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Abstract—We study the importance of accurately recording

signal amplitudes for the quantitative analysis of GPR data sets.

Specifically, we measure the peak amplitudes of signals emitted by

GPR antennas with different central frequencies and study their

amplitude decay with distance, in order to extrapolate the peak

amplitude of the wavelet initially transmitted by each antenna. The

purpose is to compare the reference and reflected amplitudes in

order to accurately estimate the subsurface EM impedance con-

trasts. Moreover, we study how sampling-related amplitude

distortions can affect the quantitative analysis, and subsequently

the resulting subsurface models, even in the absence of aliasing

effects. The well-known Nyquist–Shannon theorem gives practical

lower limits for the sampling rate in order to preserve the spectral

content of a digitized signal; however, we show that it does not

prevent possible amplitude distortions. In particular, we demon-

strate that significant and unrecoverable loss of amplitude

information occurs even at sampling rates well above the Nyquist–

Shannon threshold. Interpolation may theoretically reduce such

amplitude distortions; however, its accuracy would depend on the

implemented algorithm and it is not verifiable in real data sets,

since the actual amplitude information is limited to the sampled

values. Moreover, re-sampling the interpolated signal simply

reintroduces the initial problem, when a new sampling rate is

selected. Our analysis suggests that, in order to limit the maximum

peak amplitude error within 5%, the sampling rate selected during

data acquisition must be at least 12 times the signal central fre-

quency, which is higher than the commonly adopted standards.

Key words: Sampling, Nyquist–Shannon theorem, peak

amplitude error, amplitude inversion, GPR, reference amplitude.

1. Introduction

Ground Penetrating Radar (GPR) is a non-inva-

sive near-surface geophysical technique which uses

EM waves to study the subsurface (Jol 2009). From a

GPR data set, it is possible to extract both qualitative

and quantitative information about the subsurface

stratigraphy and the materials encountered by the

recorded wavelets. The validity of the reconstructed

subsurface model mainly depends on the particular

algorithm used for the calculations, the assumptions

made by the procedure with regards to the EM

properties of the subsurface, as well as the accuracy

of the measured input quantities. In this paper, we

mainly focus on the latter issue, specifically on how

inaccurate signal amplitudes can affect the recon-

structed subsurface EM impedance contrasts and

subsequently all the other properties that can be

derived from them. The inversion procedure applied

in this paper requires as input the peak amplitude of

the recorded reflections, as well as the peak amplitude

of the wavelet initially emitted by the transmitter,

also referred to in the following as the reference

amplitude (Forte et al. 2014; Dossi et al. 2016).

In this paper, we estimate the reference amplitude

by analyzing the signal reflected from a metallic

surface (Saarenketo and Scullion 2000; Al-Qadi and

Lahouar 2005), recorded at various distances with

different GPR antennas, assuming a total reflection

and taking into account amplitude decay with dis-

tance, as well as possible noise and interference. This

allows us to analyze the amplitude decay caused by

spreading losses, while also making the calculation of

the reference amplitude for each antenna statistically

sound. However, before comparing the reference and

reflected amplitudes in the calculation of the sub-

surface EM impedance contrasts, it is necessary to

take into account possible differences in the radiation

patterns (Jiao et al. 2000). Specifically, if the refer-

ence amplitude is measured from an air-coupled GPR

system, while the recorded reflections are from a

ground-coupled one, we have to take into account the1 Department of Mathematics and Geosciences (DMG),
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refractive focusing associated with the air–ground

interface (Jol 2009).

Besides correctly measuring the reference ampli-

tude, the applied inversion algorithm requires that

reflected amplitudes depend exclusively on the sub-

surface EM impedance contrasts (Forte et al. 2014;

Dossi et al. 2016). Therefore, the signal processing

must counteract the amplitude decay caused by

wavefront expansion and possible intrinsic attenua-

tion, while also removing potential signal distortions

caused by either noise or interference. Another

important issue is that the reflected amplitudes must

be accurately sampled in the first place; therefore,

possible sampling-related amplitude distortions of the

analog signal must be taken into account.

Sampling is an irreversible process used during

data acquisition in order to reduce analog signals,

which contain an infinite number of values, into

smaller and numerically manageable discrete series

(Proakis and Manolakis 2006). The procedure causes

an inevitable and unrecoverable loss of information

between sampled values, which prevents the exact

reconstruction of the input analog signal from the

recorded discrete series and can cause significant

signal distortions.

The general field of studies related to sampling

and distortions is known as the Rate–Distortion

Theory, and it was introduced in 1948 by Claude E.

Shannon with his landmark paper (Shannon 1948).

There are two different fields of application for the

signal quantization theory, namely the rate–distortion

optimized quantization and the rounding quantization

(Gersho and Gray 1991). The former is used in source

coding for ‘‘lossy’’ data compression algorithms,

where the purpose is to manage distortions within the

limits of a certain instrument or algorithm. The

rounding quantization is instead used to enable a

simple approximate representation of a certain

quantity that we want to measure. This second

quantization class includes the analog-to-digital

conversion of a signal. The main objective of such

conversion is to retain an adequate signal fidelity

after the digitizing process, while at the same time

avoiding unnecessary precision or data redundancy,

and keeping the dynamic range of the signal within

practical limits. All the examples and discussions in

this paper are related to the rounding quantization

category.

We can identify two different kinds of sampling

error, which can cause significant distortions in the

recorded data set with respect to the analog signal.

The quantization error (or round-off error) is the

difference between the actual (theoretical) analog

value and the resulting digital one at a particular

sample point (e.g. Proakis and Manolakis 2006),

while the second kind of sampling error is related to

the data loss between sampled values and the sub-

sequent erroneous reconstruction of the original

analog signal. An example is given by aliasing effects

caused by the use of excessively low sampling rates,

creating distortions in the spectral content of the

recorded signal. In this paper, we are instead inter-

ested in peak amplitude errors, which also belong to

this second class and can significantly affect the

quantitative analysis of any recorded data set, even in

the absence of aliasing effects. Considering a signal

peak, we define as peak amplitude error the differ-

ence between the theoretical analog peak amplitude

and the actual digitized peak amplitude, which can be

shifted from the former by at most half the sampling

interval.

In many geophysical applications dealing with the

measurement of time-varying phenomena, the most

important parameter is the discretization interval used

during data acquisition, commonly referred to as the

sampling interval. A digitized wave field is very

similar to any other discrete data set, with the pecu-

liarity of being a function of both space and time.

Such data can be analyzed using appropriate signal

processing (Yilmaz 2001), image processing (e.g.

Chopra and Marfurt 2007), or even techniques orig-

inally developed for digital music recording

(Dell’Aversana 2013, 2014). The sampling interval

(Dt) has a crucial role in signal reconstruction, pro-

cessing, and analysis, with the attention commonly

focused on the spectral content of the recorded signal.

The well-known Nyquist–Shannon theorem states

that a continuous signal having a band-limited fre-

quency spectrum, with a maximum frequency fmax,

can be fully specified in a time interval of duration T

by a set of 2Tfmax discrete values (Nyquist 1928;

Shannon 1949). This means that such signal can be

accurately reconstructed, at least in terms of its
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spectral content, by using a sampling rate fS equal to

at least 2�fmax:

fS ¼ 1

Dt
: ð1Þ

In other words, in order to avoid aliasing effects,

fmax has to be lower than the Nyquist frequency fNy,

which is equal to half the sampling rate. A band-

limited signal would extend infinitely in time; there-

fore, the Nyquist–Shannon theorem cannot be strictly

applied to a recorded data set, since such signal has a

finite time interval and, therefore, it is characterized

by an infinite number of frequency components.

Nevertheless, it is always possible to define a maxi-

mum frequency fmax above which the signal energy is

negligible. The theorem can thus be considered a

useful guide during data acquisition when selecting

fS, which has to be higher than 2�fmax in order to

preserve the spectrum of the analog signal. For

example, when dealing with signals characterized by

a central frequency fC, Jol (2009) recommends using

a sampling rate equal to at least 6�fC for GPR surveys,

while Drijkoningen (2003) suggests using a sampling

rate equal to at least 8�fC as the rule of thumb for

reflection seismics. The 2�fmax threshold for the

sampling rate fS is also known as the Nyquist rate, but

it is referred to in this paper as the Nyquist–Shannon

threshold, in order to avoid confusion with the

Nyquist frequency fNy, which is half the sampling

rate. The Nyquist frequency is more useful during

quantitative analysis, since it can be easily compared

to the highest frequency component fmax of the

recorded signal, which constitutes a minimum

threshold for fNy.

It is interesting to note that Nyquist describes in

detail the frequency behavior of a digitized signal in

its pioneering 1928 paper, but he disregards the

amplitude behavior in the time domain. This is in part

due to the fact that he worked on practical applica-

tions related to telegraph transmission, where the

essential point is that a signal must be properly

recorded in terms of frequencies (and phases). In fact,

he explicitly wrote that ‘‘a criterion of perfect trans-

mission is selected; and a discussion is given of the

characteristics which the received wave must have to

be nondistorting with the requirement that the fre-

quency range should not be greater than necessary’’

(Nyquist 1928). In other words, the main objective

was avoiding any frequency (and phase) distortion,

while accurate amplitude recording was less impor-

tant for a telegraph system, as long as the signal-to-

noise ratio of the recorded signal was acceptable.

Similar observations can be made with regard to the

fundamental classical works of Gabor (1946) and

Shannon (1949) where, again, the focus is to assure a

proper spectral representation or transformation of a

digitized signal. Furthermore, it is interesting to note

that Shannon (1949) pointed out the approximate

formulation of the original Nyquist sampling theo-

rem, while also providing its rigorous mathematical

proof. Linvill (1949) further advanced the sampling

theory, proving that sampling could be regarded as an

amplitude modulation of a periodic ‘‘impulse carrier’’

by the signal being sampled. He also described

interpolation as filtering in the frequency domain by

means of an ideal low-pass filter (Widrow and Kollar

2008).

However, the effects that the selected sampling

rate has on the sampled amplitudes deserve further

analysis. In fact, the recorded amplitudes are essential

input quantities for several geophysical signal anal-

ysis and processing algorithms, as well as for

interpretation, and inversion procedures. Inaccurate

sampling of amplitudes can affect, for instance, the

reconstructed subsurface impedance contrasts, which

can be estimated using various procedures, such as

amplitude versus offset (AVO) analysis (Castagna

and Backus 1994) or amplitude inversion algorithms

(Tarantola 1984). While the aliasing problem is very

well known and it has been thoroughly discussed in

literature, to our knowledge the amplitude behavior

as a function of the sampling rate has seldom been

quantitatively analyzed in aliasing-free data sets.

In this paper, we analyze the effects of the sam-

pling rate on the recorded amplitudes, not considering

rounding or truncation errors, which are both well-

known (e.g. Proakis and Manolakis 2006) and less

important in this context. We show that the recorded

amplitudes, and consequently all the other parameters

derived from them, are strongly affected by the

sampling rate. In particular, we give some examples

of the maximum peak amplitude error as a function of

the sampling rate for different signals, as well as

examples of common mid-point (CMP) gather

Vol. 175, (2018) Quantitative analysis of GPR signals 1105



analysis and amplitude inversion of synthetic com-

mon offset (CO) data sets. We conclude that the

commonly used Nyquist–Shannon threshold does not

necessarily guarantee an accurate amplitude repre-

sentation of either basic or more complex digitized

time series, with significant repercussions for their

quantitative analyses. Our discussion focuses on GPR

data, which are represented in terms of amplitude

variations as a function of travel time (i.e. traces);

nonetheless our conclusions are valid for any digi-

tized signal.

2. Reference Amplitude Analysis

In order to obtain quantitative information about

the subsurface from a GPR data set, it is essential to

accurately characterize the EM wavelet emitted by

the transmitting antenna, as well as its propagation

through different media. A radar signal propagating

through the ground is subjected to several processes

which can affect its energy, shape, and travel path,

and which depend on the EM properties of the sub-

surface (Jol 2009). These processes affect the

recorded amplitudes, which are then compared with

the reference amplitude in order to recover the sub-

surface impedance contrasts and subsequently all the

related EM properties.

The two main mechanisms responsible for

amplitude decay in a GPR data set are the intrinsic

attenuation and the wavefront expansion, with vari-

able contributions from partial reflections and

scattering that, respectively, depend on the back-

ground-target contrasts and the coarseness of the

medium. Intrinsic attenuation is mainly caused by

subsurface EM properties like the electric conduc-

tivity and dielectric relaxation. Under favorable

conditions such effects can be disregarded, for

example air–ice mixtures can be considered low-loss

materials with relaxation frequencies well outside the

10 MHz–2 GHz frequency range for GPR (Jol 2009).

However, in the general case, the decay is not easily

corrected through amplitude recovery, since the

applied gain function depends on the assumptions

made by the interpreter with regard to the subsurface

EM properties, which are usually not accurately

known in advance. On the other hand, spreading

losses caused by wavefront expansion can be cor-

rected, since the signal can be approximated as

having an asymptotic 1/r amplitude decay with dis-

tance. Nevertheless, assuming that the recorded data

set has been corrected for intrinsic attenuation and

spreading losses, so that the amplitude decay mainly

depends on partial reflections, the reflected ampli-

tudes can be compared with the reference amplitude

in order to recover the subsurface EM impedance

contrasts (Forte et al. 2014; Dossi et al. 2016).

We estimated the reference amplitude of the sig-

nals emitted by three different GPR antennas, by

analyzing a series of single reflections from an air-

metal interface. The reflections were recorded at

various distances from a vertical 3 9 3 m metallic

surface, and with different antenna orientations. We

used a Malå Geoscience ProEx GPR system equipped

with three bistatic shielded antenna pairs, with

nominal central frequencies equal to 250, 500, and

800 MHz, and with offsets parallel to the metallic

surface, respectively, equal to 31, 18, and 14 cm. For

each GPR antenna, four different data sets were

recorded, each one with the antennas being rotated by

90�, in order to take into account possible changes in

the radiation pattern, systematic artifacts, or possible

external interference. In each series, the GPR system

was moved along the axis normal to the metallic

surface, with a maximum distance of about 9.0 m,

and with the transmitter being automatically triggered

every 0.5 s. The applied signal processing was lim-

ited to DC correction, drift removal, and background

removal. The peak amplitudes of the recorded

reflections are plotted for the three GPR antenna pairs

in Fig. 1, showing their decay with the distance

traveled by the recorded signal, which is calculated

from the arrival times of the reflected signals and the

EM velocity in air (i.e. about 30 cm/ns).

Assuming a total reflection from the metallic

surface, the graphs in Fig. 1 can be used to study the

amplitude decay caused by spreading losses with the

signal propagating in air, and also to extrapolate the

peak amplitude of the wavelet initially transmitted by

the antennas. The recorded amplitudes are fitted in

Fig. 1 with the following amplitude decay function,

which assumes an asymptotic 1/r amplitude decay

with distance:

1106 M. Dossi et al. Pure Appl. Geophys.



AðrÞ ¼ A0

1þ r
þ B: ð2Þ

In the ideal case, the value of the fitting parameter

B in Eq. 2 should be either null or negligible so that

the theoretical amplitude A(0) of the signal initially

transmitted by the antennas is indeed equal to A0. The

fitted curves in Fig. 1 show an overall good corre-

spondence with the recorded amplitudes, with the

values of B being consistently lower than 5% of the

corresponding values of A0 (Table 1). The erratic

behavior of the reflected amplitudes at small dis-

tances from the metal plate in Fig. 1 is caused by the

interference of the reflected signal with the direct air-

wave, which can alternatively be constructive or

destructive, depending on the arrival time of the

reflection in each recorded trace. Deviations from the

far field approximation at smaller distances could

also contribute to this effect. Such distorted

Figure 1
Analysis of the amplitude decay caused by spreading losses of GPR signals reflected from an air–metal interface. The antennas have a nominal

central frequency, respectively, equal to 250 (first column), 500 (second column), and 800 (third column) MHz. Four data sets were recorded

for each GPR antenna, each one with the antennas being rotated by 90�. The recorded data sets do not show significant deviations with respect

to the assumed 1/r amplitude decay, nor do they show major changes when rotating the antennas, as it can be also noticed from the fitting

parameters given in Table 1. Amplitudes recorded at distances lower than the defined thresholds (vertical gray lines) were not used for data

fitting, due to interference with the direct air-wave and possible deviations from the far field approximation
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amplitudes were not used in the analysis, and the

minimum distance for fitting was set equal to 4.0, 2.5,

and 1.5 m for the 250, 500, and 800 MHz data sets,

respectively. These distances were calculated by

analyzing the arrival times at which the direct and

reflected signals interfere in each GPR data set.

Besides amplitude distortions at small distances,

the graphs in Fig. 1 are all consistent with an 1/

r amplitude decay, independently from the orienta-

tion of the GPR antennas. A not negligible effect on

the reflected amplitude can arise at larger distances

due to the limited size of the metal plate. Such

behavior would be related to the zone of influence of

the antenna radiation pattern (Annan 2005); however,

it is not noticeable in the analyzed data set. The few

cases in which the recorded amplitudes noticeably

differ from the fitting function, such as the 270� series
in the 500-MHz data set (Fig. 1), are most likely

caused by residual coherent noise. Nevertheless, the

recorded data sets can show significant variations

when analyzing the reference amplitudes estimated

for each GPR antenna (i.e. A0 in Eq. 2). In Table 1,

the value of A0 calculated in each series is compared

with the value A0All obtained when combining all the

data sets of a particular GPR antenna, showing an

average variation of about 10%. The main factors

contributing to the uncertainty of the calculated

reference amplitudes are the lack of viable data at

small distances, due to the aforementioned interfer-

ence between the direct and reflected signals, as well

as residual noise and possible minor changes in the

radiation pattern between each series. The uncertainty

of the reference amplitude has to be taken into

account when performing any quantitative analysis.

Nevertheless, the analyzed data sets do not show

significant deviations with respect to the approxi-

mated 1/r amplitude decay, nor do they show major

changes when the antennas are rotated. It is also

interesting to compare the reference amplitudes A0

obtained for the three analyzed antennas (Table 1),

whose significant differences are mainly caused by

the specific signatures of each antenna pair. In pre-

vious works (Forte et al. 2014; Dossi et al. 2016), the

difference between the reflected amplitudes in GPR

profiles acquired with various antennas along the

same paths was mainly attributed to an increased

intrinsic attenuation for higher frequency signals.

While such factor could have had an impact, the main

factor was most likely a lower reference amplitude

for higher frequency antennas, as reported in Table 1.

It is also important to point out that, if the refer-

ence amplitude is estimated from an air-coupled data

set while the reflected amplitudes are measured from

a ground-coupled survey, we have to take into

Table 1

Parameters obtained by fitting the function given in Eq. 2 to the amplitude decays shown in Fig. 1

Central frequency (MHz) Fitting parameters Series

1 2 3 4 All

250 A0 103,946 136,518 102,973 119,352 115,374

B - 3735 - 6017 - 3540 - 4929 - 4531

|B/A0| (%) 3.6 4.4 3.4 4.1 3.9

|DA0/A0All| (%) 9.9 18.3 10.7 3.4 0

500 A0 52,023 43,572 50,387 39,516 46,484

B - 756 - 257 - 1005 - 659 - 349

|B/A0| (%) 1.5 0.6 2.0 1.7 0.8

|DA0/A0All| (%) 11.9 6.3 8.4 15.0 0

800 A0 21,301 20,860 25,803 26,619 23,702

B - 422 - 464 - 828 - 949 - 670

|B/A0| (%) 2.0 2.2 3.2 3.7 2.8

|DA0/A0All| (%) 10.1 12.0 8.9 12.3 0

The functions show an overall good fit to the data, with the calculated values of B being consistently lower than 5% the values of A0 in all

cases. The parameters also show an average 10% variability (DA0) of the values of A0 estimated in each series, with respect to the values A0All

obtained when combining all the data sets of each GPR system
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account the difference in radiation pattern between

the two signals, which, respectively, travel through

the air and the ground, before being able to compare

them in the calculation of the subsurface EM impe-

dance contrasts. The change in directivity between an

air-coupled and a ground-coupled GPR system is

caused by the refractive focusing associated with the

air–ground interface (Jol 2009). The radiation pattern

of a ground-coupled GPR system is divided into a

main central lobe and several minor lateral lobes.

Most of the transmitted energy is contained within a

cone defined by the critical angle hC of the radiation

pattern (Annan and Cosway 1992; Jiao et al. 2000),

and the propagating wavefront can be approximated

with an expanding spherical cap with surface area S:

hC ¼ arcsin
1
ffiffiffiffi

er
p
� �

ð3Þ

S ¼ 2pr2ð1� cos½hC�Þ: ð4Þ

The critical angle depends on the relative per-

mittivity of the subsurface for ground-coupled GPR

systems, while it is equal to 90� in the case of air-

coupled ones (Eq. 3), with the value of er being equal

to 1 in air. Therefore, in the air-coupled GPR surveys

analyzed in Fig. 1, the wavefront can be approxi-

mated with an expanding hemisphere having a

surface area equal to 2pr2. If we assume that the same

amount of energy within this hemisphere is concen-

trated within the spherical cap obtained in the case of

ground-based surveys, the estimated values of A0

have to be corrected by a geometrical factor

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos½hC�
p

; before they can be compared with

the reflected amplitudes in the calculation of the

subsurface EM impedance contrasts. Although

approximate, this correction is essential in order to

avoid overcompensating for the spreading losses of

the reflected amplitudes during amplitude recovery,

which would result in an overestimation of the sub-

surface EM impedance contrasts (Dossi et al. 2016).

3. Sampling-Related Amplitude Distortion Analysis

As previously discussed, the accurate estimation

of the subsurface EM impedance contrasts mostly

depends on the correct measurement of the reference

and reflected amplitudes. This means that the digital

data set obtained during data acquisition must accu-

rately sample the peak amplitudes of the original

analog signal. Consider a signal defined by an ana-

lytic function A(t), with a local maximum located at

the time instant tmax, in which we want to correctly

sample the peak amplitude A(tmax), or at least to keep

the maximum peak amplitude error as low as possi-

ble. Given a sampling interval Dt, the largest possible

peak amplitude error is obtained when tmax is located

between two adjacent samples, respectively, at time

instants tk and tk ? Dt, such that A(tk) is equal to

A(tk ? Dt) (Kuffel et al. 2000; Schon 2013). In any

other case, one of the two sampled amplitudes would

be lower than such value, while the other would be

higher, and, therefore, the latter would be considered

the sampled peak amplitude. The maximum time shift

of the sampled peak amplitude with respect to the

actual peak amplitude is equal to Dt/2, in which case

tmax is located exactly in the midpoint between tk and

tk ? Dt, as in the case of a symmetric peak, while in

the generic case it is closer to one of the two adjacent

samples.

An example of sampling-related signal distortion

analysis is given in Fig. 2, which shows a generic

analog wavelet (or equivalently a greatly oversam-

pled signal, Fig. 2a), that can be used to simulate both

GPR and seismic sources. As previously discussed,

we focus on the signal distortions related to the data

loss between samples, while disregarding possible

round-off errors of the sampled amplitudes. The

analog signal is digitized in Fig. 2b, showing a sig-

nificant amplitude data loss, despite using a sampling

rate equal to 2.0 GHz, which is well above the pre-

viously defined Nyquist–Shannon threshold. The

frequency spectrum of the sampled series (gray line

in Fig. 2c) is virtually coincident with the one

obtained when sampling the signal with a sampling

rate equal, for instance, to 10.0 GHz (black line), in

accordance with the Nyquist–Shannon theorem. It is

important to point out that the frequency spectrum of

the digitized signal is calculated exclusively from the

sampled values (black dots in Fig. 2b), which contain

the actual amplitude information. Moreover, in order

to increase the number of frequency components to

be compared in Fig. 2c, resulting from the Fourier

analyses of the 2.0 and 10.0 GHz digitized series,
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while also satisfying the hypotheses of the afore-

mentioned Nyquist–Shannon theorem, the two

signals were both sampled in the larger [0, 30] ns

time interval, with the amplitude being set identically

null outside the analyzed [0, 6] ns time interval

(Fig. 2a). Nevertheless, despite the absence of alias-

ing effects, the digitized series in Fig. 2b shows

significant peak amplitude errors in the various signal

phases. Specifically, the analog signal is sampled in

Fig. 2b in the worst-case scenario with respect to the

third peak in Fig. 2a, with the two samples A(tk) and

A(tk ? Dt) around the actual peak having the same

value, and the resulting peak amplitude error is equal

to 30.9%. The peak amplitude error in Fig. 2b varies

significantly between the signal phases, most of

which are not sampled in the worst-case scenario, and

it depends on the arrival time and shape of the peak,

as well as the selected sampling interval. For

example, the peak amplitude error in the fourth peak,

which is symmetric to the third one in Fig. 2a, is

equal to 20.3%.

The peak amplitude error in a recorded data set

can theoretically be reduced by re-sampling the data

at higher rates, using polynomial or predictive inter-

polating functions in order to reconstruct the original

analog signal (Eldar 2015). However, the accuracy of

the reconstructed signal would depend on the applied

interpolation method, which may require systematic

assumptions on the signal behavior between samples.

In fact, the actual data are limited to the sampled

values, while any information between samples is

unrecoverably lost. Strange (2013) analyzes interpo-

lation and re-sampling as a possible method to

increase temporal resolution, thus focusing on

reducing the temporal uncertainty Dt/2 of a signal

peak, rather than the peak amplitude error as we are

Figure 2
Example of peak amplitude error analysis applied to a generic wavelet. The analytic signal (a) is sampled (black dots) in b using a sampling

rate equal to 2.0 GHz, which is well above the Nyquist–Shannon threshold (i.e. twice the maximum signal frequency, about 0.9 GHz in c).

The frequency spectrum of the digitized signal (gray line) is compared in c to the one obtained with a sampling rate equal to 10.0 GHz (black

line), chosen as an example, and they are virtually coincident, in accordance with the Nyquist–Shannon theorem. The analog signal is

reconstructed in d through a sinc interpolation (gray line), and it is re-sampled using a sampling rate equal to 4.0 GHz (gray dots)

1110 M. Dossi et al. Pure Appl. Geophys.



here focusing on. He concludes that interpolating

GPR traces to increase temporal resolution is less

accurate than directly sampling the original analog

signal at higher sampling rates, while the time

interpolation of data acquired with low sampling

rates is always preferable with respect to using the

raw sampled data.

From a practical point of view, the interpolation

process can be computationally intensive and time

consuming, especially for large data sets. On the

other hand, limiting the interpolation to a moving

window may affect the reconstructed signal and

introduce a certain degree of subjectivity or artifacts.

In other words, computationally effective interpola-

tion techniques tend to be less accurate, while

accurate interpolation techniques tend to be more

computationally intensive (Strange 2013). Moreover,

while the analog signal may be accurately recon-

structed in synthetic data sets, in which the

transmitted wavelet and the subsurface model are

known, the accuracy of the reconstructed signals is

neither necessarily acceptable nor verifiable for real

data sets. In geophysical surveys, the signal behavior

between samples is not predictable due to several

factors, such as spectral variation of the transmitted

wavelet with time, statistically random distributions

of the subsurface reflectivity, interference phenom-

ena, and time-varying random noise (Yilmaz 2001).

In other words, digitized data sets contain amplitude

information only at the sampling points and data

interpolation (and re-sampling) does not necessarily

increase the information content, or decrease the

sampling error. More importantly, even if the analog

signal is accurately reconstructed through interpola-

tion, the subsequent re-sampling process simply

reintroduces the initial sampling-related amplitude

distortion problem, since we have to select a new

sampling rate with which to re-sample the recon-

structed signal. As an example, the analog signal A(t)

is reconstructed in Fig. 2d by applying a sinc inter-

polation to the amplitudes A(tk) sampled in Fig. 2b,

given by the following equation:

AðtÞ ¼
X

þ1

k¼�1
AðtkÞ

sin pðt � tkÞ=Dt½ �
pðt � tkÞ=Dt

: ð5Þ

This is the reconstruction formula for a band-

limited signal in the absence of aliasing effects

(Proakis and Manolakis 2006), and it consists in a

sum of various time-shifted sinc functions, each

centered in one of the sampled time instants tk and

weighted by the corresponding sampled amplitude

A(tk). It can be noticed that the reconstructed signal

correctly gives the sampled amplitudes A(tk) at each

time instant tk, since each time-shifted sinc function

in Eq. 5 is equal to 1 at their central time instant tk
and null in all the others. Similarly to the Nyquist–

Shannon theorem, the sinc interpolation assumes a

band-limited signal, and Eq. 5 requires an infinite

number of samples. However, in practice, the recor-

ded signal contains a finite number of samples and

the interpolation formula has to be truncated.

In our sampling analysis, Eq. 5 is simplified by

the fact that the samples A(tk) outside the analyzed

[0, 6] ns time interval (Fig. 2b) are set identically

null. The reconstructed signal is re-sampled in

Fig. 2d by increasing the sampling rate to 4.0 GHz,

which satisfies the Nyquist–Shannon theorem as well

as the threshold of six times the central frequency

(i.e. six times 0.5 GHz, Fig. 2c) recommended by Jol

(2009) for GPR surveys. The peak amplitude error is

visibly reduced in Fig. 2d with respect to Fig. 2b;

however, the previously described sampling-related

distortion problem remains. Specifically, while the

fourth signal peak can be considered accurately

sampled, with the error being reduced to 2.4%, the

maximum peak amplitude error in the re-sampled

data set is still significant, with the error in the third

peak being equal to 8.1%. Therefore, even if we re-

sample the data set in order to accurately measure the

peak amplitude of a specific signal phase, other

recorded peaks may still show considerable peak

amplitude errors, depending on their shapes and

arrival times, as well as the newly selected sampling

rate. It is also important to point out that the signal

reconstruction in Fig. 2d, through the interpolation of

the discrete signal, is favored by the fact that the

original analog signal (Fig. 2a) has a particularly

regular shape. More irregular analog signals, possibly

affected by noise or interference, would be more

difficult to accurately reconstruct from the digitized

series, especially with relatively low sampling rates.

Moreover, the reason we are able to calculate the
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peak amplitude errors in Fig. 2b, d is because we

know the shape of the original analog signal

(Fig. 2a); however, in real data sets it is impossible to

determine the recorded sampling errors or the accu-

racy of the reconstructed analog signal. These

considerations are not limited to a specific kind of

sampled signal, rather they can be applied to any

digitized series. In fact, when only discrete sampled

data are available, as it is the case of any digitally

recorded data set, it is impossible to evaluate which

interpolation performs better in terms of signal

reconstruction, simply because no reference analog

signal is available. This is definitely a crucial point,

which is often disregarded and misunderstood.

Nevertheless, it is possible to limit the peak

amplitude error during data acquisition by setting a

minimum threshold for the sampling rate, which can

be linked to the central frequency of the recorded

signal. In the following sections, we provide an

estimation of this threshold by analyzing the depen-

dence of the maximum amplitude error on the

sampling rate for various signals characterized by

different spectral contents.

3.1. Wavelet Analysis

In this section, we analyze three different signals,

namely a sine function, a Ricker function, and the

aforementioned generic wavelet, respectively, given

by the following equations:

Figure 3
Analysis of the peak amplitude error for a sine function (a), a Ricker function (b), and a generic wavelet (c). The figure shows the analog

signals (dashed lines) with superimposed seven different digital series (a–c) sampled using sampling rates, respectively, equal to 2.0 (red), 3.0

(yellow), 4.0 (blue), 5.0 (green), 6.0 (brown), 7.0 (gray), and 8.0 (black) GHz; the normalized amplitude spectra (d–f); and the resulting peak

amplitudes for sampling rates in the [2, 10] GHz frequency interval (g–i). In all cases, the amplitudes are sampled in the worst-case scenario

with respect to the main peak in each graph (a–c), and the sampled amplitudes in g–i are shown as a percentage of the actual peak amplitudes.

The sampling rates considered are all well above the Nyquist–Shannon thresholds of the respective signals (i.e. twice the maximum signal

frequencies in d–f), thus avoiding aliasing effects
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HðtÞ ¼ sin½2pfHt� ð6Þ

RðtÞ ¼ 1� 1

2
2pfRðt � tRÞð Þ2

� �

e�
1
4
2pfRðt�tRÞð Þ2 ð7Þ

GðtÞ ¼ �A sin½2pfGðt � tGÞ�e�0:2pfGðt�tGÞ2 : ð8Þ

where A is a normalizing amplitude, the central fre-

quencies fH, fR, and fG are, respectively, equal to 0.5,

0.3, and 0.5 GHz, and the temporal parameters tR and

tG are both equal to 3 ns.

The analyzed analog signals are shown in

Fig. 3a–c, with superimposed seven different digital

series, sampled in the worst-case scenario with

respect to the main peak in each signal, using

sampling rates, respectively, equal to 2.0, 3.0, 4.0,

5.0, 6.0, 7.0, and 8.0 GHz. In Eqs. 6 and 7, the main

peak is symmetric with respect to tmax; therefore, the

worst sampled amplitudes WH and WR can be easily

calculated from the selected sampling rate fS using

the following equations:

WHðfSÞ ¼ cos p
fH

fS

� �

ð9Þ

WRðfSÞ ¼ 1� 1

8
2p

fR

fS

� �2
 !

e
� 1

16
2pfR

fS

� �2

: ð10Þ

The sampling rates used for the discrete series in

Fig. 3a–c are all well above the Nyquist–Shannon

threshold of the respective signals (i.e. twice the

maximum signal frequencies in Fig. 3d–f), thus

avoiding aliasing effects. However, as previously

discussed, while the Nyquist–Shannon theorem can

be used to accurately reconstruct the frequency

spectrum of a band-limited signal, it does not

guarantee an accurate sampling of its peak ampli-

tudes. This is evident when analyzing Eq. 9, where

the frequency spectrum of the original sinusoidal

signal H(t) has a single component with frequency fH
(Eq. 6). If we use a sampling rate exactly equal to

2�fH, in the worst-case scenario we can have a

sampled peak equal to 0, since all the sampled

amplitudes would be null. If instead the sampling rate

is equal to 3�fH, in the worst case the sampled peak is

equal to 0.5, that is half the actual peak in H(t). In

order to have a sampled peak which at worst is equal

to 0.9 (i.e. 90% of the actual peak), we have to use a

sampling rate around 7�fH. A similar behavior can be

noticed in all three analyzed signals, with Table 2

listing the peak amplitudes sampled by the discrete

series shown in Fig. 3a–c. The sampled amplitudes

are given as a percentage of the actual peak

amplitudes of the original analog signals, and we

can notice that the higher the sampling rate is, the

lower the maximum peak amplitude error becomes.

This behavior can also be observed in Fig. 3g–i,

which shows the peak amplitudes sampled in the

worst-case scenario for sampling rates in the

[2, 10] GHz frequency interval, which is well above

the Nyquist–Shannon thresholds of the respective

signals (Fig. 3d–f). More specifically, we can notice

Table 2

Analysis of the peak amplitudes sampled in Fig. 3a–c for the sine function (Eq. 6), the Ricker function (Eq. 7), and the generic wavelet

(Eq. 8), respectively

Sampling rate Sampling interval Sine function Ricker function Generic wavelet

fS (GHz) Dt (ns) fS/fC A (%) fS/fC A (%) fS/fC A (%)

2.0 0.50 4.0 70.7 6.7 84.1 4.0 69.1

3.0 0.33 6.0 86.6 10.0 92.7 6.0 85.7

4.0 0.25 8.0 92.4 13.3 95.9 8.0 91.9

5.0 0.20 10.0 95.1 16.7 97.4 10.0 94.8

6.0 0.17 12.0 96.9 20.0 98.2 12.0 96.3

7.0 0.14 14.0 97.5 23.3 98.6 14.0 97.3

8.0 0.13 16.0 98.1 26.7 99.0 16.0 97.9

The table lists the selected sampling rates fS, the corresponding sampling intervals Dt and sampling-to-central frequency ratios fS/fC, as well as

the peak amplitudes A of the main signal peak in each graph, sampled in the worst-case scenario and shown as a percentage of the actual peak

amplitudes of the original analog signals
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that the higher the sampling-to-central frequency

ratio fS/fC is, the lower the maximum peak amplitude

error becomes. As an example, the central frequen-

cies of the sine function and the generic wavelet are

both equal to 0.5 GHz (Fig. 3d, f), and the corre-

sponding sampling errors are very similar for equal

sampling rates (Fig. 3g, i, Table 2). On the other

hand, the Ricker function has a lower central

frequency (i.e. 0.3 GHz, Fig. 3e), and the higher

sampling-to-central frequency ratio results in lower

sampling errors for the same sampling rates (Fig. 3h,

Table 2). The sampling analysis shows that the

maximum peak amplitude error is lower than 5%

for sampling rates above 4.95 GHz for the sine

function, which is about 10 times the signal central

frequency (i.e. 0.5 GHz, Fig. 3d); above 3.62 GHz

for the Ricker function, which is around 12 times the

signal central frequency (i.e. 0.3 GHz, Fig. 3e); and

above 5.12 GHz for the generic wavelet, which is

more than 10 times the signal central frequency (i.e.

0.5 GHz, Fig. 3f).

3.2. Synthetic CMP Gather Analysis

Quantitative geophysical interpretation methods

have been integrating and gradually substituting

qualitative analyses, particularly in reflection seis-

mics and GPR applications. Such methods require

measurements of the analyzed physical phenomena

with a sufficient degree of accuracy to obtain valid

quantitative information. In this section, we analyze

the behavior of the peak amplitude error in the

synthetic CMP GPR gather shown in Fig. 4, which

was constructed using the GPRMax 2-D software

(Giannopoulos 2005). The input 1-D model consists

of three layers, respectively, 5, 3, and 4 m thick,

above a semi-infinite base layer. Each layer is

homogeneous, lossless, non-magnetic, and non-dis-

persive, with EM velocities, respectively, equal to

27.9, 17.0, and 21.3 cm/ns in the three layers, and

12.2 cm/ns in the base layer. The simulated survey

consists of a ground-coupled 400 MHz bistatic GPR

system, transmitting Ricker wavelets with an offset

which varies from 0 (i.e. coincident transmitter and

receiver) to 12 m, increasing by 0.2 m at each step.

Figure 4
Analysis of the peak amplitudes sampled along three reflections in a synthetic CMP GPR gather. Positive amplitudes in the GPR profile are

marked in green, negative amplitudes in red. The graphs show the variations, at different sampling rates, of the peak amplitudes along the

reflections R1 (a), R2 (b), and R3 (c), given as a percentage of the amplitudes picked with the highest sampling rate in each trace. The

normalized frequency spectrum of the zero-offset trace, sampled with the highest sampling rate, is also shown (d). The sampling rates used for

the analysis are equal to 2.4 (gray), 3.0 (green), 5.0 (red), 8.0 (blue), and 17.0 (black, used as reference) GHz, all well above the Nyquist–

Shannon threshold of the simulated signal (i.e. twice the maximum signal frequency in d), thus avoiding aliasing effects
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We analyzed the peak amplitudes of the main

phases of the three recorded reflections (marked as

R1, R2, and R3 in Fig. 4), using sampling rates equal

to 2.4, 3.0, 5.0, 8.0, and 17.0 GHz. These sampling

rates are all well above the Nyquist–Shannon thresh-

old of the simulated signals (i.e. twice the maximum

signal frequency in Fig. 4d), and they all satisfy the

Nyquist–Shannon theorem as well as the threshold of

six times the central frequency (i.e. six times

0.4 GHz) recommended by Jol (2009) for GPR

surveys. The sampled peak amplitudes are shown in

Fig. 4a–c as a percentage in each trace of the

amplitudes obtained with the 17.0 GHz sampling

rate, which are used as reference. We can notice a

general decrease in the variability of the sampled

peak amplitudes, and, therefore, of the maximum

peak amplitude error, with increasing sampling rates.

This behavior is also highlighted in Table 3, which

shows the minimum sampled amplitudes in Fig. 4a–c

for each sampling rate, given as a percentage of the

amplitudes picked with the highest sampling rate.

The results in Table 3 show maximum peak ampli-

tude errors as high as 18.6% (2.4 GHz, gray line),

12.1% (3.0 GHz, green line), 4.4% (5.0 GHz, red

line), and 1.7% (8.0 GHz, blue line). In Fig. 4a–c, we

can notice a few instances in which the sampled peak

amplitude is actually higher at lower sampling rates,

showing that even the highest sampling rate does not

necessarily guarantee the recovery of the actual peak

amplitude, although the resulting errors are negligi-

ble. The sampling analysis in Fig. 4 shows that the

peak amplitude error is mostly random in nature, and

it depends on the selected sampling interval, as well

as the shape and arrival time of the analyzed signal

peak. For example, it is interesting to notice the

smaller peak amplitude errors in Fig. 4b, c with

respect to Fig. 4a, which are most likely caused by a

slight elongation of the simulated wavelet with travel

time. Specifically, a larger time interval corresponds

to a lower central frequency for the analyzed signal

phase, and consequently the higher sampling-to-

central frequency ratio results in a lower maximum

peak amplitude error, as previously discussed.

As it is shown in the following section, a planar

reflection, combined with a regular sampling grid and

a laterally constant wavelet, would result in a quasi-

periodic behavior of the peak amplitude error. In the

extreme case of a perfectly flat reflection, the peak

amplitude error would be laterally constant. How-

ever, in the general case a reflection rarely has a

perfectly planar geometry or a laterally constant

wavelet, if ever, due to factors like the subsurface

stratigraphy, signal attenuation, EM velocity distri-

bution, and impedance contrasts, as well as noise and

interference. The resulting quasi-random behavior of

the peak amplitude error prevents any possible

prediction or estimation of sampling-related signal

distortions. However, the results in Table 3 show that

the maximum peak amplitude error is lower than 5%

in all the reflections for sampling rates equal to at

least 5.0 GHz, which is more than 12 times the signal

central frequency (i.e. 0.4 GHz, Fig. 4d). Therefore,

we can limit the peak amplitude error during data

acquisition by increasing the sampling rate above this

easily identifiable threshold, which is linked to the

central frequency of the transmitted signal.

Table 3

Analysis of the maximum peak amplitude error for the sampled amplitudes shown in Fig. 4

Sampling rate Sampling interval Frequency ratio Reflection

R1 R2 R3

fS (GHz) Dt (ns) fS/fC Amin (%) Amin (%) Amin (%)

2.4 0.42 6.0 81.4 84.1 87.7

3.0 0.33 7.5 87.9 90.8 92.1

5.0 0.20 12.5 95.6 96.8 97.0

8.0 0.13 20.0 98.3 98.7 99.0

17.0 0.06 42.5 100.0 100.0 100.0

The table lists the selected sampling rates fS, the corresponding sampling intervals Dt and sampling-to-central frequency ratios fS/fC, as well as

the minimum sampled peak amplitudes Amin, given as a percentage of the corresponding peak amplitudes sampled with the highest sampling

rate, which are used as reference
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3.3. Amplitude Inversion Analysis

In this section, we study the effects of the

sampling rate on the quantitative analysis of a GPR

data set. Specifically, we apply an amplitude inver-

sion algorithm (Forte et al. 2014; Dossi et al. 2016) to

a synthetic CO GPR data set, which was constructed

using the GPRMax 2-D software (Giannopoulos

2005), and analyze the changes in the reconstructed

thickness and EM velocity distribution with different

sampling rates. The input 2-D model contains four

layers (marked as L1–L4 in Fig. 5), with EM

velocities, respectively, equal to 24.0, 20.0, 30.0,

Figure 5
Amplitude inversion of a synthetic CO GPR profile. The figure shows the synthetic model with the simulated EM velocity distribution (a); and

the resulting GPR profile (b) with superimposed the peak amplitudes selected for the inversion. Positive amplitudes in b are marked in green,

negative amplitudes in red. The figure also shows the EM velocities estimated at different sampling rates for the layers L2 (c), L3 (d), and L4

(e), as well as the reconstructed total thickness of the original model (f). These quantities are shown as variations from the values obtained

with the highest sampling rate. The sampling rates used for the analysis are equal to 2.4 (gray), 3.0 (green), 5.0 (red), 8.0 (blue), and 17.0

(black, used as reference) GHz, all well above the Nyquist–Shannon threshold of the simulated signal (i.e. twice the maximum signal

frequency in Fig. 4d), thus avoiding aliasing effects
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and 17.0 cm/ns, above a semi-infinite base layer with

an EM velocity of 22.0 cm/ns (Fig. 5a). Similarly to

the previous model, the simulated survey consists of a

ground-coupled 400 MHz GPR system, transmitting

Ricker wavelets with a constant 0.7 m offset and a

0.1 m trace interval. The resulting synthetic data set is

shown in Fig. 5b, with superimposed the picked

amplitudes used in the inversion. The high-frequency

noise visible in the GPR profile below L2 is caused by

the geometrical discretization of the dipping reflec-

tors (cell size equal to 2.5 9 2.5 cm), which can

affect the reflected amplitudes, resulting in slight

random lateral changes in the reconstructed EM

impedance contrasts.

Similarly to the previous CMP analysis, we use

sampling rates equal to 2.4, 3.0, 5.0, 8.0, and

17.0 GHz, all well above the Nyquist–Shannon

threshold of the simulated signals (i.e. twice the

maximum signal frequency in Fig. 4d), thus avoiding

aliasing effects. In this analysis, we study how the

reconstructed EM velocities change with the sam-

pling rate in the layers L2 (Fig. 5c), L3 (Fig. 5d), and

L4 (Fig. 5e). The EM velocity in layer L1 is required

as an input of the applied inversion algorithm (Forte

et al. 2014; Dossi et al. 2016), and, therefore, it is not

included in the analysis. Moreover, we also study the

variations in the estimated total thickness of the

model (Fig. 5f), which combines the changing EM

velocities in each layer with the recorded arrival

times, which can also slightly vary with different

sampling rates. The estimated quantities in Fig. 5c–f

are shown as variations from the results obtained in

each trace with the 17.0 GHz sampling rate, which

are used as reference. Similarly to the amplitude

analysis in the previous CMP model, we can notice a

general decrease in the variability of the estimated

quantities, with increasing sampling rates. This

behavior is also highlighted in Table 4, which shows

the maximum changes in the estimated quantities in

Fig. 5c–f for each sampling rate, given as variations

from the results obtained with the highest sampling

rate. The analysis shows maximum EM velocity

errors as high as 0.26 (8.0 GHz, blue line), 0.60

(5.0 GHz, red line), 1.63 (3.0 GHz, green line), and

2.91 (2.4 GHz, gray line) cm/ns. As previously

discussed, the quasi-periodic lateral trends of the

EM velocity errors (Fig. 5c–e) are caused by the

combination of the simulated planar reflections

(Fig. 5b), characterized by laterally constant wave-

lets, with the regular sampling grid. In the case of the

shallowest reflection, which is perfectly flat (Fig. 5b),

the laterally constant peak amplitude errors produce

the laterally constant EM velocity errors in the

second layer (Fig. 5c). In the previous CMP analysis

(Fig. 4), the hyperbolic reflections instead caused

more irregular peak amplitude errors.

The sampling-related EM velocity errors, com-

bined with the arrival times of each reflection, result

in the total thickness errors shown in Table 4. The

largest error is equal to 0.28 m, which corresponds to

3.3% of the total thickness of the model (i.e. 8.5 m,

Fig. 5a), and it is obtained with the 2.4 GHz sampling

rate. However, we have to take into account the fact

that this result combines both positive and negatives

Table 4

Analysis of the maximum changes in the estimated quantities shown in Fig. 5c–f

Sampling rate Sampling interval Frequency ratio Layer Total thickness

L2 L3 L4

fS (GHz) Dt (ns) fS/fC |Dvmax| (cm/ns) |Dvmax| (cm/ns) |Dvmax| (cm/ns) |DZmax| (m)

2.4 0.42 6.0 0.05 2.91 2.23 0.28

3.0 0.33 7.5 0.23 1.43 1.63 0.24

5.0 0.20 12.5 0.07 0.60 0.60 0.07

8.0 0.13 20.0 0.02 0.26 0.25 0.04

17.0 0.06 42.5 0 0 0 0

The table lists the selected sampling rates fS, the corresponding sampling intervals Dt and sampling-to-central frequency ratios fS/fC, as well as

the maximum changes in modulus in the reconstructed EM velocities Dvmax and the total thickness DZmax, with respect to the values estimated

with the highest sampling rate, which are used as reference
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EM velocity errors (Fig. 5c–e). Therefore, the result-

ing overestimations and underestimations of the

various layer thicknesses tend to compensate each

other in the calculation of the total thickness of the

model. As an example, if we combine the maximum

velocity errors in each layer in Table 4 with the

arrival times of the central trace of the synthetic GPR

profile (Fig. 5b), assuming that they are all negative

(i.e. we underestimate the EM velocity in all layers),

the total model thickness will be underestimated by

0.5 m (i.e. a 5.9% error).

It is important to point out that other possible

uncertainty factors can influence the quantitative

analysis of a GPR data set, which would then be

added to the effects of sampling-related peak ampli-

tude errors. For example, an erroneous input EM

velocity of the shallowest layer can greatly affect the

inversion results in the deeper layers due to error

propagation, while distortions in the input amplitudes

can also be caused by noise and interference, as well

as possibly inaccurate amplitude recovery functions

(Forte et al. 2014; Dossi et al. 2016). However,

sampling-related peak amplitude errors in aliasing-

free data sets can still be significant, and they can be

greatly reduced during data acquisition by simply

increasing the sampling rate above a clearly defined

threshold. In this particular case, the results in

Table 4 show that the maximum EM velocity error

is lower than 0.5 cm/ns, which is the typical accuracy

limit even for multi fold GPR acquisitions (Tillard

and Dubois 1995), in all layers for sampling rates

higher than 5.0 GHz, which is more than 12 times the

signal central frequency (i.e. 0.4 GHz, Fig. 4d).

4. Discussion

The previous analyses show that significant peak

amplitude errors may result from the sampling pro-

cess even in absence of aliasing effects, and such

amplitude distortions can affect any quantitative

analysis of the recorded data sets. For example, in

Fig. 4 the peak amplitude errors reach values as high

as 18.6% of the actual peak amplitudes, while in

Fig. 5 the EM velocity changes resulting from peak

amplitude errors can potentially lead to a 5.9% error

in the reconstructed thickness of the analyzed syn-

thetic model.

Peak amplitude errors mainly depend on the

sampling rate selected during data acquisition, as well

as the shape and arrival time of the analog wavelet to

be digitized. Given such factors, these sampling-re-

lated distortions can be irregularly distributed within

the recorded data set, potentially showing a quasi-

random behavior even along the same reflection

(Fig. 4), thus preventing any possible prediction or

estimation. This is particularly true for geophysical

wave field data, where the spectral content of the

signal is influenced by several factors. For example,

different frequency components of the signal spec-

trum can be affected by selective filtering during

propagation, as well as by dynamic and kinematic

dispersion. As a general trend, for a fixed sampling

rate, such effects result in overall larger peak

amplitude errors in the shallowest reflections, which

are usually characterized by the highest frequency

components. This behavior was highlighted in Fig. 4,

where the smaller variability of the peak amplitude

error in the deeper reflection was attributed to a slight

elongation of the simulated wavelet, resulting in a

higher signal-to-central frequency ratio and conse-

quently in a lower maximum peak amplitude error.

As previously discussed, interpolation and re-

sampling of the digitized signals offer only limited

solutions to the amplitude distortion problem. In fact,

the original analog signal to be digitized is unknown,

since it depends on the subsurface EM properties at

the particular time and location of the GPR survey,

and the only objective data available are limited to

the sampled values, while any information between

samples is unrecoverably lost. Therefore, the accu-

racy of the analog signal reconstructed through

interpolation cannot be verified in real data sets,

while its re-sampling simply reintroduces the sam-

pling-related amplitude distortion problem.

It is important to point out that several factors,

other than sampling, can distort the recorded peak

amplitudes, including both coherent and random

noise, signal interference, as well as inaccurate

amplitude recovery functions, resulting in erroneous

estimations of the subsurface EM impedance con-

trasts. However, the uncertainty introduced by

sampling-related peak amplitude errors in aliasing-
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free data sets can still be significant. Furthermore,

these errors can be greatly reduced during data

acquisition by simply increasing the sampling rate

above a clearly identifiable threshold. As an example,

white noise is added in Fig. 6 to the previously ana-

lyzed generic wavelet (Fig. 2a), while also increasing

the sampling rate. Specifically, the signal is sampled

with a 5.0 GHz sampling rate, which is 10 times the

signal central frequency (i.e. 0.5 GHz, Fig. 2c), and

the amplitudes are sampled at the same time instants

in all three cases presented in Fig. 6. The maximum

amplitudes of the added white noise are, respectively,

equal to 1% (Fig. 6a), 5% (Fig. 6c), and 10%

(Fig. 6e) of the peak amplitude of the original analog

Figure 6
Analysis of the effects of white noise on the synthetic wavelet shown in Fig. 2a, with a sampling rate equal to 5.0 GHz in all three cases,

which is ten times the signal central frequency (i.e. 0.5 GHz, Fig. 2c). The figure shows the linearly interpolated digitized series (black line),

and the resulting difference (red line) with respect to the original analog signal, affected by white noise equal to 1% (a), 5% (c), and 10%

(e) of the signal peak amplitude. The figure also shows the corresponding normalized amplitude spectra in b–d, which are also distorted by the

presence of the noise
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wavelet. The added noise causes visible distortions in

the frequency spectrum (Fig. 6b, d, f), nevertheless

the main energy band of the signal is still dominant.

As expected, the higher sampling rate causes the

maximum peak amplitude error to be consistently

lower in Fig. 6 (i.e. 5.2% without noise, Table 2)

with respect to Fig. 2b (i.e. 30.9%, with the sampling

rate equal to 2.0 GHz). The white noise does add to

the amplitude uncertainty; however, the maximum

peak amplitude error is still present, being dominant

in Fig. 6a with respect to the noise (i.e. 5.2% against

1%), comparable in Fig. 6c (i.e. 5.2% against 5%),

and lower only in Fig. 6e (i.e. 5.2% against 10%).

Moreover, if we sampled the signals in Fig. 6 at a

lower rate (e.g. 2.0 GHz), the maximum peak

amplitude error would be dominant in all three cases

(i.e. 30.9% against 1, 5, and 10%).

As previously discussed when analyzing Fig. 2,

not all the signal peaks are sampled in the worst-case

scenario, and different events may show different

frequency contents, which would change the local

peak amplitude errors. Moreover, in the smaller peaks

the added white noise can be consistently dominant

due to the lower signal-to-noise ratio. For example, if

we sample the first signal peak in Fig. 2a in the

worst-case scenario with a sampling rate equal to

2.0 GHz, the different frequency content results in a

maximum amplitude error equal to 35.7%, while the

added white noise in Fig. 6e would be equal to 59.1%

of the local peak, due to its lower amplitude. In other

words, as expected, lower signal-to-noise ratios pro-

duce larger signal distortions.

The issues discussed in this paper have a general

validity and can have a remarkable impact on real

geophysical data sets, especially when reflections

have to be quantitatively analyzed, inverted, and

recovered using a gain function. Therefore, quanti-

tative analyses based on the recorded amplitudes, like

in the cases of AVO (e.g. Ostrander 1984), attributes

(e.g. Chopra and Marfurt 2007), and inversion cal-

culations (e.g. Sen 2006), require the application of

sampling rates well above the Nyquist–Shannon

threshold. The synthetic data analyses presented in

this paper indicate that a sampling rate equal to at

least 12 times the central frequency of the recorded

signal will consistently limit the peak amplitude error

within 5%. We showed in the CO analysis (Fig. 5)

that the variability of the inversion results rapidly

increases with sampling rates lower than such

threshold. Similarly, the amplitude analysis per-

formed on the CMP synthetic data set (Fig. 4)

indicates that a sampling rate of about 12 times the

central frequency can be considered a good practical

choice. Different sampling rates may be selected,

based on the specific objectives of the survey and on

the effective importance of the resulting peak

amplitude errors for the subsequent data analysis.

5. Conclusion

The presented analysis of the amplitude behavior

of GPR signals, with specific reference to source

wavelet characterization, amplitude decay with dis-

tance, and sampling errors, leads the following

conclusions:

1. it is possible to estimate the signal emitted by a

transmitting antenna (disregarding system insta-

bilities or jitter) by analyzing its reflection from an

air-metal interface. After correcting for spreading

losses, we can estimate the reference amplitude of

a specific antenna and compare it to the recorded

reflections in the calculation of the subsurface EM

impedance contrasts, taking into account possible

changes in the radiation pattern due to the

refractive focusing associated with the air–ground

interface;

2. before being able to compare the reference and

reflected amplitudes, we have to minimize possi-

ble sampling-related amplitude errors. Such errors

affect the digitized signal in an unpredictable way

and re-sampling the data through interpolation

offers only limited and unverifiable solutions to

the problem;

3. the uncertainty introduced by peak amplitude

errors is comparable to other factors, such as

noise and interference, and it can significantly

impact the quantitative amplitude analysis and

inversion of any GPR data set. Nevertheless, while

noise and interference are generally uncontrollable

and intrinsic to any recorded data set, sampling-

related signal distortions can be greatly reduced by
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increasing the minimum threshold for the sam-

pling rate;

4. based on our analysis, we recommend using

during data acquisition a sampling rate at least

12 times the signal central frequency for most

quantitative applications, which is higher than the

commonly adopted standards. This rate not only

ensures the avoidance of aliasing effects, in

compliance with the Nyquist–Shannon theorem,

but it also allows to limit the peak amplitude error

within 5%. From the operational point of view, the

available sampling and storage technologies do

not impose severe limitations to the choice of

higher sampling rates in most GPR applications,

even though it could still be a problem for large

3-D reflection seismic data sets.

The aforementioned problems and the subsequent

conclusions have a general validity, and they are true

for the sampling of any physical phenomenon as a

function of either time, space, or any other parameter.

They furthermore apply to data sets with variable

sampling intervals.
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