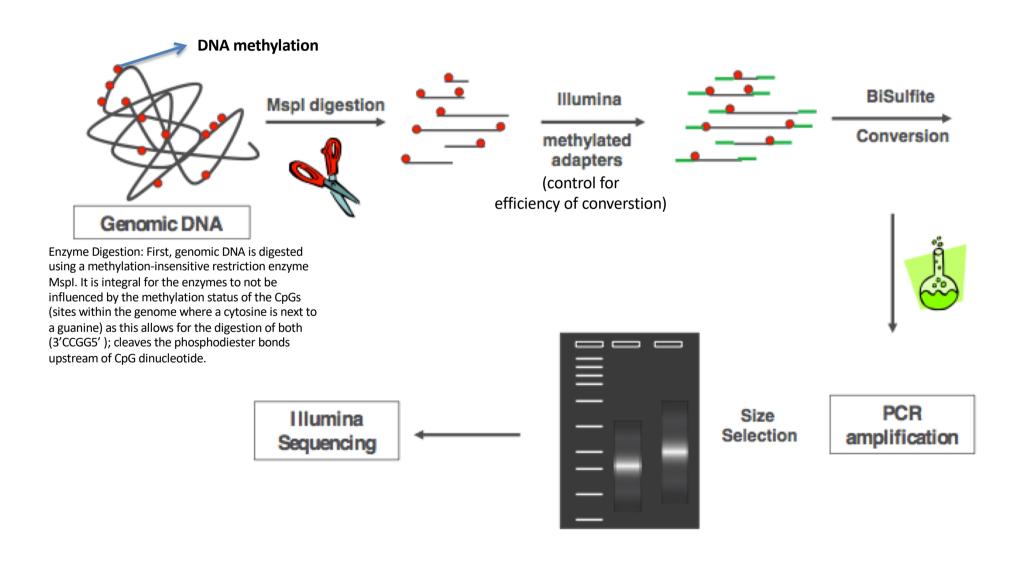
Excellent tool
To identify
transcriptional
start sites


Help to identify up-stream regulatory sequences = PROMOTERS RELEVANT CpG


2. DNA methylation: educed representation bisulfite sequencing (RRBS)

Methylation of cytosine at CpG dinucleotides is an important epigenetic regulatory modification in many eukaryotic genomes.

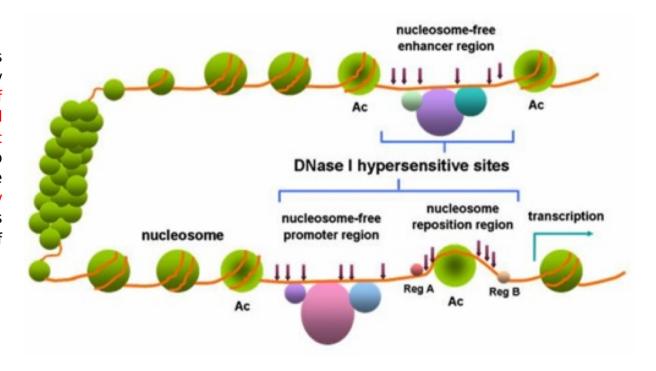

Bi-sulfite conversion: C→U conversion


5-methylcytosine

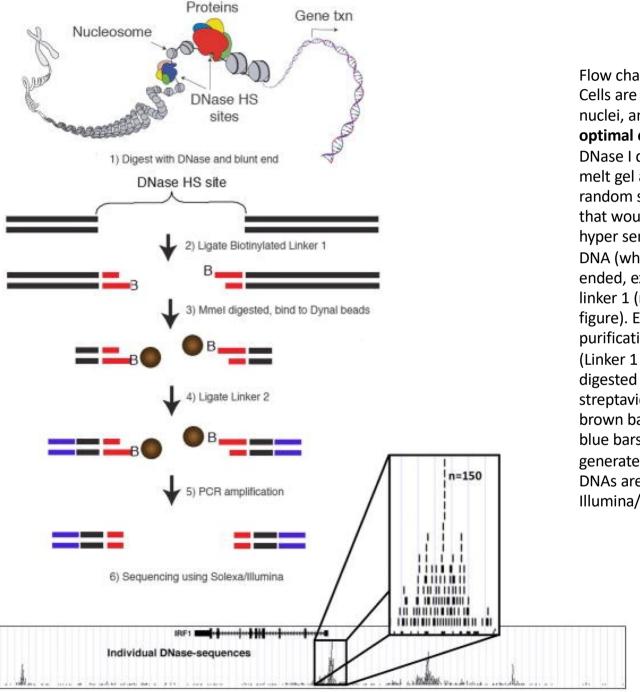
BS-Seq: BiSulfite Sequencing

2. DNA methylation: Reduced representation bisulfite sequencing (RRBS)

Reduced representation bisulfite sequencing (RRBS) is an efficient and high-throughput technique used to analyze the genome-wide methylation profiles on a single nucleotide level. This technique combines restriction enzymes and bisulfite sequencing in order to enrich for the areas of the genome that have a high CpG content. Due to the high cost and depth of sequencing needed to analyze methylation status in the entire genome. The fragments that comprise the reduced genome still include the majority of promoters, as well as regions such as repeated sequences that are difficult to profile using conventional bisulfite sequencing approaches.



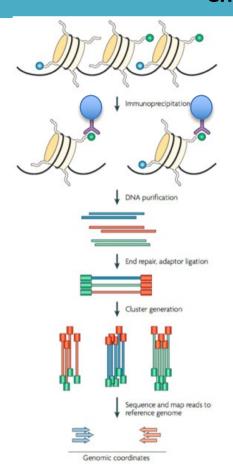
4. Local chromatin structure: determination of DNAse I hypersensitivity (DNase Seq)


- <u>determination of DNAse I hypersensitivity (DNase Seq)</u>
- Nucleosome occupancy (MNase-seq)
- ChIP-seg (chromatin modifications, transcription factors)
- 3 Dimensional space interaction

DNase hypersensitive sites mark sequences involved in gene regulation

DNase I hypersensitive sites (DHSs) are regions of chromatin that are sensitive to cleavage by the DNase I enzyme. In these specific regions of the genome, chromatin has lost its condensed structure, exposing the DNA and making it accessible. This raises the availability of DNA to degradation by enzymes, such as DNase I. These accessible chromatin zones are functionally related to transcriptional activity, since this remodeled state is necessary for the binding of proteins such as transcription factors.

4. Local chromatin structure: determination of DNAse I hypersensitivity (DNase Seq)



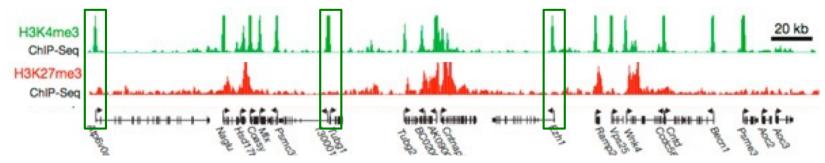
Flow chart of DNase-seq protocol. Cells are lysed with detergent to release nuclei, and the nuclei are **digested with optimal concentrations of DNase I**.

DNase I digested DNA is immobilized in lowmelt gel agarose plugs to reduce additional random shearing. (pipetting can cause breaks that would cause "false positive" DNase hyper sensitive sites).

DNA (while still in the plugs) are then bluntended, extracted and ligated to biotinylated linker 1 (represented by red bars in the figure). Excess linker is removed by gel purification, and biotinylated fragments (Linker 1 plus 20 bases of genomic DNA) are digested with Mmel, and captured by streptavidin-coated beads (represented by brown balls). Linker 2 (represented by the blue bars) is ligated to the 2 base overhang generated by Mmel, and the ditagged 20 bp DNAs are amplified by PCR and sequenced by Illumina/Solexa.

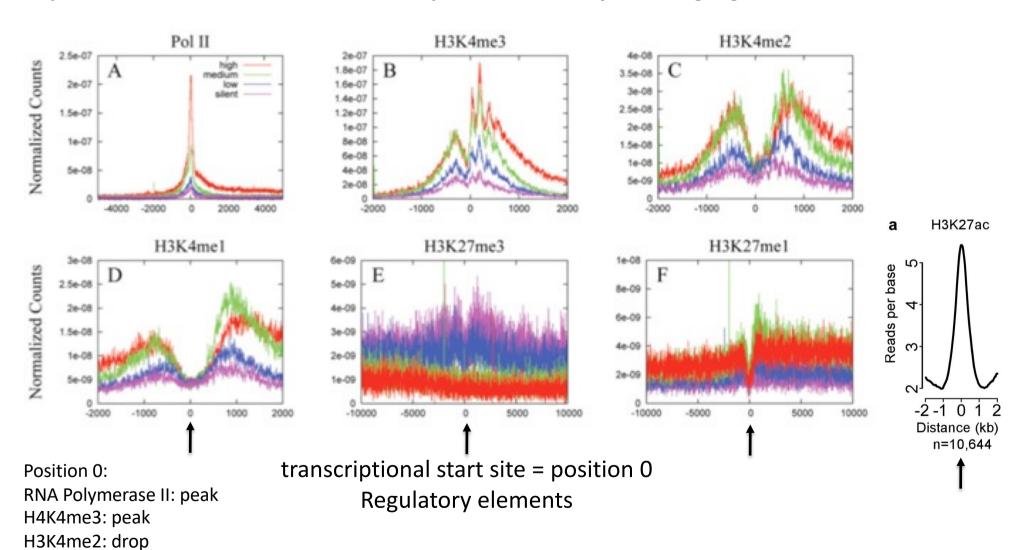
4. Local chromatin structure: Chromatin immunoprecipitation sequencing (ChIP-seq)

H3K4me3 (active chromatin mark)


H3K27me3

(repressive chromatin mark)

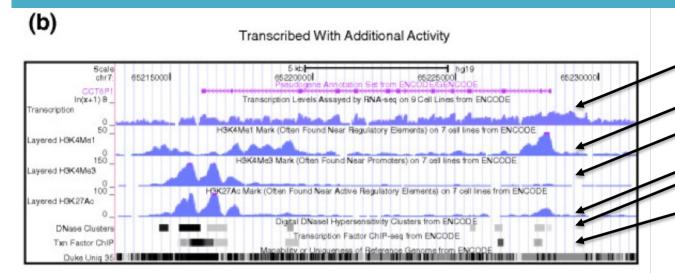
magnetic beads covered with specific antibody


- 1. Cell fixation-proteins and DNA are crosslinked
- 2. Sonication of DNA (fragmentation)
- 3. Immunoprecipitation of chromatin using Specific antibodies: histone modifications or transcription Factors
- 4. Purify beads (magnet), washing of beads + elution of immunoprecipitated material
- 5. Library construction
- 6. Massive parallel sequencing
- 7. Align sequencing results to genomic sequence
- 8. Increase in read-number for a particular sequence indicates Enrichment for the histone modification or transcription factor

The results indicate that some modifications (H3K4me) are correlated with increased gene expression, while others (H3K27me3) correlate with decreases gene expression. The peaks observed in the H3K4me3 for genes at high expression levels occur at +50, +210, and +360 based which correlates well with the known spacing interval for nucleosome positioning. Furthermore, the dip in abundance at the transcriptional start site is consistent with local nucleosome depletion of actively expressed genes.

4. Local chromatin structure: Chromatin immunoprecipitation sequencing (ChIP-seq)

A special chromatin code marks the transcriptional start site of Pol II target genes



H3K4me1: drop
H3K27me3: low

Same method can be used to localize transcription factors

H3K27me1: drop

AN EXAMPLE: ORGANISATION OF A FUNCTIONAL ELEMENT: PSEUDOGENES

Pseudogene CCT6P1

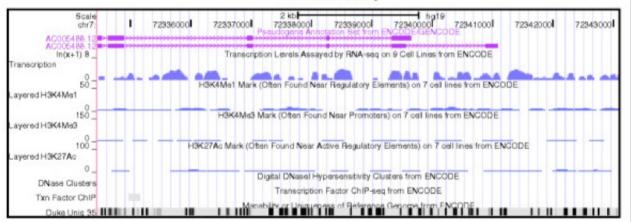
RNA expression: PRESENT RNA Polymerase II: not shown

H4K4me1: near regulatory elements

H3K4me3: near promoters

H3K27Ac: near regulatory elements

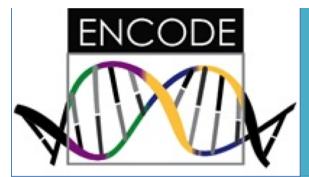
DNAse hypersensitive sites: at


regulatory elements

Transcription factor (TF) binding:

Near promoter

Transcribed Only


Summary of pseudogene annotation and case studies. (a) A heatmap showing the annotation for transcribed pseudogenes including active chromatin segmentation, DNasel hypersensitivity, active promoter, active Pol2, and conserved sequences. Raw data were from the K562 cell line. (b) A transcribed duplicated pseudogene (Ensembl gene ID: ENST00000434500.1; genomic location, chr?: 65216129-65228323) showing consistent active chromatin accessibility, histone marks, and TFBSs in its upstream sequences. (c) A transcribed processed pseudogene (Ensembl gene ID: ENST00000355920.3; genomic location, chr?: 72333321-72339656) with no active chromatin features or conserved sequences. (d) A non-transcribed processed pseudogene spatial activity patterns (Ensembl gene ID: ENST00000429752.2; genomic location, chr1: 109646053-109647388). (e) Examples of partially active pseudogenes. E1 shows UGT1A2P (Ensembl gene ID: ENST00000454886), indicated by the green arrowhead. UTG1A2P is a non-transcribed pseudogene with active chromatin and it is under negative selection. Coding exons of protein-coding paralogous loci are represented by dark green boxes and UTR exons by filled red boxes. E2 shows FAM86EP (Ensembl gene ID: ENST00000510506) as open green boxes, which is a transcribed pseudogene with active chromatin and upstream TFBSs and Pol2 binding sites. The transcript models associated with the locus are displayed as filled red boxes. Black arrowheads indicate features novel to the pseudogene locus. E3 and E4 show two unitary pseudogenes. E3 shows DOCZGP (Ensembl gene ID: ENST00000514950) as open green boxes, and transcript models associated with the locus are shown as filled red boxes. E4 shows SLC22420 (Ensembl gene ID: ENST00000530038). Again, the pseudogene model is represented as open green boxes, transcript models associated with the locus are shown as filled red boxes, and black arrowheads indicate features novel to the pseudogene E6LMI (Ensembl gene ID: ENST00000531033) inserted into duplicated pseudogene. E5 shows speudogene E6L

ENST00000541103), which is a transcribed pseudogene showing active chromatin but no upstream regulatory regions as seen in the parent gene. The pseudogene models are represented as open green boxes, transcript models associated with the locus are displayed as filled red boxes, and black arrowheads indicate features novel to the pseudogene locus. E6 shows a processed

pseudogene RP11-409K20 (Ensembl gene ID: ENST00000417984; filled green box), which has been inserted into a CpG island, indicated by an orange arrowhead. sRNA, small RNA. Pei et al. Genome Biology 2012 13:RS1 doi:10.1186/qb-2012-13-9-r51

Pseudogene AC0064BB12

RNA expression: PRESENT Chromatin shows actve marks Poor definition

Aim: Identify functional elements of the genome (ENCODE)

WORK STILL IN PRGRESS

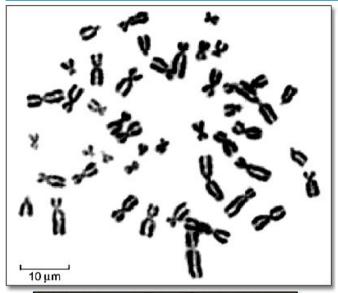
http://www.genome.gov/encode/

Aim: a catalog of <u>manually curated</u> list of genes/transcripts (GENCODE) <a href="http://www.ntp

http://www.gencodegenes.org/

Release ENCODE7 (2012); new release expected 12/2015)

ARTICLE


doi:10.1038/nature11247

An integrated encyclopedia of DNA elements in the human genome

The ENCODE Project Consortium*

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

Almost all regions in the genome are subjecte to regualtion and transcription

The vast majority (80.4%) of the human genome participates in at least one biochemical RNA and/or chromatin associated event in at least one cell type. Much of the genome lies close to a regulatory event: 95% of the genome lies within 8kb of a DNA-protein interaction (as assayed by bound ChIP-seq motifs or DNaseI footprints), and 99% is within 1.7kb of at least one of the biochemical events measured by ENCODE.

Classifying the genome into seven chromatin states suggests an initial set of 399,124 regions with enhancer-like features and 70,292 regions with promoter-like features, as well hundreds of thousands of quiescent regions. High-resolution analyses further subdivide the genome into thousands of narrow states with distinct functional properties.

It is possible to quantitatively correlate RNA sequence production and processing with both chromatin marks and transcription factor (TF) binding at promoters, indicating that promoter functionality can explain the majority of RNA expression variation.

Many non-coding variants in individual genome sequences lie in ENCODEannotated functional regions; this number is at least as large as those that lie in protein coding genes.

SNPs associated with disease by GWAS are enriched within non-coding functional elements, with a majority residing in or near ENCODE-defined regions that are outside of protein coding genes. In many cases, the disease phenotypes can be associated with a specific cell type or TF.

GENCODE – STATUS 09.11.2015:

Project that uses ENCODE for the annotation of functional elements in the genome

http://www.gencodegenes.org/

http://www.gencodegenes.org/

Download release

Release 23 (GRCh38.p3) wser

Blog

Statistics about all Human GENCODE releases.

* The statistics derive from the qtf files that contain only the annotation of the main chromosomes.

For details about the calculation of these statistics please see the README_stats.txt file.

Long ncRNAs: >200nt Short ncRNAs: <200nt

Version 23 (March 2015 freeze, GRCh38) - Ensembl 81, 82

Total No of Genes

Protein-coding genes

Long non-coding RNA genes

Small non-coding RNA genes

Pseudogenes

- processed pseudogenes:
- unprocessed pseudogenes:
- unitary pseudogenes:
- polymorphic pseudogenes:
- pseudogenes:

Immunoglobulin/T-cell receptor gene segments

- protein coding segments:
- pseudogenes:

60498 19797 15931 9882	Total No of Transcripts Protein-coding transcripts - full length protein-coding: - partial length protein-coding:	198619 79795 54775 25020
14477	Nonsense mediated decay transcripts	13307
10727	Long non-coding RNA loci transcripts	27817
3271		
172		
59		
21	Total No of distinct translations	59774
411	Genes that have more than one distinct translations	13556
227		

ANNOTATED TRANSCRIPT TYPES (ENCODE ; 11/2015)

Further details on this version's gene and transcript types

biotype		
3prime_overlapping_ncrna		29 33
all IG_genes	2	16 246
all other pseudogenes	144	77 14516
all RNA pseudogenes		0 0
all RNA_genes	134	60 19109
antisense	55	65 11203
IG_C_gene		14 31
IG_C_pseudogene		9 9
IG_D_gene		37 37
IG_J_gene		18 18
IG_J_pseudogene		3
IG_V_gene		47 160
IG_V_pseudogene	1	81 181
lincRNA	76	78 13301
macro_IncRNA		1 1
miRNA	40	
misc_RNA	22	98 2312
Mt_rRNA		2 2
Mt_tRNA		22 22
non_stop_decay		0 77
nonsense_mediated_decay		0 13307
polymorphic pseudogene		59 73
processed_pseudogene	102	
processed_transcript		97 26945
protein_coding	197	
pseudogene		21 44
retained_intron		0 26616
ribozyme		8 8

ANNOTATED TRANSCRIPT TYPES (ENCODE ; 11/2015)

rRNA	544	544
scaRNA	49	49
sense_intronic	917	976
sense_overlapping	194	344
snoRNA	949	961
snRNA	1896	1896
sRNA	20	20
TEC	1050	1137
TR_C_gene	6	23
TR_D_gene	4	4
TR_J_gene	79	79
TR_J_pseudogene	4	4
TR_V_gene	106	108
TR_V_pseudogene	30	30
transcribed_processed_pseudogene	442	442
transcribed_unitary_pseudogene	2	2
transcribed_unprocessed_pseudogene	668	667
translated_unprocessed_pseudogene	1	1
unitary_pseudogene	170	170
unprocessed_pseudogene	2602	2603
vaultRNA	1	1

NOTE: These are annotated ncRNA transcripts/gene: they are subjected to gene Regulatory mechanisms.

NOTE: ncRNAs can also be generated outside of defined transcription units!!! Example: DNA damage repair RNAs (DDRNA)