
Fundamental concepts of VHDL

A.Carini – Progettazione di sistemi elettronici

VHDL

A. Carini - Progettazione di sistemi elettronici

• VHDL is an Hardware Description Language.
• It allows the description, simulation and synthesis of digital electronics systems.
• First of all, it allows the description of the structure and of the function of the

system and of its subsystems.
• It allows simulation for test and verification of the design and the comparison

of different design solutions. We can verify a priori the design, without the
delay and cost of HW prototypes.

• It allows the hardware synthesis from an abstract VHDL description, drastically
reducing the design time and the time-to-market.

• It transforms modelling and design of a digital system in a coding exercise, i.e.,
in the design, the implementation, and the verification of a SW code.

History of VHDL

A. Carini - Progettazione di sistemi elettronici

• Developed by an US research project for the Very High Speed Integrated Circuits
(VHSIC).

• VHDL means VHSIC Hardware Description Language.
• Further developed under the tutelage of IEEE.
• Standardized by IEEE in 1987 (IEEE Standard 1076) (VHDL-87).
• Novel revisions standardized in 1993 (VHDL-93), 2001 (VHDL 2002), and 2008

(VHDL 2008).
• Historically, it was first used for description and simulation of digital electronic

systems.
• Only later it was also used for synthesis.

Modeling digital systems

A. Carini - Progettazione di sistemi elettronici

• VHDL is for writing models of digital systems.
• The concept of digital system is extremely wide.
• With the term digital systems, we intend all those circuits that process or store

information in digital form.
• We will consider both the digital system as a whole and the parts that compose

it. Our range of digital systems goes from the basic logic gates up to the high
level functional blocks.

• To manage a complex design we need a systematic design methodology.
• Start from the specification document, obtain an abstract description of the

system, decompose the abstract system in subsystems, the subsystems in
subsubsytems, etc., until a level of basic blocks.

• The result of this process is a hieratically composed system.

Modeling digital systems

A. Carini - Progettazione di sistemi elettronici

• In a hieratically composed system, every subsystem can be separately designed.
• At each step, we need only the information necessary to design our subsystem

and we can ignore the information necessary to design all other subsystems.
• The term model indicates a description of the system, which represents the

relevant information and avoids any redundant information (irrelevant in that
moment).

• Since different information is relevant in different contexts, for the same system
there can be different models.

• One model could focus on representing the system function, another could
represent how the system is composed of subsystems.

Reasons for modeling

A. Carini - Progettazione di sistemi elettronici

• There are many motivations for formalizing this idea of a model:
1. Requirements specification
2. Documentation
3. Testing using simulation
4. Formal verification
5. Synthesis

• The final goal is to achieve maximum reliability in the design process, with
minimum cost and design time.

• We must guarantee that specifications are clearly provided and understood,
that the subsystems work in the right way, and that designs meet the
requirements.

• More importantly we want to avoid design errors !

Domains ad level of modeling

A. Carini - Progettazione di sistemi elettronici

• There exist different models for the same system.
• We can classify these models in three domains:

• Functional
• Concerned with the operation performed by the system.

• Structural
• Concerned with how the system is composed by subsystems.

• Geometric
• Concerned with how the system is laid out in the physical space.

• Each of these domains can be divided in different abstraction levels.
• At the highest level we have a general description of the function, the

structure, or the geometry of the model.
• Moving to lower levels we obtain a more detailed description.

Domains ad level of modeling

A. Carini - Progettazione di sistemi elettronici

“Y-chart” due to Gajski & Kahn

Algorithm level

A. Carini - Progettazione di sistemi elettronici

• Let us consider the example of a single-chip microcontroller system used as a
controller for a measurement system.

Processor-Memory-Switch level

A. Carini - Progettazione di sistemi elettronici

Floor plan level

A. Carini - Progettazione di sistemi elettronici

Floor plan level

A. Carini - Progettazione di sistemi elettronici

Register transfer language level

A. Carini - Progettazione di sistemi elettronici

Standard cell level

A. Carini - Progettazione di sistemi elettronici

• The description at this level depends on the physical implementation.
• If a standard cell library is used to implement registers and transformation

units, these entities could be placed in the areas of the floor plan.

Logical and physical abstraction levels

A. Carini - Progettazione di sistemi elettronici

• The next abstraction level is the logical one, where the structure is modelled
gates interconnections, the function with Boolean equations or truth tables,
and the geometry with a virtual grid, or “sticks” notation.

• The lowest abstraction level is the physical level. We can model the structure
using transistors, the functions using the differential equations that link
currents and voltages in the circuit, the geometry using the polygons of each
mask layer of the integrated circuit.

VHDL model language

A. Carini - Progettazione di sistemi elettronici

• It allows to describe the digital systems both from the structural and behavioral
viewpoints.

• It provides also an attribute mechanism that can be used to provide
information about the geometry of the model.

• It was developed for providing specifications and allowing simulation.
• It allows the automatic hardware synthesis of an RTL description.

Entity declaration

A. Carini - Progettazione di sistemi elettronici

Architecture body

A. Carini - Progettazione di sistemi elettronici

• The architecture body describes an implementation of an entity.
• There can be several architecture body for the same entity.
• We can have :

• Behavioral architecture bodies.
• Structural architecture bodies.
• Mixed architecture bodies.

Behavioral architecture

A. Carini - Progettazione di sistemi elettronici

Structural architecture

A. Carini - Progettazione di sistemi elettronici

• It implements the module as a composition of subsystems
• It contains:

• signal declarations, for internal interconnections
• the entity ports are also treated as signals

• component instances
• Instances of previously declared entity/architecture pairs

• port maps in component instances
• connect signals to component ports.

Structural architecture

A. Carini - Progettazione di sistemi elettronici

Structural architecture

A. Carini - Progettazione di sistemi elettronici

• Entity-architecture pairs of the components:

Structural architecture

A. Carini - Progettazione di sistemi elettronici

Mixed architecture

A. Carini - Progettazione di sistemi elettronici

• The architecture can contain both behavioral and structural parts
• process statements and component instances, collectively called

concurrent statements since they are executed concurrently during
simulation.

• Signals can be assigned to the ports of the components or can be read and
written by processes.

Mixed architecture

A. Carini - Progettazione di sistemi elettronici

Test bench

A. Carini - Progettazione di sistemi elettronici

• Test benches are used for testing a design by simulation.
• A test bench is an architecture body that

• includes an instance of the design under test;
• applies sequences of test values to inputs;
• monitors values on output signals

• either using simulator
• or with a process that verifies correct operation.

• The entity is self-contained, it has no port.

Test bench

A. Carini - Progettazione di sistemi elettronici

Design processing

A. Carini - Progettazione di sistemi elettronici

• Simulation involves:
• Analysis
• Elaboration
• Execution

• Synthesis involves:
• Analysis
• Elaboration
• Physical synthesis

Analysis

A. Carini - Progettazione di sistemi elettronici

• Checks entity-architecture pairs for syntax and semantic errors
• syntax: grammar of the language
• semantics: the meaning of the model

• Analyzes each design unit (i.e., entity/architecture pair) separately
• Sometimes it is better to keep each design unit in a separate file

• Analyzed design units are placed in a library
• They have a tool dependent internal form,
• The current work library is called work.

Elaboration

A. Carini - Progettazione di sistemi elettronici

• Originates a fully behavioral description of the entity.
• A top-down procedure:

• Start from the top architecture.
• Replace all components instances with the corresponding architecture

bodies.
• Repeat the procedure on these bodies, until we have only behavioral

architectures.
• Result:

• The final system is described only by signals and by processes that read
and assign these signals.

• A description that can be simulated.

Elaboration

A. Carini - Progettazione di sistemi elettronici

Execution

A. Carini - Progettazione di sistemi elettronici

• Execution/simulation of the processes in the elaborated model
• Discrete event simulation

• time advances in discrete steps
• when signal values change—on events

• Processes are sensitive to events on input signals
• those specified in wait statements;
• They resume and assign/schedule new values on output signals

• they schedule transactions;
• event on a signal if the new value is different from old one.

Execution

A. Carini - Progettazione di sistemi elettronici

• Start with an initialization phase
• each signal is given its initial value
• simulation time set to 0
• for each process

• activate
• execute until a wait statement, then suspend

• execution usually involves scheduling transactions on signals for
later times.

Execution

A. Carini - Progettazione di sistemi elettronici

• Simulation cycle
• simulation time advances to the time of the next transaction
• for each transaction at this time

• update signal value
• event if new value is different from old value

• for each process sensitive to any of these events
• resume
• execute until a wait statement, then suspend.

• Simulation finishes when there are no further scheduled transactions.

Synthesis

A. Carini - Progettazione di sistemi elettronici

• It translates a register-transfer-level (RTL) design into a gate-level netlist.
• There are restrictions on coding style for the RTL model.
• The result is tool dependant.

Basic Design Methodology

A. Carini - Progettazione di sistemi elettronici

Requirements

SimulateRTL Model

Gate-level

Model

Synthesize

Simulate Test Bench

ASIC or FPGA Place & Route

Timing

Model
Simulate © Peter J. Ashenden

Comments

A. Carini - Progettazione di sistemi elettronici

• Start with a couple of dashes, i.e. - -, and end at the end of the row.
• They are similar to // of C++.
• Comments on different lines should always start with “- -”.

• Since VHDL 2008, also /* comment */

Basic identifiers

A. Carini - Progettazione di sistemi elettronici

• For naming entities, architectures, variables, signals, labels, etc.
• Can be arbitrary long.
• Can contain only letters (from ‘A’ to ‘Z’, from ‘a’ to ‘z’), decimal digits (from ‘0’

to ‘9’) and the underscore character (‘_’).
• Must start with a letter.
• Cannot end with underscore.
• Cannot include two consecutive underscores.
• They are NOT case sensitive.

Examples of basic identifiers

A. Carini - Progettazione di sistemi elettronici

• Allowed:

• Not allowed:

Extended identifiers

A. Carini - Progettazione di sistemi elettronici

• Can include any sequence of characters.
• Used for interfacing with other tools.
• Written between two backslash.

• The character ‘\’ inside a string must be double:

• They are case sensitive and distinct from basic identifiers:

Reserved words

A. Carini - Progettazione di sistemi elettronici

Special symbols

A. Carini - Progettazione di sistemi elettronici

• Used as operators, separators, terminators.
• Some special symbols are formed by two characters.

Numbers

A. Carini - Progettazione di sistemi elettronici

• The numbers you write in VHDL are:
• Integers

• Are always positive
• Cannot have the decimal point

• Reals
• Have always a decimal point preceded and followed by a digit.

• Example:

Numbers

A. Carini - Progettazione di sistemi elettronici

• An exponential notation is possible:

• It is possible a notation in any base between 2 and 16:

• Also with an exponential notation:

253

0.5

Numbers

A. Carini - Progettazione di sistemi elettronici

• To improve the readability of a number the underscore character ‘_’ can be
used:

Single characters

A. Carini - Progettazione di sistemi elettronici

• Are written between single quotation marks.

Strings

A. Carini - Progettazione di sistemi elettronici

• Are written between double quotation marks.
• Can have any length but must stay on a row.
• In order to split them on two (or more) rows, the concatenation operator & can

be used.

• Any double quotation mark inside a string must be doubled:

Bit strings

A. Carini - Progettazione di sistemi elettronici

• Represent sequences of bits.
• Are given by a sequence of digits between double quotation marks preceded by

a base specifier:
• B (or b) for binary

• O (or o) for octal

• X (or x) for hexadecimal

• D (or d) for decimal

Bit strings

A. Carini - Progettazione di sistemi elettronici

• Since VHDL 2008, it is possible to insert in the bit-string also the characters Z, X,
-, used for high-impedance state, unknown value, don’t-care condition, and
other similar characters.

• The character is repeated two, three, four times according to the base.

• It is also possible to specify if the bit-string specify a signed or unsigned by
preceding the base with the S or U character, respectively.

Syntax description with EBNF notation

A. Carini - Progettazione di sistemi elettronici

• The Extended Backus-Naur Form notation will be used to provide the syntax
rules of VHDL.

• The EBNF divides the language in syntactic categories.
• A rule will be written for each syntactic category.
• Note the use of the symbol  which is read “is defined as” or “is given by”.

Syntax description with EBNF notation

A. Carini - Progettazione di sistemi elettronici

• Optional parts will be indicated with void square brackets:

• Parts that can be repeated zero, one or more times will be reported between
curly brackets:

Syntax description with EBNF notation

A. Carini - Progettazione di sistemi elettronici

• To indicate that a part must be repeated one or more times:

• and if there is a separator:

Syntax description with EBNF notation

A. Carini - Progettazione di sistemi elettronici

• A choice between different alternatives is written as:

• In case of ambiguity the void brackets will be used to group some terms:

Instead of:

Syntax description with EBNF notation

A. Carini - Progettazione di sistemi elettronici

• To provide more information about some categories, some italic comments
may be added to the category name:

A. Carini - Progettazione di sistemi elettronici

See:

• Peter Ashenden, «The designers’ guide to VHDL» Morgan Kaufmann,
• Chapter 1

