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Preface

I have tried to present the subject of biophysics from a conceptual
perspective. This needs to be stated because biophysics is too often
defined as a collection of physical methods that can be used to study
molecular and cellular biology. This technical emphasis often fosters
narrowness, and in the worst cases leads to shallowness, where
sophisticated measurements are interpreted with little consideration
for the physical principles that govern the special complexities of the
macromolecular world of biology.

The conceptual emphasis of this book has lead to a heavy dose of
theory. Theoretical analysis is essential in a conceptual approach, but
I must admit that the theoretical emphasis of this book also reflects
my own personal fascination with the insights that can be gained by
applying physical theory to biological questions. In developing theo-
retical topics I have tried to be practical. I have steered toward more
basic forms of mathematics wherever possible. Much of the analysis
is at the level of an introductory calculus course. Where more sophis-
ticated mathematics is involved I have tried to teach the mathematics
in parallel with the development of the subject at hand. Six mathe-
matical appendices have been added to help the reader. These may be
useful guides, but are certainly not rigorous or thorough. Readers
who desire a better background in mathematics will have to find
appropriate texts that treat subjects such as matrices and partial
differential equations. The relevant chapters in a book on mathema-
tical methods for physics or chemistry will probably fill the gap
adequately.

The level of the mathematics is not the critical issue. The most
essential pre-requisite here is physical chemistry. Everything has
been written with the assumption that the reader has taken an
undergraduate course that introduces thermodynamics, kinetics,
and statistical mechanics. Some of the essentials are reviewed but
my summaries cannot substitute for some intensive study focused on
these topics. I also assume that the reader has had some exposure to
biochemistry.

The concepts developed here are often quite general, and illustra-
tions with specific examples are vital. Finding suitable examples has
been a challenge. I have tried to avoid excessive reliance on examples
from areas closer to my own research such as membranes and ion
channels, but this has been hard to avoid. The concept teaches the
example as often as the example teaches the concept. In order to
make this book useful to an audience beyond those who share my
particular research interests, I have attempted to cast a wide net and
roam far and wide to present examples from the many different fields
that biophysicists study.

Much of this book presents subjects that are fundamental but
have not yet found their way into textbooks. Distilling such work



and rendering it in an accessible form requires difficult decisions to
be made about organization and topic selection. I can only hope that
this has been successful. I am painfully aware of the many interesting
and important aspects of biophysics that I have not written about.
However, there is already more than enough here for a one semester
course for advanced undergraduates and beginning graduate stu-
dents. I can only hope that studying this book will bring the many
omitted topics within reach of the initiated students.

The material covered in this book varies in difficulty. Sections that
are more difficult and not essential for continuity are designated
with a star (*).
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Chapter 1

Global transitions in proteins

The relation between structure and function is central to molecular
biology. But molecular structure can mean different things, especially
when dealing with complex biological molecules. One can know the
chemical structure of a molecule, how the atoms are connected by
covalent bonds, but have no idea of the conformational state, how the
atoms are arranged in space. The conformational state of a molecule
has a profound impact on what it does, and much of the work in
molecular biophysics deals with understanding molecular conforma-
tions, both what they are and how they perform biological functions.

The conformational state of a molecule can be studied at differ-
ent levels. One might have a vague notion of its general shape, or
one might have a detailed picture with the position of every atom
specified. Thinking in terms of detailed structure is more difficult
but more powerful. Some approaches to this problem will be taken
up in later chapters. Here, we will start with something simple,
introducing an approach to protein conformations that does not
depend on all the structural details.

The approach of this chapter is based on the idea that proteins have
‘‘global’’ states. Global states are defined in terms of a protein’s func-
tional capability. We will assume that a protein has a few – perhaps just
two – of these global states. Global states can interconvert, in what we
will call global transitions. In terms of structure the global state is a
black box. Without dealing explicitly with structure, the simplifying
assumption of global states and transitions generates a robust quanti-
tative framework for treating functional transitions of proteins.

These ideas can be applied to virtually any area of molecular biology.
Conformational states of proteins are the basic building blocks in
mechanistic models, and interconversions between these states are the
basic molecular signaling events. Examples include the activation of
membrane receptors, the regulation of gene expression, the control of
cell division, the gating of ion channels, and the generation of mechan-
ical force. This chapter focuses on two well-defined types of transitions,
one induced by temperature and the other by voltage. These transitions
are very different from an experimental point of view, and only rarely
have they been studied in the same protein. However, from the



theoreticalpointofviewwecanseestrikingparallels,andstudyingthese
two cases together provides a deeper understanding of the general
nature of functional transitions in proteins.

1.1 Defining a global state

The general strategy for now is to play down structural details, but we
still need to define a global state rigorously. This will help make us
aware of how the global state can at least in principle be related to a
protein’s structure. Global states are a coarse-grained view but they
can be related to fine-grained views. The fine-grained view is based on
what will be called microstates. A microstate has a conformation that
is defined in great detail. We might know the positions of all of the
atoms, or the dihedral angles of all of the rotating bonds (Chapter 3).
A global state is envisioned as encompassing a large number of micro-
states. The microstates interconvert rapidly and the global state
reflects the average behavior of these microstates. This view is taken
directly from statistical mechanics. A collection of microstates forms
an ensemble, and statistical mechanics provides the conceptual tools
for understanding a global state in terms of its constituent microstates.

The free energy of a global state takes into account the internal
potential energy of each of the microstates as well as the entropy
arising from the conformational disorder of interconversions
between microstates. We can express the free energy of a system
containing N independent molecules as

G ¼ �kT ln ðQ NÞ (1:1)

where Q is the partition function of the molecule and kT is
Boltzmann’s constant times temperature. The partition function is
a sum over a set of microstates included in one global state

Q ¼
Xn GS

i

e�Ei=kT (1:2)

Here Ei is the energy of the ith microstate and e�Ei=kT is its Boltzmann
weight. When we focus on one particular global state, we limit this
sum to a selected subset, or subensemble of microstates. This is
indicated by the subscript GS; so nGS is the total number of micro-
states comprised by a given global state. We can thus distinguish
different global states formally by summing over different, non-
overlapping subsets of microstates.

The Boltzmann distribution can be used to obtain the probability
of finding a particular microstate, j, with energy Ej, among all of the
possible microstates of a given global state

Pð jÞ ¼ e�Ej=kT

Pn GS

i
e�Ei=kT

(1:3)
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The sum in the denominator is the partition function of Eq. (1.2).
Here, it normalizes the probability function so that the probabilities
all add up to one. In this context, as a sum over probabilities, we can
see how the partition function embodies the notion of thermo-
dynamic stability. A global state with a greater partition function has
a higher probability of occurring, and so will have a lower free energy.

The definition of a microstate is very flexible and can be
expanded to include many important features. For example, each
microstate has an entropy resulting from the disordering effect of
bond vibrations. To take this into account we can extend the sum in
Eq. (1.2) to include vibrational energy levels. Microstates of a protein
can be further distinguished by different positions and orientations
of the surrounding water molecules, and possibly by ions in solu-
tion. If these contributions are included in the summation in
Eq. (1.2), then the free energy in Eq. (1.1) will be more accurate.
These are formal considerations that help us visualize in broad
terms how different levels of detail can be incorporated into the
picture. The free energy of a global state does indeed depend on all
of these complex features. We will recognize these dependencies,
but for now we will not deal with them explicitly.

An alternative way to think about the partition function of a
global state is to view the discrete states in Eq. (1.2) as a continuum.
The sum then becomes an integral over a specified range of all the
internal coordinates of the molecule

Q ¼
Z
GS

e�EðrÞ=kTdr (1:4)

Here r is a vector containing the positions of all of the atoms, and E(r) is
the potential energy of the molecule as a function of these positions.
Equation (1.4) is referred to as the classical configuration integral
(McQuarrie, 1976). The range of integration, defined as GS, specifies
a global state by limiting the region of coordinate space. This is
analogous to limiting the total number of microstates to a subset of
nGS microstates in Eq. (1.2). Limiting the range of the integration of
Eq. (1.4) and limiting the range of the summation in Eq. (1.2) are
equivalent ways of dividing the vast state space of a protein into
distinct regions corresponding to different global states.

It must be mentioned that Eqs. (1.2) and (1.4) leave out the
contribution made by kinetic energy. This does not matter for our
purposes because in classical physics (i.e. no quantum mechanical
effects) every atom has an average kinetic energy of 3/2 kT. As long
as classical physics is obeyed this will be the same for all micro-
states. For strong covalent bonds, quantum effects are important
and the vibrational kinetic energy for an atom can be less than
3/2 kT. However, this contribution is not likely to change much
during global transitions because the covalent bonds are not broken.
These fortunate circumstances make Eqs. (1.2) and (1.4) especially
well-suited for studying macromolecules in biophysical problems.

1.1 DEFINING A GLOBAL STATE 3



For now we have no intention of actually calculating the parti-
tion function of a protein. We will accept the existence of the free
energy of a global state, defined in these terms. The free energy
includes all of the energetic terms that make one global state more
stable than another for a particular set of conditions. Without a
complete accounting of all these terms we can still develop useful
theories for what influences global transitions in proteins.

Models based on the idea of global states are very popular in
molecular biology, but the conceptual basis and underlying assump-
tions often go unappreciated. In fact, we do not actually have a good
reason to expect a priori that a protein will have just a few discrete
global states, or that the behavior of a protein can be described well in
these terms. One could imagine that functional changes in proteins
involve shifts in the distribution of microstates. Each functional state
could have access to all the same microstates, but would visit some
more frequently than others. Thus, we have two extreme views of
functional transitions in proteins. Global transitions at one end of the
spectrum represent transitions between distinct nonoverlapping
populations of microstates. The other extreme is a transition entailing
a shift in the distribution within a single well-connected population of
microstates. Deciding which of these extremes better approximates
reality requires experiments, and some of these will be discussed as
the theories are developed.

The variable Ei in the above expressions is the energy of a single
molecule. However, we will often find it more convenient to use the
energy of one mole of molecules. We can use these units provided that
we replace Boltzmann’s constant, k, with the gas constant, R. One often
has to switch between molecular and molar energy units, and this is
usually easy if we keep track of whether we are using k or R . To have
some sense for energy magnitudes on the molecular versus the molar
scale, consider the value of kT and RT for a physiological temperature
of 300 K: kT¼4.11� 10�21 J and RT¼2.47� 103 J (RT also equals
590 calories, and these units are more commonly used with moles).
Energies are divided by these numbers when the Boltzmann distribu-
tion is used to determine the probability of a state, so they are well
worth remembering. Therefore kT and RT are the fundamental refer-
ence points for energy. The energy of a state relative to these reference
points determines how likely we are to encounter that state.

1.2 Equilibrium between two global states

Consider an equilibrium between two global states, denoted as
A and B, as shown in Scheme (1A) below

A! B (1A)

This is just like a chemical isomerization. Global state A has a molar
free energy Ga and global state B has a molar free energy Gb.

4 GLOBAL TRANSITIONS IN PROTEINS



The molar free energies of solutions with certain concentrations of
A or B are then

Ga ¼ G o
a þ RT ln½A� (1:5a)

Gb ¼ G o
b þ RT ln½B� (1:5b)

where Ga
o and Gb

o are the molar free energies of the standard state
(by convention a one molar solution). The free energy change for
conversion from A to B is then

�G ¼ Gb � Ga

¼ G o
b � G o

a þ RT ln
½B�
½A�

(1:6)

At equilibrium �G ¼0. Taking the equilibrium concentrations as
[A]eq and [B]eq, we can relate these to the free energy difference
between the two standard states as

�Go ¼ �RT ln
½B�eq

½A�eq

¼ �RT ln Keq (1:7)

where �Go¼Gb
o�Ga

o, and Keq is the equilibrium constant for inter-
conversions between A and B. Taking the exponential of this equa-
tion gives

e��Go=RT ¼
½B�eq

½A�eq

(1:8)

We will drop the subscripts ‘‘eq’’ after this point because all con-
centrations are equilibrium values for the rest of the chapter.

Equation (1.8) looks very much like a Boltzmann distribution,
which gives the ratio of the relative probabilities of two microstates
as an exponential function of the difference in their energies.
A corresponding relation for the relative probabilities of two micro-
states can be derived from Eq. (1.3). Likewise, Eq. (1.8) can be derived
directly from Eq. (1.3) by summing over the microstates for each of
the two global states and then taking the ratio of the two sums. This
connection emphasizes the point that the equilibrium represented
by Eq. (1.8) reflects the relative stability of two distinct collections of
microstates. Equation (1.8) is a useful starting point for introducing
assumptions about energies into models for global transitions. The
general strategy in much of what follows is to make assumptions
about �Go and use Eq. (1.8) to explore the consequences.

1.3 Global transitions induced by temperature

The thermal denaturation of a protein provides an excellent example of
a global transition. At low temperatures a folded state is favored in
which a relatively small number of microstates have a similar structure
corresponding to a compact well-defined configuration (Fig. 1.1). This

1.3 GLOBAL TRANSITIONS INDUCED BY TEMPERATURE 5



configuration is maintained by a large number of specific contacts
between the residues (Section 2.13). At high temperatures the protein
unfolds (Fig. 1.1). This denatured state has a very large number of
microstates corresponding to all the different configurations of a ran-
domly coiled chain (Chapter 3). The transition is reversible, so that
cooling restores the folded state.

It will be seen shortly that the difference in number of microstates
in these two global states is what makes the transition temperature
sensitive. In keeping with the spirit of this chapter in which structural
details are played down, we simply accept the situation as given.
Chapter 3 uses statistical mechanics to develop models for this process.

To understand how temperature influences thermal denatura-
tion, we divide the free energy change into enthalpy and entropy

�Go ¼ �Ho � T�S o (1:9)

The enthalpy can be loosely connected with the contacts that stabi-
lize the native, folded state. The entropy represents the contribu-
tion arising from the greater disorder of the unfolded state. This is
an oversimplification as the contact energies are not purely enthal-
pic. More will be said about this in Chapter 2, but the separation of
enthalpy and entropy along these lines is useful and appropriate for
the present discussion of thermal unfolding. It is also important to
mention that contacts can stabilize the unfolded state. The unfolded
protein has no real structure to stabilize, but stronger contacts
between buried amino acids and water or another solvent in the
unfolded state factor into �Ho. This is the mechanism of denaturant
action (Section 1.7).

Assuming that �Ho and �So themselves are independent of tem-
perature allows us to focus on the term T�So as the drive for a
temperature-induced shift in the equilibrium between A and B.
There is a transition temperature, T*, where the folded and unfolded
states are present in equal concentrations. At that point �Go¼0, so by
Eq. (1.9) �Ho¼ T*�So. Below T*, �Ho> T�So, and �Go is positive so
that A is more stable. Above T*, �Ho< T�So and �Go is negative so B
is more stable. This is readily seen by combining Eqs. (1.8) and (1.9).

½B�
½A� ¼ eð��Ho þ T�S oÞ=RT (1:10)

Fig: 1:1: In the thermal

denaturation of a protein,

a compactly folded native state

undergoes a global transition to

a randomly coiled denatured state.
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Practical applications often proceed by defining a variable x as the
fraction of B or equivalently, the extent of the conversion from A to B.

x ¼ ½B�
½B� þ ½A� (1:11)

With the aid of Eq. (1.10), x can be expressed in terms of �Go.
Factoring [B] from the numerator and denominator gives

x ¼ 1

1þ ð½A�=½B�Þ (1:12)

Substituting Eq. (1.10) then gives

x ¼ 1=ð1þ e
�Ho

RT
��So

R Þ (1:13)

At low temperatures the positive enthalpy term is larger, so the
exponential is large, and x is close to zero. At high temperatures the
negative entropy term dominates, so the exponential is small and x
is close to one. Thus, Eq. (1.13) expresses the conversion from x � 0,
where [A]>> [B], to x � 1, where [B]>> [A].

1.4 Lysozyme unfolding

Thermal denaturation has been studied extensively in an effort to
determine how different forces contribute to the stability of the
native, folded state of a protein. These forces will be discussed in
more detail in Chapter 2, but for the present purposes, these kinds
of experiments provide a good illustration of how global transitions
are modified by structural changes.

The enzyme lysozyme from T4 bacteriophage was subjected to a
screen to select temperature-sensitive mutants. Lysozyme unfolds or
denatures as the temperature is raised, and the unfolded state has no
enzymatic activity. In temperature-sensitive mutants denaturation
occurs at lower temperatures than in the wild type enzyme. Mutants
with lower melting points identified residues that are critical to ther-
mal stability. One of these was threonine 157. Using site-directed
mutagenesis, this threonine was replaced with a number of different
amino acids (13 in all) (Alber et al., 1987).

In temperature-sensitive mutants the free energy difference
between the folded and unfolded states is altered. This can occur
through changes in the strength of the contacts of the amino acid
side chain with its neighboring residues, leading to a change in
enthalpy. Alternatively, the new amino acid side chain may have
more or less conformational freedom, thus changing the entropy. It
was found that T * dropped for every amino acid replacement of
threonine 157. When the mutations were studied by calorimetry
(Connelly et al., 1991) it was found that the destabilization reflected
both reductions in �Ho and increases in �So.
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Figure 1.2 shows calculated melting curves for the wild type
protein and a few mutants. As the temperature is raised the protein
absorbs heat. This can be measured as enthalpy, using a calorimeter
that scans temperature and records the heat absorption. These plots
are based on Eq. (1.13), using experimentally measured values of
�Ho and �So. The variable x computed in this way from Eq. (1.13) is
then multiplied by �Ho to obtain the excess enthalpy, which is
plotted. Baseline heat absorption by the solvent and by the global
states of the protein unrelated to the transition are subtracted out to
leave the heat of the transition. So the heat absorbed as a result of
the unfolding transition is easily resolved.

The wild type melting curve (Fig. 1.2a) indicates that the total heat
absorbed is the �Ho for the protein. The half-way point is the melting
temperature, T*, where x¼ 1/2, and the heat is �Ho/2. Once �Ho and T*
have been read off such a plot, �So is determined as �Ho/T*.

(a)

∆H °

T 
*

20 kcal mole
–1

Temperature ( °C)
20 40 60

T155 D159
N
H

H
O

O CH
3

CH

CH 
T157

(c)

(b)

20 kcal mole
–1

I V A W T

Temperature ( °C)
20 40 60

Fig: 1:2: (a) A plot of enthalpy

versus temperature for wild type

lysozyme illustrates the basic

features of a melting curve. The

total change gives the �Ho of the

transition; T* is the half-way point.

(b) Mutant forms of T4 lysozyme

melt at lower temperatures.

Isoleucine (I), valine (V), and alanine

(A), each replaced threonine 157 of

the wild type (WT). Enthalpy was

calculated as x�Ho using Eq. (1.13).

The measurements of �Ho and �So

were from Connelly et al. (1991).

(c) The sketch shows the threonine

157 side chain hydroxyl hydrogen

bonded with a hydroxyl from

threonine 155 and the backbone

amide of aspartate 159 (see Alber

et al., 1987).
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The mutant melting curves are shown in Fig . 1.2 b, along with the
wil d type melting curve. Figure 1.2c shows a sketch o f t he structure
around the mutated site (threonine 157). The alanine mutation
shifts T* down by 4 8C, and the high temperature plateau is reduced.
Both of these changes in the melting behavior are consequences of
the lower �Ho of this mutant. The reduction in T * follows from
T *�So ¼�Ho, for a mutation where �So is the same as in the wild
type protein. The reduction in �Ho for this mutation reflects
the loss of the two hydrogen bonds formed by the hydroxyl group
of threonine 157 (Fig. 1.2c). Putting a v alin e in t his po sitio n reduces
T * even more, but the final plateau is close to that of the wild
type protein, so this destabilization is primarily caused by an
increase in the �So of the transition, rather than a decrease in
�Ho. This may reflect a restriction in the motion of neighboring
side chains caused by the larger valine side chain. Finally, with
isoleucine �Ho is higher than wild type. If �So were the same
then T * would go up. But this mutation produces the greatest reduc-
tion in T *, indicating that the increase in �Ho is offset by a
much larger increase in �So. The isoleucine side chain forms
contacts with other parts of the protein in a structure stabilizing
manner, but it is too big for the pocket occupied by threonine,
so the motions of the side chains are more severely restricted.
Furthermore, isoleucine can be more disordered in the unfolded
state because of the flexibility of its large side chain, so �So

increases owing to changes on both sides of the transition.

1.5 Steepness and enthalpy

A thermal transition reflects competition between enthalpy and
entropy, so that changing one or the other moves the transition
temperature up or down. Now we ask, what if �Ho and �So change
in parallel? The value of T* then stays the same but the plots change
and this reveals another interesting aspect of thermal transitions.
Equation (1.13) is plotted in Fig. 1.3 for transitions with the same
T * ¼300 8C. Different values of �Ho are used, and �So was taken as
�Ho/T * for each plot. Figure 1.3 shows how the transition becomes
steeper as �Ho and �So increase together.

The increasing steepness with increasing �Ho gives us a useful
way of thinking about a thermal transition. The �Ho (or equiva-
lently, �So) dictates the sensitivity of the transition to temperature.
If the �Ho and �So are larger, then the �Go changes more rapidly as
T passes through T *.

This relation between the temperature dependence of an equili-
brium and its �Ho and �So is firmly rooted in classical thermo-
dynamics. Start with the following basic relation

qGo

qT
¼ �So (1:14)
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This also applies to the changes in these quantities

q�Go

qT
¼ ��So (1:15)

This amounts to a quantitative statement that �So gives the tem-
perature dependence of an equilibrium, and replacing �So with
�Ho/T * makes an analogous point for enthalpy.

Using Eq. (1.15) to substitute for �So in Eq. (1.9) gives

�Go ¼ �Ho þ T
q�Go

qT
(1:16)

Rearranging and dividing by T 2 leads to

1

T

q�Go

qT
��Go

T2 ¼ �
�Ho

T2 (1:17)

from which we obtain what is known as the Gibbs–Helmholtz
equation

qð�Go=TÞ
qT

¼ ��Ho

T2 (1:18)

This can be checked by evaluating the derivative on the left. Using
Eq. (1.7) takes us one step further

qlnð½B�=½A�Þ
qT

¼ �Ho

RT2 (1:19)

This expression is known as the van’t Hoff equation, and provides
an important way to interpret the temperature dependence of an
equilibrium between two global states. The slope of a plot of ln([B]/[A])
versus temperature can be used to determine �Ho. An enthalpy deter-
mined in this way is often referred to as a van’t Hoff enthalpy, or �Hvh

o.
Note that �So and �Ho cannot be viewed in isolation from one

another when thinking about temperature effects. For the sake of

1.0

∆H ° =  50 kcal mole
–1

∆H ° =  10 kcal mole
–1

∆H ° =  2 kcal mole
–1

0.8

0.6

x

0.2

0.0
0 100 200 300

T ( °C)
500 600400

0.4

Fig: 1:3: Plots of Eq. (1.13) with

T*¼ 300 8C and three values of

�Ho (�So¼�Ho/T*).

10 GLOBAL TRANSITIONS IN PROTEINS



completeness we see that a parallel analysis can be made in terms of
�So. Combining Eqs. (1.7) and (1.15) gives

qRT lnð½B�=½A�Þ
qT

¼ �So (1:20)

If we chose to use this equation to analyze a thermal transition, we
would obtain �So from the slope. Because �Ho ¼ T *�So, the quan-
tities T *, �Ho, and �So do not vary independently; specifying any
two determines the other.

1.6 Cooperativity and thermal transitions

In general, steepness in a transition is associated with cooperativity.
Cooperativity means that different parts of the system are tied
together in some way so that the force on one part to undergo the
transition is influenced by whether other parts have undergone the
transition. Enthalpy and cooperativity do not appear to have much
in common, but they both influence the steepness.

To see the connection, consider a protein with n identical sub-
units. If all n subunits undergo the transition in perfect unison, then
we say that the transition is perfectly cooperative. A perfectly coop-
erative process can be treated as a single equilibrium (Scheme (1B))

An�! �Bn (1B)

No mixed structures of the form A iB j (with iþ j ¼ n) are allowed,
leaving a pure two-state, global transition between An and Bn.
Because cooperativity forces the subunits to undergo the transition
together, the enthalpy change per mole of n-mer is n times the single
subunit �Ho. This larger enthalpy is �Hvh

o. This is the quantity that
determines the steepness of the transition, and must be used in Eqs.
(1.13) and (1.19) for the temperature dependence of the equilibrium.
Thus, cooperativity in a multisubunit protein increases the effective
enthalpy of the transition and therefore increases its steepness.

For perfect cooperativity, we have �Hvh
o ¼ n�Ho. But if the

cooperativity is less than perfect, the transition will be less steep
and �Hvh

o will be reduced. If the subunits undergo the transition
completely independently of one another, then the steepness will
be governed by �Ho for a single subunit. Thus, we can formulate a
measure of cooperativity in terms of the ratio of �Hvh

o to �Ho,
where �Ho for a single subunit is measured independently in a
calorimeter. We call �Hvh

o/�Ho the cooperative unit, and it can
range from one to n. This number indicates how strongly subunits
interact during a thermal transition.

These ideas have been used to test the critical assumption of
whether thermal denaturation is a two-state global transition.
Consider a protein made up of m small domains. Each domain
undergoes a two-state thermal transition with an enthalpy change
of �ho. Note that �Hvh

o would be �ho if the domains were
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independent, and m�ho if the domains interacted strongly to make
the transition perfectly cooperative. The two-state hypothesis can
thus be tested by comparing �Ho measured calorimetrically with
�Hvh

o measured from the slope of the melting curve.
This comparison has been made with a number of proteins.

For small globular proteins (< 15 000 kDa) �Hvh
o and �Ho are in

almost perfect agreement (Privalov, 1979). This important result
means that a protein does not unfold little by little as the tem-
perature is raised. For temperatures near the transition, the two
states coexist, but there are no significant amounts of intermedi-
ate states. Thus, thermal unfolding is a global transition of the
entire protein, rather than a gradual loosening of the structure or
many separate transitions in different structural domains. For
larger proteins one often sees melting in a few distinct states as
separate domains melt. The two-state model then applies to the
domains (Privalov, 1982).

The cooperativity of thermal unfolding in globular proteins should
not be taken for granted. It is not guaranteed that any sequence of
amino acids will fold up into a well-defined compact structure, and
many synthetic peptides do not. The idea that the good-folding
sequences may represent a limited subset of all possible sequences
will be discussed in Section 3.16. Some clues about the requirements
for cooperative folding were obtained from calorimetric studies of
lysozyme. Mutants have been described that reduce the cooperativity
of thermal unfolding (Carra et al., 1996). In these proteins, �Hvh

o is
about 80%–90% of the calorimetric �Ho. The lysozyme crystal struc-
ture reveals that the N- and C-terminal domains are fairly well sepa-
rated. They are linked by a single stretch of a-helix. The mutations in
an a-helix in the N-terminal domain (alanine 42, serine 44, and lysine
48, quite far from threonine 157 of Fig. 1.2) disrupt the coupling
between these two domains so that they melt on their own. Melting
then proceeds as two separate processes, with each process showing
its own cooperative two-state behavior.

1.7 Transitions induced by other variables

The ideas developed for thermal transitions illustrate how assump-
tions concerning the energetics of a protein can be used to predict
and interpret experimental behavior. We can generalize this
approach to examine how other experimental variables affect a
global transition. For example, when thinking about pressure, one
must consider the change in volume associated with a global transi-
tion. The free energy change associated with a pressure-induced
transition will then include a work term of the form P�V.

Consider a global transition with a molar volume change, �Vo. If
each global state is incompressible, or equally compressible, then
the only way that pressure can affect the relative stability of the two
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global states is through the work term. This allows us to divide the
molar free energy into two parts

�Go ¼ �G o
pi þ P�Vo (1:21)

where �Gpi
o is pressure independent. It is then straightforward to

incorporate this into an expression for the ratio of concentrations of
the two global states, and derive the appropriate exponential depen-
dence on pressure. The result is Eq. (1.13), but with �Gpi

oþ P�V o

replacing �Ho � T�So. The steepness is then related to �V o, just as
the steepness of a thermal transition is related to �Ho. Continuing
the analogy with thermal transitions, in a multisubunit protein,
�V o will be multiplied by a cooperative unit reflecting the degree
to which the transitions in separate subunits are linked. The result
is a higher effective �V o, and a steeper pressure dependence if the
transition is cooperative.

Another important example of a global transition is protein
unfolding by denaturants (Tanford, 1968; Fersht, 1998). As sub-
stances such as urea, guanidinium, and many alcohols are added
to a solution, a protein is converted to a state that is qualitatively
similar to the unfolded state induced by heating (Fig. 1.1). They
differ quantitatively in that a protein unfolded by heating has
some residual structure; a protein unfolded by denaturants has
almost none. Denaturants unfold proteins by interacting favorably
with the protein interior. For example, urea can hydrogen bond
with the backbone amides and carbonyls of the peptide chain.
Once again, we defer the discussion of these forces to Chapter 2,
but for now it suffices that buried residues of a protein have an
unfavorable interaction with water. The exposure that results from
unfolding makes �Go positive. As the denaturant concentration
increases, the unfavorable interaction with water is offset by an
attractive interaction with the denaturant. This contribution is
proportional to the denaturant concentration and the number of
buried residues. For a denaturant D, we write

�Go ¼ �G o
w þmD½D� (1:22)

Here mD is an empirical parameter that can be envisioned as a product
of the number of buried residues times the average attractive interac-
tion energy per buried residue.

Using this expression for �Go again gives an equation like
Eq. (1.13). Now we can measure and plot the fraction of unfolded
protein as a function of the denaturant concentration [D] and
measure mD and �Gw

o as the best fitting parameters from the plot.
Two-state behavior is the norm and studies of these kinds of plots
have added a great deal to our understanding of protein folding.

There are many more examples. In each case we have a variable
under experimental control, and a conjugate property of the system
that can be used to express the sensitivity to that variable. For stretching
an elastic molecule, the experimental variable is linear tension, #, and
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the conjugate property is the length of the molecule, L. If a molecule
under linear tension undergoes a global transition between two states
of different length, we have a work term of the form #�Lo, where �Lo is
a change in length. For surface tension, �, and surface area occupied by
a membrane protein, we would have a work term of the form �� Ao,
where � Ao is the change in area. A global transition can be induced by
pH, and the drive is different numbers of protonated groups between
the two global states. This can be generalized to ligand binding by using
ligand concentration as the experimental variable and the number of
ligand binding sites as the conjugate property. Yet another variable that
can drive a global transition is voltage, and this is treated next.

1.8 Transitions induced by voltage

When a protein resides within a membrane, a transmembrane voltage
will exert a force on its charges. If the protein undergoes a global
transition, then the voltage can favor one state over another depend-
ing on the charge distributions of the two global states. This is very
important in the physiology of excitable membranes, and the ideas
developed in this section will be used later, especially in Chapter 16. It
should be noted that the concept of global transitions is especially
clear for ion channels. Single-channel recording has revealed stepwise
changes in membrane current, and this provides a direct view of global
transitions at the level of individual molecules.

To incorporate voltage dependence into a global transition, we
assume that the two global states A and B have different charge
distributions. To illustrate this idea consider a single discrete charge
of magnitude q moving between two locations (Fig. 1. 4 a). To s im-
plify the analysis we assume that the voltage drop is linear across
the m embrane ( Fig. 1.4b; see als o Section 13 . 1 0 ). The electrostatic
potential energy of a charge within the membrane is qxV, where x is
the distance from the side of the membrane where the potential is

+

+

xa

xb

V

x

δ

Vδ

(a) (b)

0 1

Fig: 1:4: (a) A protein embedded

in a lipid bilayer, with the position of

a single positive charge indicated.

During a global transition the charge

moves from xa to xb. (b) The charge

has a potential energy that varies

linearly with position as qVx.

Movement of the charge from xa to

xb changes the electrostatic energy

by qV(xb� xa)¼ qV� (with

�¼ xb� xa).

14 GLOBAL TRANSITIONS IN PROTEINS



taken as zero and V is the voltage drop across the whole membrane.
The variable x is normalized to the thickness of the membrane and
varies between 0 and 1, so the energy varies from 0 to qV as a charge
moves from one side of the membrane to the other.

After the global transition the charge finds itself at a new location
with a different electrostatic potential energy. If we take the displace-
ment of the charge as �¼ xb � xa, then the change in electrostatic
energy will be qV� (Fig. 1. 4b), and this constitutes the voltage depen-
dent part of the free energy change of the global transition. Now that
we know the contribution from one charge we can take a sum over all
the charges in the protein and obtain the following expression for the
total electrostatic free energy change

�G o
es ¼

Xm

i ¼ 1

qi�iV (1:23)

Here m is the number of charges, and the index i is used to count
them. It should be noted that if we want to relax the assumption
that the voltage drops linearly through the membrane as depicted
in Fig. 1.4b, we can rewrite Eq. (1.23) using �i as the fraction of the
membrane potential. Then it would no longer represent the physi-
cal distance moved by the charge.

We can now separate the total free energy change of the global
transition into voltage dependent and voltage independent parts

�Go ¼ �G o
vi þ

Xm

i ¼ 1

qi�iV

¼ �G o
vi þ �V (1:24)

�Gvi
o is the voltage independent part, and � is introduced to repre-

sent the sum
Pm

i¼1qi�i in the voltage dependent part. Note that the

term �V is in a form that illustrates the idea of the preceding section
about an external variable, in this case V, and a conjugate property
that expresses the sensitivity to that variable, in this case �.

To illustrate how Eq. (1.24) can be used we take the global
transition as the gating of an ion channel. The two global states of
our protein are then the open (O) and closed (C) conformations of
the channel as shown in Scheme (1C)

C�! �O (1C)

Using Eqs. (1.8) and (1.24), the ratio of the concentrations of the two
global states becomes

½O�
½C� ¼ e�ð�G o

vi þ �VÞ=RT (1:25)

We can then write the open probability in the same form as Eq. (1.11)

Po ¼
½O�

½O� þ ½C� (1:26)
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Combining with Eq. (1.25) and rearranging leads to

Po ¼
1

1þ eð�G o
vi þ �VÞ=RT

(1:27)

Note the similarity with Eq. (1.13).
A more convenient form for this expression can be obtained by

replacing RT/� by a new parameter, Vs, and �Gvi
o/RT by �V0/ Vs

Po ¼
1

1þ eðV � V0Þ=Vs
(1:28)

These new parameters are very useful in that they represent well
defined properties of a voltage-induced transition: V0 is the voltage
at the midpoint of the transition (at V ¼V0, Po ¼ 1/2), and Vs gives the
voltage range over which the transition occurs; when it is small the
transition is steeper.

Plots of Eq. (1.28) show how changing V0 shifts the curve to
the right or left (Fig. 1.5 a), and changing Vs changes the steepness
(Fig. 1.5b). Note that V0 is analogous to T * in a thermal transition.
Indeed, one can call V0 the ‘‘transition voltage,’’ because when
V>V0 one state predominates and when V<V0 the other state
predominates. Likewise, Vs can be compared to �Ho. Because it
governs the steepness of the transition it is often referred to as
the ‘‘steepness factor.’’ The amount of charge movement was repre-
sented by the parameter �, and the movement of one unitary charge
through the entire membrane potential corresponds to a steepness
factor of 25 mV (for a discussion of units, see Section 13.1). This is
because at physiological temperatures RT/q � 25 mV for a unitary
charge. Moving a mole of monovalent ions up a 25 mV potential
requires an amount of energy equal to RT.

Recall the relation between steepness and cooperativity in ther-
mal transitions. We can make the same connection here if we
realize that cooperativity is invoked when we say that all of the
charges of the protein must move at once during the transition. The
more charge that moves together, the larger �will be. Thus, increas-
ing the number of charges that move during gating is analogous to
increasing the size of the cooperative unit in a thermal transition.

–150 –100 –50 0 50 100 150

0.5

1.0

V olta g e  (mV)

V 0   =   50 mV

V 0   =   0 mV

V0   =   –50 mV

Po

0.5

1.0
Po

(a)

–150 –100 –50 0 50 100 150
V olta g e  (mV)

(b)

Vs  =  25 mV

V s  =  12.5 mV

V s  =  6.25 mV

Fig: 1:5: Plots of Eq. (1.28) with

various values of V0 (a) and Vs (b).

Note that Vs¼ 25 mV corresponds

to a¼ 1.
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Membrane biophysicists refer to Eq. (1.28) as the Boltzmann
equation (Hille, 1991). It is closely related to the Boltzmann distri-
bution and contains the familiar exponential energy term. This
equation is used very widely in investigations of voltage-gated chan-
nels, including those responsible for electrical impulses in neurons
(Chapter 16). The following example illustrates how useful the
Boltzmann equation is in interpreting channel data and identifying
parts of a protein that are specifically dedicated to voltage-induced
transitions.

1.9 The voltage sensor of voltage-gated channels

The voltage-gated channels are a very large superfamily of proteins.
They form channels that are closed at negative voltages and open at
positive voltages. This superfamily includes channels that are selec-
tive for Naþ, Kþ, and Ca2þ, and they all have some common struc-
tural features. One of these is a �25 amino acid segment known as
S4 (the fourth of six putative membrane spanning segments) in
which every third amino acid is a positively charged arginine or
lysine and the other amino acids are hydrophobic. When the amino
acid sequences of these proteins were first deduced, the S4 motif
drew immediate attention as the part of the protein that could serve
as the voltage sensor. This was confirmed with experiments using
site-directed mutagenesis followed by biophysical analysis of chan-
nel function.

The biophysical analysis was carried out on proteins expressd
in Xenopus oocytes. Channel-encoding mRNA was injected into these
large cells. The oocytes then translate the RNA into protein, which
finds its way to the cell membrane. The cell is voltage-clamped
with microelectrodes, and voltage steps to various levels gate the
channels and produce various amounts of current. The current is
proportional to the fraction of channels that are open, so these
experiments give plots of Po versus V, which are interpreted with
Eq. (1.28).

Some plots are shown in Fig. 1.6 for the first Kþ channel that was
cloned, the Shaker protein from Drosophila. Some mutations that
neutralized positive residues in S4 reduced the steepness of the
voltage dependence, and the parameter Vs was increased. The
R368Q mutation illustrates this with the replacement of a positively
charged arginine by a neutral glutamine. This leaves less charge to
move during the transition. Hence � goes down and Vs goes up.
Similar experiments have been conducted with vertebrate Naþ

channels (Stuehmer et al., 1989).
Mutations also shifted the voltage dependence in either the

positive or negative direction, and such shifts arise from structural
changes that alter the relative stability of the open and closed states.
This is illustrated with the R371K mutation, in which one positively
charged amino acid is replaced by another. Because this mutation
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leaves the charge in S4 unchanged, the steepness of the transition
remain s about the same. Both mutatio ns shown in Fig . 1.6 shift the
voltage dependence to the left, indicating stabilization of the open
state of the channel.

Not all of the mutants of voltage-gated channels fall into this
pattern, but by and large the results support the view that gating in
these channels is triggered by the movement of positively charged
residues in the S4 segment (Sigworth, 1994; Bezanilla, 2000). This
view has been confirmed by a number of interesting experiments.
Parts of S4 are accessible to chemical modification only from the
inner surface of the membrane at negative voltages, and only from
the outer surface at po sitive v oltages ( Ahern and Horn, 2004) . The
translocation of this highly charged segment through the mem-
brane fits with the � values measured experimentally.

1.10 Gating current

Charges moving within a membrane protein during a voltage-
induced transition produce a transient current. This current is
quite small, but it can be measured and is known as the gating
current. The measurement of gating current provided an important
early validation of the basic assumption that voltage-induced tran-
sitions are due to the movement of charges within a membrane
protein. The gating current can be seen only while the conforma-
tional transition is actually occurring; once the transition is over,
the channels may stay open and allow a steady ionic current to flow,
but the gating current will have decayed to zero. The experimental
appearance of a gating current is illustrated schematically in
Fig. 1.7. Gat ing currents c an be seen for v ir tually any v oltage-gated
channel, provided that it has a high density in the membrane and
the ionic component can be blocked.

Each charge that moves during the transition makes a contribu-
tion to the gating current. Since current ¼dq/dt, the gating current

1.0

0.8
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current

Fig: 1:7: A voltage step opens

voltage-gated channels. The

channels open with a characterisitic

time course. If ion flow through the

channels is blocked, the current due

to channel gating can be seen.

During the up-step, channel opening

produces a positive gating current.

During the down-step, channel

closing produces a negative gating

current. The different peaks and

time courses reflect differences in

the kinetics of opening and closing.

The areas are equal because the

total amount of charge for the

forward and reverse transition is

the same.

Fig: 1:6 : Plots of Eq. (1.28) with

different V0 and Vs values give the

open probability versus voltage.

R368Q has a positively charged

arginine replaced by a neutral

glutamine. R371K has an arginine

replaced by lysine so there is no

change in charge (values of V0 and

Vs from Papazian et al., 1991).
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can be integrated to obtain q. This quantity is an experimental
measure of the charge that moves during gating (identical to � as
defined in Eq. (1.24)). If there are N channels, each contributing an
amount a to the total charge movement, then we haveZ

IgðtÞdt ¼ N� (1:29)

where the time integral of the current, Ig(t), is taken over the dura-
tion of the gating process. If the number of channels is known, then
one can determine � from a measured gating current. This value can
be compared with � computed from the steepness factor measured
in a fit of Eq. (1.28).

This illustrates yet another parallel with thermal transitions. In
both, the quantities characterizing the transition steepness can be
measured directly. A calorimeter can be used to measure �Ho, and
gating current measurements provide a measure of �. In both kinds
of transition a comparison of these measurements with a measure-
ment derived from transition steepness provides some indication of
the global extent of the transition. This relation is discussed in
detail by Sigworth (1994) and Bezanilla (2000). For an excellent
illustration of this kind of comparison in gating charge measure-
ment see Schoppa et al. (1992).

1.11 Cooperativity and voltage-induced transitions

Consider a voltage-induced transition of an n-subunit protein. As
with thermal transitions, forcing the subunits to undergo a transi-
tion with perfect cooperativity leads to a multiplication in the
steepness by n. This happens because � in Eq. (1.27) is replaced by
n�. Then Vs in Eq. (1.28) is divided by n so that the transition occurs
in a narrower voltage range.

In a single subunit protein the idea of cooperativity is still rele-
vant because the two-state model assumes that all of the different
charges in the protein move concomitantly during the transition.
One might also hope for a test of the two-state hypothesis with
voltage-induced transitions in single-subunit membrane proteins,
as has been made in thermal transitions. This has been difficult
because the ion channels on which such experiments can be made
are large proteins. Many are oligomers, and even those that are not
have functionally distinct domains.

Perfect cooperativity between subunits is not very realistic.
Voltage-induced transitions will now be used to illustrate a more
plausible case of intermediate cooperativity. Consider a channel
with two identical subunits, each of which undergoes a global
transition characterized by the quantities in Eq. (1.24), �Gvi

o and �.
If both subunits undergo the transition together in a cooperative
manner, then the observed steepness factor will be 2�. On the
other hand, if each subunit can undergo the conformational transition
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independently, then we will have to consider three states of the
dimer, namely AA, BB, and AB (where AB and BA are taken as iden-
tical by symmetry).

A t ransition in either subunit involves a change in free energy o f
�Gvi

oþ�V , so

½AB�
½ AA� ¼

½ BB�
½ AB� ¼ e�ð�G o

vi þ �VÞ=RT (1 : 30)

If AA, AB, and BA are closed channels and BB is t he only state in
which t he channel is open, then the o pe n pr obab ility will be

Po ¼
½ BB�

½ AA� þ ½AB� þ ½BA� þ ½BB� (1 : 31)

Factoring [BB] and substituting Eq. (1.30) gives

Po ¼ 1

��
½ AA�
½ BB� þ

½ AB�
½ BB� þ

½ BA�
½ BB� þ 1

�

¼ 1

1þ 2eð�G o
vi þ �VÞ=RT þ e2ð�G o

vi þ�VÞ=RT
(1 : 32)

Note that [BB]/[AA] ¼ [AB] /[AA] times [BB]/[AB] fr om Eq . ( 1.30). The
denominator of Eq . ( 1.32) is a complete square, so

Po ¼
1

1þ eð�G o
vi þ � VÞ= RT

� �2 ¼ 1

1þ eð V � V0Þ=Vsð Þ2 (1 : 33)

The repla cement of Gvi
o an d � by V0 and V s involves the same

no tat i on used to g o fro m Eq . (1.27) to Eq. (1.28). Equation (1.33) is
plotted tog ether with Eq. (1.28) t o illu strate how the interaction
between the two subunits influences the shape of the transition
(Fig. 1.8). (Equation (1.33) was offset to cross Po ¼1/2 at V ¼ 0 to
facilitate t he compa r ison – see Problem 10).

Figure 1.8 shows that Eq. (1.33) is intermediate in steepness
between simple two-state transitions with � ¼1 and 2. This is
because the cooperativity is intermediate. Although the subunits
undergo the transition independently, the restriction that both
subunits must be in state B to have an open channel implies a

0.5

1.0

Volta g e  (mV)

Eq. (1.28), Vs   =   25 mV

Eq. (1.28), V s   =   12.5 mV

Eq. (1.33), offset

Po

–100 –50 0 50 100

Fig: 1:8: Comparing plots of Eqs.

(1.28) and (1.33). Equation (1.33)

was offset to be centered at V¼ 0.
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more subtle form of interaction. If the subunits were truly indepen-
dent then each one would have to conduct in the B state regardless
of the state of the other subunit of the pair. Then the membrane
conductance would exhibit a voltage dependence indistinguishable
from that of a single-subunit channel. There would be no observable
manifestation of the dimeric structure.

This example of the two-subunit channel can be extended to pro-
vide further insight into cooperativity. We introduce an interaction
free energy for subunits in different states, �Gint

o. This quantity
reflects the unfavorable energy of contact between the two subunits
when they are in different states (e.g. AB or BA). Incorporating
this term into Eq. (1.30), and proceeding in the same way as in the
derivation of Eq. (1.33) leads to

Po ¼ 1

, 
1þ 2e

�G o
vi
þ �V � �G o

int

RT þ e

2�G o
vi
þ 2�V

RT

!
(1:34)

The presence of the term �Gint
o prevents the simple factorization

that allowed us to get Eq. (1.33) from Eq. (1.32). We can use this
example to evaluate the extreme case of perfect cooperativity. This
corresponds to a very large interaction energy, which would make
the middle exponential term in the denominator go to zero.
Equation (1.34) then becomes a simple Boltzmann equation with a
gating charge of 2�. Thus, a high �Gint

o makes the transition more
cooperative by making mixed states unfavorable.

*1.12 Compliance of a global state

Assuming that the voltage dependence of a conformational transi-
tion arises entirely from gating charge movement was used to
develop a relatively simple theory. But one should wonder whether
this assumption is physically realistic. For example, charges might
move within a global state. If this happens then an electrical field
could move the charges without a global transition. Then our sim-
ple electrostatic energy term of the form qV� would be incomplete;
� would vary with voltage because as the voltage changed the
charges would adjust their position within each global state. Real
physical forces cannot keep a structure perfectly rigid. We will now
consider the case of a protein with a charge held in place by an
elastic force. The movement of the charge against this force reflects
its compliance with the electric field.

When an elastic restoring force is added, we obtain a new expres-
sion for the potential energy of a charge as a function of position

UðxÞ ¼ qVxþ 1
2�ðx� x0Þ2 (1:35)

The first term is the familiar linear expression summed up in Eq. (1.23).
The second term is the potential energy of a harmonic oscillator, with
a force constant of�. The charge feels a restoring force equal to�(x – x0)
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when it is displaced away from x0, the position of the energy minimum
in the absence of an electric field. The goal is now to incorporate this
additional energy term into the derivation of the Boltzmann equation
for a voltage-induced global transition. The global states differ here
both in the position of the charge and the strength of the elastic force
holding the charge in place (Fig. 1.9).

First we must see how the energy and position of the charge in
each global state is influenced by the field. We replace x � x0 in
Eq. (1.35) by x0, so that x0 ¼0 defines the center of one of the harmonic
potential wells drawn in Fig. 1.9. Completing the square gives

UðxÞ ¼ qVx0 þ 1
2�ðx0 þ qV=�Þ2 � 1

2 ðqVÞ2=� (1:36)

This shows that the voltage moves the position of minimum energy
from zero to�qV/�. The last term of Eq. (1.36) tells us that the energy at
this minimum is 1/2 (qV)2/� lower than it would be if there were no
compliance and the charge were held in place. With the gating charge
at its energy minimum, its energy is qVx0�1/2 (qV)2/�. The difference
between two energies of this form is then incorporated into the
change in energy during the global transition.

�Go ¼ �Gvi
o þ qV� � 1

2ðqVÞ2 1

�b
� 1

�a

� �
(1:37)

Thus, we have Eq. (1.24) with a new quadratic term.
Now, instead of Eq. (1.28) we have a more complex Boltzmann

equation.

Po ¼ 1

,
1þ e

�G o
vi
þ qV�� 1

2
ðqVÞ

2 1
�b
� 1
�a

� �
RT

0
BBB@

1
CCCA (1:38)

This gives us an added exponential dependence on the square of the
voltage. Allowing a multitude of gating charges to move in this way
would mean using sums such as in Eq. (1.23), but the essential points
can be understood by focusing on Eq. (1.38) for a single gating
charge.

The key question is whether the V2 term in the exponent is large
enough to produce an observable effect. This would make the vol-
tage dependence of Po qualitatively different from that predicted by
Eq. (1.28). If the force constants are the same in both conformations,
then �a ¼�b and this term will be zero. To see an effect of compli-
ance on the voltage dependence of a membrane protein, the charge
has to be more loosely tethered in one of the global states than in
the other. Let’s take an extreme case so that we have the best chance
of observing an effect. We take one of the force constants as very
high, so 1/�a will be near zero. If the other force constant, �b, is
small, then the factor multiplying V2 will be large.

To estimate a reasonable value for �b, we think about how far
the charge can move from its equilibrium position. A very loosely

φa

φ b

xb

xa

δ

U( x )

V 

Fig: 1:9: A charge in a protein is

acted on by both the voltage drop

across the membrane (taken as

linear), and a harmonic potential

with force constants of �a and �b

in each of the two global states.
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bound charge may move around 5 ¯, which is about 10% of the
thickness of the membrane (a typical lipid bilayer thickness is about
50 ¯). This displacement is quite large compared to the displace-
ments allowed by ordinary stretching of covalent bonds (see
Section 2.12). It is also large compared to the scale of motions seen
in proteins, so this value can be considered a generous maximum.

To convert this displacement to a force constant we note that any
degree of freedom has a mean energy of RT/2 per mole (by the
equipartition principle, see Section 12.4). The mean potential
energy is then

�bx02=2 ¼ RT=2 (1:39)

With a root mean square displacement of 10% of the membrane
thickness, we have x02 ¼ 0.01. We can then solve for the force con-
stant as

�b ¼ 100RT (1:40)

Making this substitution, we can focus on the exponent in
Eq. (1.38) and compare the linear and quadratic terms.

qV� � ðqVÞ2

2�b
¼ qV� � ðqVÞ2

200RT
(1:41)

Since RT/q � 25 mV at room temperature for a unitary charge, we
can further simplify this expression.

qV� � q

RT

qV2

200
¼ qV� � qV2

5 volts
(1:42)

Now factoring out qV gives

qVð� � V=ð5 voltsÞÞ (1:43)

When the dimensionless quantity V/(5 volts) is comparable to
� (which is also dimensionless because it is normalized to the
thickness of the membrane) the V2 term will have an impact. If
� is small, say 0.1, then the quadratic term will become clearly
visible when V gets up to around 0.5 V. This is very high for the
voltage across a membrane. Biological membranes are usually
destroyed at voltages less than half this large. In fact, if � were
zero we could focus all our attention on the term V/(5 volts). This
quantity changes so little within experimentally accessible mem-
brane potentials (�0.2 volts) that the protein would not appear to be
voltage dependent. Thus, the compliance of charge in a membrane
protein is unlikely to have an observable impact on voltage-induced
transitions. This strengthens the justification for using the
Boltzmann equation (Eq. (1.28)) in describing the effects of voltage
on membrane proteins. In general, it is hard to find a property of
a protein that exhibits this kind of quadratic-exponential depen-
dence on an experimental variable. This analysis of compliance thus
supports a focus on global transitions.
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Problems for Chapter 1

1. With x defined as in Eq. (1.11), use the van’t Hoff relation
(Eq. (1.19)) to derive an expression for x as a function of T.

2. A protein undergoes an unfolding transition at 65 8C with a �Ho

of 80 kcal/mole. What is �Go at 25 8C? Repeat the calculation
using the observation that the unfolded state has a heat capacity
that is 9 cal/8C greater than the folded state.

3. How will a change in temperature alter the voltage dependence
of a conformational transition as expressed in Eq. (1.28)? How
would you interpret a change in V0? Why is a substantial change
in Vs less likely?

4. Use the Boltzmann equation to derive the probability of a freely
rotating dipole in a membrane having an orientation � with
respect to an axis perpendicular to the plane of the membrane.
First, consider the case where the dipole is stuck in one plane
perpendicular to the membrane. Then consider the case where
the dipole can rotate with complete freedom. For both cases
the dipole should be taken as entirely within the membrane
where the voltage varies linearly.

5. For the unfolding of a protein by denaturant, how would you
expect mD in Eq. (1.22) to vary with a protein’s molecular weight
for a series of spherical proteins.

6. For a two-state voltage transition with V0¼�20 mV and Vs¼10 mV,
calculate the �Go for this transition at V¼�70 mV and þ30 mV.

7. Derive the voltage dependence of channel opening for the model
in Section 1.11, but with a trimer in which B3 represents the only
open state.

8. Derive the open probability for a gap junction channel between
two cells as a function of the voltage difference between the two
cell interiors. The gap junction channel is actually a pair of
channels in series, each gating independently of the other, and
each having the same V0 and Vs. Assume each channel sees half
the voltage difference.

9. Derive the expression corresponding to Eq. (1.34) for a thermal
transition in a dimer.

10. Calculate the offset of Eq. (1.33) (V0) that makes it cross 0 mV
at Po¼ 0.5 (as in Fig. 1.8). What is this offset for a trimer as in
Problem 7?

11. Use the classical configuration integral (Eq. (1.4)) to calculate the
partition function of a harmonic oscillator (the potential energy
function is U(x)¼1/2�(x � x0)2). Write the free energy, entropy,
and enthalpy (see Appendix 4).
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Chapter 2

Molecular forces in biological
structures

In Chapter 1 the global conformation of a protein was treated like a
black box, without worrying about the internal machinations. This
approach is useful in interpreting many kinds of experiments, but if
we want to make use of detailed structural information about a
macromolecule, we have to open up the black box and look inside.
To do this we need to understand the molecular forces that act
within a macromolecule. These forces govern how a protein folds,
and which of its different conformations will predominate. Similar
forces determine the structures of nucleic acids and lipid bilayers, and
also drive the associations between macromolecules and ligands.

The forces at work in biological systems can be divided into various
categories and examined in turn. They are generally well understood to
the extent that good approximate mathematical expressions are avail-
able. Much is known about their relative strengths under various condi-
tions.However,itmustbeemphasizedthatthestructureanddynamicsof
biological macromolecules are determined by the interplay of many
forces. This complexity makes it difficult to investigate these forces by
studying the biological molecules directly. We therefore often turn to
model systems that are very unbiological but nevertheless instructive.
The results from model systems enable us to break these complicated
problems down into simpler ones.

2.1 The Coulomb potential

One of the fundamental tenets of electricity is that point charges
interact with a potential energy that is inversely proportional to the
distance of separation, r, and directly proportional to the product of
the two charges, q1 and q2. This is Coulomb’s law:

U ¼ q1q2

"r
(2:1)

Here we will use cgs units, where charge is in esu (the charge of an
electron is 4.8 �10 �10 esu), distance is in centimeters, and energy is
in ergs; " is the dielectric constant of the medium in which the



charges are placed. This quantity characterizes the response of the
surrounding medium to an electric field.

The dependencies on q and r are simple and easy to understand. The
dielectric constant is a bit more subtle. It depends on how easily the
molecules in the environment are polarized. A completely unrespon-
sive medium, or a vacuum, will have "¼1 because there are no mole-
cules to polarize. A strongly responsive medium consisting of highly
polar or polarizable molecules will have a large ". The polarization of
these molecules will counteract the electrical field and reduce the
magnitude of the Coulomb potential energy. It is found that the value
of " varies from about 2 in nonpolar hydrocarbons to about 80 in water.

The high dielectric constant of water reflects the large dipole
moment of the water molecule, and the ease with which these mole-
cules can rotate in an electric field. This counteracts the effect of an
electric field, making it quite small. At the distance of closest approach
for Naþ and Cl� of 3 ¯, Eq. (2.1) gives only about 1.3 kcal mole�1 or
slightly more than 2RT. This is why NaCl dissociates and dissolves in
water. Because this interaction is weak, statistical mechanics must be
used to describe the distribution of ions in solution (Chapter 11). On
the other hand, the value of 2 for " of hydrocarbons makes electro-
static interactions within the hydrophobic cores of proteins and mem-
branes enormously strong. We will soon see that another aspect of
electrostatics excludes charges from these places.

In a homogeneous dielectric it is easy to compute the electrostatic
energy as a sum of Eq. (2.1) over all pairs of charges. However, bio-
logical systems are rarely homogeneous, and spatial variations in "

prevent the simple use of the Coulomb potential in most situations.
The electric potential in a system with different regions having differ-
ent dielectric constants can be worked out by solving the Poisson or
closely related Laplace equations with boundary conditions given by
the specifics of the geometry of a particular problem. These differen-
tial equations need not be written out here because we will not go into
the details of their solution. For simple systems with planar, spheri-
cal, or cylindrical boundaries some standard mathematical methods
can be employed. Some of these cases will be discussed below. For
complex and irregular geometries it is usually necessary to use a
computer to solve the equations numerically.

The simplicity of Coulomb’s law conceals an interesting and
often overlooked point regarding the thermodynamics of electro-
static interactions. When enthalpy is measured, the value is often
erroneously attributed to electrostatic interactions (and hydrogen
bonds, see Section 2.10). Likewise, large entropies are erroneously
attributed to hydrophobic interactions (Section 2.8). The Coulomb
potential energy gives the work done at constant temperature and
pressure to bring the charges to their specified positions. This
means that, in thermodynamic terms, it is a free energy rather
than a simple potential energy to be equated with enthalpy. When
the Coulomb potential is examined more carefully, one finds that in
water this force is entropy driven.
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To decompose the electrostatic potential into H and TS, take
S ¼ �qG=qT, where G is the potential energy in Eq. (2.1). Differen-
tiation gives

S ¼ � q
qT

q1q2

"r

� �
¼ q1q2

"2r

q"
qT
¼ G

1

"

q"
qT

(2:2)

If the dielectric constant did not vary with temperature, then S would
be zero, and the Coulomb potential would indeed be enthalpy. But the
dielectric constant of water is strongly temperature dependent, and
decreases by 0.46% per degree Kelvin near room temperature. That
means that ð1="Þðq"=qTÞ ¼ �0:0046, giving S¼�0.0046G. At T¼ 300 K,
we get TS¼�1.38G. Thus, the entropic contribution is greater than
the free energy itself.

From this calculation we can conclude that the enthalpy opposes
the attraction between oppositely charged ions in water, and it is the
entropy that pulls them together. The molecular interpretation of this
surprising result is that dissolved ions restrict the rotation (and other
kinds of motion) of surrounding water molecules. The work done on
these water molecules offsets the work done by the ions on one
another, so that the Coulomb potential expresses a balance between
ion–ion and ion–water interactions. The actual interactions are incred-
ibly complicated in detail, but all of these details are absorbed into a
single number, ". What makes this simplified approach work is that
the polarization of the solvent varies linearly with the applied electric
field. This linearity is distilled into a single number, ".

2.2 Electrostatic self-energy

The preceding section made the point that an ion in water does a
considerable amount of work on the surrounding water molecules
by forcing them to rotate and orient their dipoles. This happens
regardless of whether other ions are nearby, and this interaction
between an ion and the surrounding medium plays an important
role in the distribution of ions. The energy of placing an ion in a
dielectric medium can be calculated from the Coulomb potential
as follows. Consider the work done to bring a small increment of
charge, dq0, to the surface of a sphere with radius r, already carrying
a charge, q0

dG ¼ q0dq0

"r
(2:3)

This is simply Eq. (2.1) with q1 ¼ q0 and q2 ¼ dq0. This charging
process can be integrated to get the total work done, starting with
zero charge and working our way up to the final value, q, as follows

G ¼ 1

"r

Zq

0

q0 dq0 ¼ q2

2"r
(2:4)
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This is called the self-energy of a charge. It is also referred to as the Born
energy after the physicist Max Born who derived this result in 1920.

Equation (2.4) can be used to estimate the free energy of placing
an ion in a solvent with a particular dielectric constant. In the case
of water this is the hydration energy. Data on the enthalpy of
hydration provide a test for the picture of hydration as a polariza-
tion of the surrounding water. To obtain the enthalpy from Eq. (2.4)
one differentiates with respect to temperature to obtain �S, as
illustrated in the preceding section, and obtains H as Gþ TS. The
result is still an inverse dependence on r, and experimental data
shown in Fig. 2.1 confirm this. However, some care is necessary in
choosing r. It has been argued that r is the radius of a solvent cavity
around the ion, and the good agreement with theory was obtained
when the cavity radius was estimated from crystal structures of salts
as the distance from the center of an ion to the outer electronic shell
of the counterion in the crystal (Rashin and Honig, 1985).

It is remarkable that Eq. (2.4) works so well in estimating the
energy of an ion’s interaction with solvent. At atomic dimensions
the details of the solvent structure should matter. One would expect
these energies to depend on the specific form of the molecular
interactions. Furthermore, the enormous strength of the electric
field at the ion’s surface should polarize the solvent to a maximal
degree, producing what is known as dielectric saturation. Yet, Fig. 2.1
includes ions with valances ranging from one to four. If the dielectric
were saturated, then the tetravalent ions would not fall on the same
curve as the monovalent ions. It is fortunate that such a simple theory
provides such an accurate quantitative description.

One can take the difference between the self-energy for two
different values of " and estimate the free energy of transfer of an
ion between two mediums with different dielectric constants. For
transfer of a sodium ion with r ¼0.95 ¯ from water, where " ¼80,
to a hydrocarbon medium where " ¼ 2, the potential energy differ-
ence is 0.15 � 10�12 erg. This works out to a very large energy of
85 kcal mole�1. This is a reasonable result because inorganic ions
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are generally insoluble in organic solvents. Dielectric polarization
keeps ions out of nonpolar environments. The partition coefficient
for a sodium ion between oil and water is related to the free energy
of transfer as e��G / RT, which gives 10�63 when �G is taken as the
self-energy. This shows why it is extraordinarily difficult to move an
ion into the interior of a protein or lipid bilayer.

2.3 Image forces

The strong dependence of the self-energy on the dielectric constant
means that near a boundary between two mediums with different ",
a charge will be attracted toward the region where " is higher. The
ion will have a stronger polarizing action on the region with the
higher ", and effective dipoles created in this region will pull the ion
toward the interface. Likewise, an ion in a high dielectric medium
will be pushed away from a nearby low dielectric medium.

Consider a point charge near a planar boundary that separates
two semi-infinite regions with dielectric constants "1 and "2 (Fig. 2.2).
This example approximates the situation when an ion is near a lipid
membrane.

The solution to the Laplace equation on the left side (where we
have "1) turns out to be the sum of two terms that look like Eq. (2.1).
One is the Coulomb potential of the charge q, and the other is the
Coulomb potential of a fictitious charge referred to as an image
charge (q0 in Fig. 2.2). The image charge is located at a position the
same distance on the opposite side of the boundary, as though it
were an image in a mirror placed at the boundary. The force seen by
a charge at a dielectric boundary is therefore called an image force.

The charge at the image point has a magnitude
q0 ¼ �qð"2 � "1Þ=ð"2 þ "1Þ for the case "2 >"1 (see Jackson, 1975).
The potential energy is given by Eq. (2.1) for q and q0 separated by
a distance of 2r

U ¼ � "2 � "1

"2 þ "1

� �
q2

2"1r
(2:5)

Thus, the force of a dielectric medium on a charge has the same form as
the force of another charge.1 The sign of Eq. (2.5) makes the force point
toward the region with higher ". With "2>"1, the force is to the right.

To see how the image force influences energetics in some biological
situations we can examine two interesting special cases. In one of these
a charge is placed in the middle of a low dielectric slab of finite thick-
ness, with a high dielectric medium extending to infinity on both

1 Note that this expression is only valid for a charge that is small compared to the

distance r. The singularity at r¼0 is unrealistic, and if the size of the charge is taken

into account, the potential energy will change monotonically as the interface is

crossed.

ε1 ε2

r r

+ q – q ′

Fig: 2:2: A charge, q, at a distance

r to the left of the boundary

between "1 and "2 polarizes the

surrounding mediums. The polari-

zation of the distant medium

(indicated by the dashes at the

boundary) can be represented by an

image charge,�q0, at a distance r on

the other side of the boundary.
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sides (Fig. 2.3 a). In the o ther c ase a charge is plac ed in the cent er o f a low
dielectric sphere surrounded by a high dielectric medium (Fig. 2.3 b).

For the first case of a dielectric slab, the free energy of putting
a charge, q, at the very center has the following form (Parsegian, 1969)

G ¼ q2

2"ha
� q2

"hb
ln

2"w

"w þ "h

� �
(2:6)

where "w is the dielectric constant of water and "h is the dielectric
constant of hydrocarbon. The first term is the self-energy in an
infinite medium (Eq. (2.4)). The second term tells how the finite
thickness reduces that energy. For the thickness of a typical lipid
bilayer of 50 ¯, the second term is negligible. This means that
putting an ion into the middle of a lipid bilayer is almost as hard
as transferring it to a bulk hydrocarbon medium. The energy of
placing an ion in a lipid bilayer is an important consideration in
the study of ion permeation of membranes (Chapter 14).

The second case in Fig. 2.3 is a charge in the center of a dielectric
sphere. This can be taken as an estimate for how hard it is to bury a
charged residue in the core of a globular protein. This energy is
evaluated by the same method used to derive Eq. (2.4). The movement
of each element of charge dq0 to the surface at r¼ a must be broken
down into two steps. The first is a movement through the water to the
surface at r¼ b, and the work is q0dq0="wb. The second is a movement
through the hydrocarbon to the surface at r¼ a, and the work is
q0dq0ð1="hÞ ð1=aÞ � ð1=bÞ½ �. Integrating over q0 from zero to q gives

G ¼ q2

2"h

1

a
� 1

b

� �
þ q2

2"wb
(2:7)

This is the energy of placing the charge in the center of the oily
sphere in Fig. 2.3b. Note that as b , t he radius of the outer hydro-
carbon sphere, becomes large this expression becomes a difference
between two self-energies of the form of Eq. (2.4). Since "w is much
higher than "h, the last term in this expression can usually be
ignored. We see that for a radius like that of a typical globular
protein, say 20 ¯, this energy is within 5% of the self energy in a
bulk medium with dielectric constant "h (assuming that the charge

a
a

q
q

b

εh εwεh
εwεw

b

(a) (b)Fig: 2:3: (a) A charge with radius

a is located in the center of a planar

slab of thickness b. Within the slab

the dielectric constant is "h (�2 for

hydrocarbon), and outside the slab

the dielectric constant is "w (�80

for water). Equation (2.6) gives the

self-energy of this charge. (b) A

charge with radius a lies in the

center of a larger hydrocarbon

sphere with radius b. Equation (2.7)

gives the self-energy of this charge.
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has a radius of about 1¯). The bottom line of these two results is that
it is almost as difficult to place a charge in the middle of a lipid
membrane or the middle of a globular protein as it is to place it in a
bulk medium with a similar low dielectric constant.

Likewise, a small pocket of water can stabilize an ion within a
nonpolarizable region. The structure of an ion channel revealed a
water filled cavity with a radius of 5 ¯. By stabilizing charges deep
within the membrane, this cavity plays an important role in ion
permeation (Section 14.10).

2.4 Charge–dipole interactions

Charge is generally not distributed uniformly within a molecule,
and this enables uncharged molecules to interact by electrical
forces. One way to deal with these interactions is to introduce the
idea of the electrical dipole, defined as two equal and opposite
charges set a fixed distance apart. We envision a neutral molecule
as in Fig. 2.4, in which positive and negative charges are effectively
concentrated at two distinct foci, separated by a distance a. The
molecule’s dipole moment emerges from a calculation of the inter-
action between a charge, q, and each of these charged foci.

The interaction will be a sum of two Coulomb terms, one for the
interaction between q and �q0, and the other between q andþq0,
with distances as in Fig. 2.4

U ¼ � q0q

"r�
þ q0q

"rþ

¼ � q0q

"ðr � 1
2 a cos�Þ

þ q0q

"ðr þ 1
2 a cos�Þ

¼ �q0qa cos�

"ðr2 � ða2=4Þ cos2�Þ (2:8)

In the first step, r� and rþ are expressed as projections onto r, giving
rþ ¼ r þ 1

2 a cos� and r� ¼ r � 1
2 a cos�. This is an approximation that

is valid when a is small such that the lines are nearly parallel. The
fractions are then simply added to obtain the final result in Eq. (2.8).
When r>> a we can ignore the term a2cos2�/4 in the denominator
to obtain

U ¼ �qd cos �

"r2
(2:9)

where d ¼ aq0 is defined here as the dipole moment.
The charge–dipole potential energy depends on a higher inverse

power of distance (1 / r2) compared with the Coulomb potential
energy (1 / r). Thus, the interaction is shorter in range because the
inverse square function decreases more rapidly. This illustrates a
general trend that as higher order electrostatic interactions are
considered, the inverse power of r increases, and the range becomes
shorter. Thus, an interaction between two dipoles will decrease as

r
r–

r+

aθ

– q ′

+ q ′

q

Fig: 2:4: A molecule with a

dipole moment interacting with

a point charge. The dipole is

represented by two charges

of opposite sign separated

by a distance a.
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r3 (and will depend on the orientation of both dipoles relative to the
line between the centers, see Problem 3).

It is easy to forget that this derivation was based on r>> a.
Equation (2.9) is not valid at distances comparable to or smaller
than the charge separation within the dipole. If we let the dipole of
Fig. 2.4 point directly at the charge q, then � ¼0 so we have

U ¼ � q0q

"ðr � 1
2 aÞ
þ q0q

"ðr þ 1
2 aÞ

(2:10)

As the dipole and charge get closer, r can fall below a so that only the
first term matters. Then it is approximated by a Coulomb interac-
tion with the nearer charge of the dipole.

The interactions just discussed are for dipoles with fixed orien-
tations, as would be the case within a folded protein with a fairly
rigid structure. For example, the carbonyl groups of polypeptides
have substantial dipole moments and their electrostatic interac-
tions make an important energetic contribution to the stability of
an a-helix (Section 2.13). However, molecules interacting in solu-
tion can rotate, and the forces will vary with orientation. Then it
becomes necessary to average over all orientations. The probability
of a particular orientation is then given by the Boltzmann weight
e�U / kT. Allowing for rotations not only weakens the interaction by
allowing both favorable and unfavorable interactions, it also short-
ens the range of the interaction. When a Boltzmann average is used
to calculate the mean energy of interaction between two freely
rotating dipoles, with dipole moments d1 and d2, one obtains the
following expression (Setlow and Pollard, 1962)

U ¼ � d 2
1 d 2

2

3"2r6kT
(2:11)

It should be noted that the derivation of this expression depends
on the assumption that the energy of changing orientations is small
compared to kT. In fact calculations show that this is a valid assump-
tion and that the dipole–dipole interaction does not restrict rotation
very much. One very important exception is water, because water
has a particularly large dipole moment. But for other molecules in
solution this form of interaction is quite weak. As will be shown
below, the closely related dispersion force is much stronger and
plays a more important role in shaping biological structures.

2.5 Induced dipoles

Even molecules with neither a net charge nor a permanent dipole
moment can be influenced by electrical forces. Such molecules are
polarized by an electrical field, resulting in an induced dipole
moment. Molecules either positively charged, negatively charged,
or polar will attract a neutral molecule as a result of this induction.
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The induced dipole moment is given by the product of the field and
the polarizability

d ¼ aE (2:12)

where the polarizability, a, is a property of the particular molecule,
and E is the field. Inserting this expression for d in Eq. (2.8), and
taking E ¼ q="r2 gives the energy as a function of distance between a
charge and a polarizable molecule.

U ¼ � aq2

"r 4
(2:13)

where cos� ¼1 because the induced dipole is assumed to point in
the direction of the field.2

For the interaction between a permanent dipole and an induced
dipole, the field of a dipole is used for E in Eq. (2.12). We then have

U ¼ �4ad2

"r6
(2:14)

Again, the trend of increasing inverse powers in r can be seen as
higher order electrostatic interactions are evaluated.

2.6 Cation–p interactions

When a cation approaches an aromatic ring in the manner depicted
in Fig. 2.5a, there is a strong at traction (Ma and Dougher ty, 1997). I n
the gas phase benzene binds cations quite tightly. For Liþ the energy
is 38 kcal mole�1; for Naþ it is 28 kcal mole�1; for Kþ it is 19 kcal
mole�1. The fact that smaller ions bind more tightly suggests that it
is a simple electrostatic interaction, with smaller ions binding more
tightly because they can approach more closely.

Part of this attraction is caused by the cation polarizing the
aromatic ring and inducing a dipole, as in the preceding section.
However, even without polarization an aromatic ring has a nonuni-
form charge distribution. The double-bonding p electrons form an
electronegative region balanced by the partial positive charges in the
plane of the carbon nuclei (Fig. 2.5b). This distribution of charge is

2 A molecule can have an anisotropic polarizability, meaning that a field of the same

strength will polarize the molecule more in one direction than another. Then the

polarization will not necessarily be in the same direction as the field.
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(a) (b) (c) Fig: 2:5: (a) A benzene complex

with a cation. (b) The p electrons

of the benzene ring form two

electronegative layers sandwiching

an electropositive layer in the plane

of the carbon nuclei. (c) This charge

distribution is modeled as a

quadrupole, formed by two dipoles.

2.6 CATION–p INTERACTIONS 33



termed a quadrupole, and can be represented by two dipoles (Fig. 2.5c).
By extending the mathematics of Section 2.4 to this kind of charge
distribution one obtains an energy that goes as 1 / r3 (Problem 4). These
charge–induced dipole and charge–quadrupole forces combine to
varying degrees in different aromatic ring structures to generate a
force that attracts cations (Cubero et al., 1998). The origin is rather
complex, so this force is referred to as a cation–p interaction rather
than with a specific electrostatic term such as quadrupole or induced
dipole.

The amino acids phenylalanine, tyrosine, and tryptophan have
aromatic side chains with the capacity for cation–p interactions.
These amino acids often appear in proteins to interact with positively
charged amino acid side chains, and they often appear in binding sites
for cationic ligands and substrates. A theoretical calculation of the
cation–p interaction energy between methylammonium and benzene
gave�12.5 kcal mole�1 in a nonpolar solvent. This energy was reduced
to�5.5 kcal mole�1 in water (Gallivan and Dougherty, 2000). By con-
trast, a Coulomb interaction between methylammonium and acetate
was reduced from�53 kcal mole�1 to�2.2 kcal mole�1. So according
to this result, cation–p interactions are stronger in water than the
electrostatic interactions between monovalent ions.

The neurotransmitter acetylcholine contains a positively charged
quaternary amine, and two proteins that bind acetylcholine, acetyl-
cholinesterase (Fig. 8.4) and the acetylcholine receptor, have aromatic
amino acids in their binding sites. A study of the acetylcholine recep-
tor has undertaken to evaluate the role of cation–p interactions in
binding (Zhong et al., 1998). When one of the binding site tryptophans,
at position 149, was replaced with a series of fluoro-tryptophans, the
dose–response curve for acetylcholine was shifted. Fluorine atoms
withdraw electrons from the indole ring system of tryptophan, and
deplete the electronegative layer depicted in Fig. 2.5b. This weakens
the cation–p interaction. A plot of the apparent binding energy versus
the theoretically predicted strength of the cation–p interaction
showed a good correlation, making a strong case for a substantial
energetic contribution to acetylcholine binding (Fig. 2.6). It should be
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Fig: 2:6: Plot of apparent binding

energy computed from the EC50

of the acetylcholine receptor versus

the theoretically computed

cation–p binding energy. The amino

acid at position 149 (in the binding

site) is indicated for each point (data

from Zhong et al., 1998).
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noted that the slope in this plot is less than one because the theoretical
calculations are for the gas phase and for an inorganic ion and the
experiments are for acetylcholine in water.

2.7 Dispersion forces

The charge distribution of a molecule fluctuates rapidly with time.
At any instant there will be a transient dipole moment. When two
molecules are near one another the fluctuations in dipole moment
will sometimes lead to an attraction and sometimes to a repulsion.
In this sense the interaction is similar to that between freely rotat-
ing permanent dipoles orienting in either attractive or repulsive
configurations. Since the attractive configurations have a lower
potential energy than the repulsive configurations, they will have
larger weights in a Boltzmann average, leading to a net attraction.
There are many theoretical approaches to the calculation of this
interaction energy, all of which are quite complicated. In general,
the energy is proportional to 1/r6, as was the case for the interaction
between rotating dipoles. The important physical factors are indi-
cated in the following expression, which should be compared to
Eq. (2.11) (Setlow and Pollard, 1962)

U ¼ � 1

r6

a1a2

3n4

I1I2

I1 þ I2
(2:15)

where a1 and a2 denote the polarizabilities of the two interacting
molecules, I1 and I2 denote their ionization energies, and n denotes
the refractive index of the medium.

Although both Eqs. (2.11) and (2.15) vary as 1/r6, the dispersion
force differs from the force between freely rotating permanent
dipoles in some important ways. In particular, the dielectric constant
of the surrounding medium does not appear in Eq. (2.15). The
strength of this interaction still depends on the medium, but the
fluctuations in the electronic structure responsible for transient
dipole moments are much faster than molecular rotations in a liquid.
This makes the dielectric constant irrelevant. Instead, the refractive
index of the medium appears in this expression, because it reflects
the response of the medium to very rapid changes in electric fields (at
frequencies like those of light). In water the refractive index is a little
larger than one, and so it is much smaller than the dielectric con-
stant. The important consequence is that the dispersion force is much
stronger than interactions involving rotating permanent dipoles.

A more rigorous expression for this force would include polar-
izabilities as functions of frequency, as might be obtained from
spectroscopic data. Quantities that vary with frequency are said to
exhibit dispersion, and that is why this force is commonly called the
dispersion force. It is also called the London force, after Fritz
London, who developed the first satisfactory theory in 1930. An
important consequence of dispersion is that two molecules may
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not attract one another strongly if the frequency ranges in which
their polarizabilities are large do not overlap. For interactions
between similar molecules the frequency ranges will be well
matched, and the dispersion force will be stronger. This is the origin
of the general rule in solution chemistry that ‘‘like dissolves like.’’

The 1/r6 dependence in Eq. (2.15) is used quite often in trying to
quantify dispersion forces. The proportionality constant is usually
obtained empirically rather than computed from molecular struc-
ture. Furthermore, it should be borne in mind that the 1/r6 depen-
dence is valid for distances of separation that are large compared to
the size of the interacting molecules. For short distances the depen-
dence on distance is closer to 1/r (Parsegian, 1973).

Dispersion forces are quite general, acting between molecules
with complex shapes, and between large macroscopic bodies. The
theoretical analysis can get very complicated, and varies quite a bit
for each case. There are only a limited number of results in the
literature. One important case is parallel rod-shaped molecules, for
which the dispersion energy varies as 1/r5. One can obtain this
inverse fifth power by summing over interactions between linearly
arranged centers each interacting as 1/r6. The attraction between
parallel rods provides a cohesive force between hydrocarbon chains
in a lipid bilayer (Section 2.16), and is relevant to the stability of
assemblies of rod-shaped filamentous proteins. Planes or sheets
separated by a medium with a different dielectric constant attract
one another, and the leading term in the interaction varies as 1/r2

(Parsegian, 1973). This attraction, which draws two lipid bilayers
together, is opposed by a repulsive hydration force (Section 2.9).

2.8 Hydrophobic forces

One of the most important molecular forces in biology is the hydro-
phobic force. It is a familiar fact that oily substances will form a
separate phase from water. Likewise, macromolecules will arrange
into structures that minimize contact between their polar and non-
polar domains. The attraction between the oily, hydrocarbon parts
of molecules is then equated with an aversion or ‘‘phobia’’ of water,
hence the term ‘‘hydrophobic.’’ This term is highly appropriate
because the hydrophobic force is driven primarily by an energy
cost of creating hydrocarbon–water contact.

The dispersion force is the natural first choice in trying to
explain the hydrophobic effect. But if the hydrophobic effect were
caused by dispersion forces then one would expect to find a positive
enthalpy change occurring when hydrophobic molecules come in
contact with water. Mixing would then require strong water–water
and hydrocarbon–hydrocarbon interactions to be broken and
replaced by weak water–hydrocarbon interactions, leading to the
absorption of heat. Water and hydrocarbons are weakly miscible,
and calorimetric measurements with these mixtures showed that
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the enthalpy change is very small, and often of the wrong sign. This
means that other physical processes must be considered to under-
stand the hydrophobic effect.

With small positive enthalpy changes one must look for sources of
entropy to drive the segregation of hydrocarbons and water. The
primary source of entropy in the hydrophobic force is the ordering
of water molecules at a hydrophobic surface. Computer simulations of
vicinal water near a nonpolar surface have shown that there is a
decrease in entropy because the water becomes structured, even ice-
like. This ordering of vicinal water can be explained by noting that
water cannot form strong hydrogen bonds (Section 2.10) with hydro-
carbon. To maintain energetically favorable hydrogen bonding, water
must straddle a hydrophobic surface (Fig. 2.7). This restricts the orien-
tations of water molecules and lowers the entropy (Stillinger, 1980).

Another way of viewing the reduced entropy of vicinal water is
to consider the number of ways a water molecule can form hydro-
gen bonds with its neighbors. If one pictures a tetrahedral cage of
four water molecules hydrogen bonding a central water molecule,
the central water can donate its hydrogen atoms in any combina-
tion of two of its four neighbors. This gives six ways to be fully
hydrogen bonded. Replacing one water of the cage by a hydropho-
bic, nonhydrogen-bonding neighbor reduces the number of ways
this can happen by a factor of about two.

The restriction in orientation of vicinal water varies with tem-
perature. It becomes harder and harder to order molecules as the
temperature is raised. As a result, hydrocarbon–water contacts have
a very high heat capacity. Raising the temperature gradually melts
the ice-like vicinal water. Interestingly, and somewhat paradoxi-
cally, as the temperature rises and the entropy goes up, the hydro-
phobic effect does not get weaker, but instead gets slightly stronger
(Dill, 1990). This is because the dispersion force becomes stronger
with increasing temperature, and this compensates for the loss
of entropic drive. We must therefore view the hydrophobic force
as entropy-driven at low temperatures (around room temperature) and
enthalpy-driven at higher temperatures (near the boiling point of
water). Extrapolations of thermodynamic quantities to temperatures
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Fig: 2:7: Water molecules

adjacent to a hydrophobic molecule
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other water molecules.
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above the boiling point of water suggest that a maximum in the
strength of the hydrophobic force will occur, and at this temperature
the entropy change will be zero. Thus, the common label ‘‘entropy-
driven’’ is only valid in a limited temperature range.

Although the complexity of the physical process that gives rise
to the hydrophobic force has made it hard to develop a detailed
quantitative theory, the idea that a hydrocarbon surface orders
neighboring water molecules has motivated a very simple and use-
ful approximate representation of the interaction energy in terms
of the surface area of contact with water. Extensive measurements
have been made of free energies of transfer of hydrocarbons of
various shapes and sizes from oil to water. In general, this free
energy scales with the surface area of the hydrocarbon. A plot for
five amino acids is shown in Fig. 2.8. The slope of 18 cal ¯�2 provides
a useful scale factor for estimating the energetic cost of juxtaposing
hydrophobic surfaces and water. Note that this plot was limited
to amino acids with nonpolar side chains. If amino acids with
polar side chains had been included, these points would have fallen
below the line. The dependence of free energy on the surface area of
contact is an empirical result, which can be very useful in estimating
the energetics of hydrophobic interactions.

The hydrophobic effect becomes stronger as ions are added to a
solution (Baldwin, 1996). Adding salt generally reduces the solubi-
lity of nonpolar molecules in water, and increases the slopes of plots
such as Fig. 2.8. Ions attract and surround themselves with water
because of its high dielectric constant. Nonpolar molecules are
repelled owing to their much lower polarizabilities. This effect can
be understood qualitatively in terms of the image forces of Section 2.3.
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Extensive studies of different ions generated what are known as
Hofmeister series in which the salting out actions of ions are ranked.

2.9 Hydration forces

In contrast to hydrophobic surfaces, hydrophilic surfaces made up
of charged or polar molecules interact favorably with water. It is
hard to remove the water from these surfaces. Water removal is
necessary to bring two hydrophilic surfaces close together, so there
is an effective repulsion. This force is known as the hydration force.
The hydration force has been studied most thoroughly in lipid
bilayers, but it is thought to be quite general.

As noted above, lipid bilayers are attracted to one another by
dispersion forces between the two hydrocarbon interiors. The
hydration force opposes this attraction and prevents them from
getting closer than about 20–40 ¯. This force is studied not by
directly pushing two bilayers together, but by osmotically with-
drawing water. In this way one observes how the distance of separa-
tion varies as a function of the chemical potential of water. From
this information one can determine the force as a function of dis-
tance. These experiments showed that the interbilayer repulsive
force increases exponentially as the distance is reduced. The dis-
tance over which the force changes by a factor of e is quite short,
roughly 1–3 ¯. Hydration forces thus rise very steeply, and the
distances at which they become significant vary depending on
the chemical nature of the phospholipid headgroup. Lipid bilayers
will aggregate under some conditions, and the distance of separa-
tion represents an equilibrium between attractive dispersion forces
and repulsive hydration forces (Rand, 1981).

Hydrophilic surfaces are often charged so one would expect
electrostatic forces to play a greater role. For lipid bilayers, electro-
static interactions dominate only for bilayer separations of greater
than roughly 25 ¯. At closer distances ionic strength does not have
much of an effect, indicating that the hydration force has assumed a
dominant role. In thinking about cellular processes such as mem-
brane fusion, where two opposing lipid bilayers join together, it is
important to remember that the hydration force presents a formid-
able obstacle. This force can be overcome by divalent cations, which
can bridge some of the polar head groups found on phospholipids.
Alternatively, proteins associated with vesicle and target mem-
branes can catalyze membrane fusion with speed and specificity.

2.10 Hydrogen bonds

Hydrogen atoms have a unique chemical property of being able to
form bridges between pairs of electronegative atoms (typically oxy-
gen or nitrogen). The standard theory of chemical bonding allows
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the hydrogen atom to form only a single covalent bond, but in a
hydrogen bond a hydrogen atom shares its electron with two bond-
ing atoms. The electronegative atom serving as the hydrogen accep-
tor also violates the standard rules of bond number. For example, a
carbonyl oxygen atom already has two covalent bonds so it forms a
third bond when it hydrogen bonds. To address the problem of
maintaining correct bond numbers, it has been proposed that the
hydrogen bond is electrostatic rather than covalent, resulting from
the dipole moments of the interacting groups. This is supported by
the fact that hydrogen bonds are much weaker than typical covalent
bonds. However, quantum mechanical calculations have shown
that the hydrogen bond has a strong covalent character, and that
the electrostatic picture is an oversimplification (Weinhold, 1997).

Hydrogen bond lengths are generally in the range 2.5–3 ¯ (for the
distance between the two electronegative atoms). The three participat-
ing atoms preferentially orient along a single line. When the hydrogen
acceptor is an oxygen or nitrogen atom with single rather than double
bonds, the hydrogen bond will be incorporated into the tetrahedral
symmetry of the p orbitals of that atom. However, the orientation
effects are weak so that the energy cost of bending a hydrogen bond is
low compared to similar distortions of covalent bond angles.

Hydrogen bonds vary quite a bit in strength. Among the weakest
are bonds involving aliphatic hydrocarbons, and these can have
energies of less than 1 kcal mole�1. On the other hand, very strong
hydrogen bonds have energies exceeding 20 kcal mole�1. These
constitute a special class of very strong hydrogen bonds, which
can drive catalysis in some enzymes (Section 10.14).

Hydrogen bonds are stronger when more electronegative atoms
are involved. For example, bonds with oxygen atoms are usually
stronger than bonds with nitrogen atoms. Some energies are listed
in Table 2.1. Their magnitudes are such that hydrogen bonds can
be expected to play a role in biomolecular structure. But unlike

Table 2.1. Energies of hydrogen bond formation

Bond �H (kcal mole�1)

H2O - - - HOH

gas �5.4
liquid �3.4
ice �3.0 to �7.7

C – OH - - - O¼C 3.7
acetic acid (gas)

C – OH - - - OH �3.4 to �4.0
ethanol (gas)

NH - - - O¼C �7.9
formamide (theory)

From Jeffrey and Saenger (1991), p. 27.
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stronger covalent bonds, they break easily so that a structure with
hydrogen bonds will exhibit some flexibility.

One of the most important roles of hydrogen bonds is endowing
water with unusual properties such as a negative change in volume
with melting, a high dielectric constant, a high melting point, a
high freezing point, and a high heat capacity (Stillinger, 1980).
Recall that the hydrogen bonding capacity of water was part of the
explanation of the hydrophobic effect (Section 2.8).

Water readily forms hydrogen bonds with dissolved substances
and this is an important factor in evaluating the tendency of groups
to hydrogen bond. An intramolecular hydrogen bond between two
groups within a protein forms at the expense of two hydrogen
bonds with water. Likewise, the formation of an intermolecular
hydrogen bond between a protein and ligand also involves breaking
hydrogen bonds with water. This diminishes the energy that hydrogen
bonds can contribute to structural stability.

To account for the role of water, one must then think of hydrogen
bonding as an exchange reaction rather than simply bond formation.
A full accounting of hydrogen bonding between a donor AH and an
acceptor B gives Scheme (2A) as follows

AH - - - OH2 þ B - - - HOH! AH - - - B þ HOH - - - OH2 (2A)

Each side has the same number of hydrogen bonds (two). On the left-
hand side, AH and B each hydrogen bond with water. On the right-
hand side AH hydrogen bonds with B and two water molecules
hydrogen bond with each other. Because there is no change in net
bond number, from a simple bond-inventory perspective there
should be no change in enthalpy. However, as Table 2.1 shows,
the energies of hydrogen bond formation vary with bond type and
environment. Furthermore, although the �H for a water–water
hydrogen bond in the liquid state is not particularly large, this value
is for an isolated pair of water molecules. In a cluster the hydrogen
bonds are stronger owing to a cooperativity effect to be discussed
further a little later. Finally, water that is not bound to a protein has
a higher entropy than bound water. All these factors tend to drive the
equilibrium of the above reaction to the right, but the precise free
energy contributed by a hydrogen bond is difficult to quantify.

The free energies of hydrogen bond exchange have been estimated
in a variety of ways, and some of these results are summarized in
Table 2.2. The estimate for the NH - - - OC hydrogen bond within the
backbone of a polypeptide chain was made by a series of measure-
ments for model compounds.

Free energies for enzyme–substrate hydrogen bonds were
derived from measurements employing site-directed mutagenesis
to replace a hydrogen bonding residue with a nonhydrogen bonding
residue. This is illustrated in Fig. 2.9, with the enzyme tyrosyl–tRNA
synthase. The substrate tyrosine is bound to the enzyme by several
contacts, including hydrogen bonds with aspartate 176 to the
substrate tyrosyl hydrogen, and with tyrosine 34 to the substrate
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tyrosyl o xygen (Fig. 2.9 b). I n the absence o f the sub str ate a water
molecule occupies this site and is held in place by hydrogen bonds
with the same residues (Fig. 2.9a). In a mutant enzyme with phenyl-
alanine in place of tyrosine, a hydrogen bond is subtracted both from
the enzyme–water complex and from the enzyme–substrate complex
(Fig. 2.9c and d), and the binding is weakened by 0.5 kcal mole� 1. This
then constitutes a measurement of the energy of the exchange reaction
depicted in Scheme (2A). These kinds of experiments provided the
estimates for the enzyme substrate values in Table 2.2.

The importance of the environment has already been mentioned
for hydrogen bonds, and polarity is a particularly critical factor.
Amides and carbonyls are very polar, but when they form a hydro-
gen bond their polarity is reduced. As a result, it is easier to transfer
a donor–acceptor pair to a nonpolar environment if they are joined

Table 2.2. Energies of hydrogen bond exchange with water

Bond Free energy (kcal mole�1)

NH  - -  - O¼ C � 1.4
peptide a

enzyme –substrat e with neutr al partne r b � 0.8 to � 1.5
enzyme –substrat e with char ged partn er b � 3 to � 6
a Jeffrey and Saenger (1991).
b Fersht (1987).
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by a hydrogen bond. This will also increase the energetic drive for
hydrogen bond formation in a nonpolar environment. Thus, hydro-
gen bonds are generally stronger in the nonpolar interiors of pro-
teins and lipid bilayers (Roseman, 1988).

When an atom participates in more than one hydrogen bond, there
will be cooperativity between those bonds. This happens because, when
an atom serves as a hydrogen donor, its charge distribution changes,
increasing its electronegativity and making it a better hydrogen bond
acceptor. This promotes the formation of chains, rings, and other net-
works of hydrogen bonds in which the stabilizing energies are con-
siderably greater than one would estimate by pairwise addition
(Stillinger, 1980; Weinhold, 1997). This cooperativity can strengthen
hydrogen bonds in liquid water. When a network of hydrogen bonds
forms within a protein this network will have a stability that exceeds
the sum of the individual hydrogen bond energies.

2.11 Steric repulsions

Two objects cannot occupy the same space at the same time, and the
result is steric repulsions. The origin of this force is the Pauli exclu-
sion principle, which states that two electrons cannot have the
same quantum state. This leads to a very steep rise in energy
when the electron shell of one atom starts to penetrate the elec-
tron shell of another. This force has been modeled as a steep expo-
nential function or as a high inverse power of distance. It is common
to represent the steric repulsion as 1/r12 because when this is added
to the 1/r6 attractive dispersion force (see, for example, Eq. (2.15))
the mathematics simplifies in a convenient way. The potential
energy as a function of distance then takes the form

UðrÞ ¼ 4"
r0

r

� �12
� r0

r

� �6
� �

(2:16)

This function has a minimum just above r ¼ r0 with a depth of ".
Equation (2.16) is known as the Lennard–Jones potential. It has the
generic features widely found in intermolecular potentials. An
attractive part draws the molecules together and a steep repulsion
at short range prevents them from penetrating one another
(Fig. 2.10). It has been widely used in the theory of liquids, and can
be used whenever an attractive dispersion force must be balanced
by steric repulsion.

For virtually all practical purposes, the precise mathematical
shape of this repulsive force does not matter. As long as the energy
rises very steeply when atoms get close together, then each atom
has a virtually impenetrable space that can be treated as a volume
from which other atoms are excluded. The hard surfaces defined by
steric repulsive forces are of vital importance as the basis for the
lock-and-key stereospecific interactions that dictate specificity in
molecular biology.
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2.12 Bond flexing and harmonic potentials

One might think that steric forces would make a biological macro-
molecule behave almost like a hard ceramic object. This would then
define stereospecificity as an absolute process, with no possibility
of squeezing or stretching to permit recognition between imper-
fectly matching molecules. However, the atoms in a macromolecule
are not fixed in place. They can move as the bonds that hold them
together strain and twist. Each of these motions can be thought of as
the stretching of a spring. The displacement is opposed by a force, F,
proportional to the displacement, x. Thus, we have F(x) ¼ ��(x � x0),
where � is a force constant and x0 is the equilibrium position where
the force is zero. The potential energy is then

UðxÞ ¼ 1
2�ðx� x0Þ2 (2:17)

When this expression is inserted into Newton’s equation of
motion, we have a classical harmonic oscillator. It is easy to show
that the solution gives a periodic sine or cosine function with a
frequency of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=mÞ

p
. This is the vibrational frequency of the bond,

and so vibrational spectroscopy provides a direct route to the deter-
mination of force constants (Wilson et al., 1955). The determination
of force constants can be made more comprehensive by including in
addition to vibrational frequencies other forms of information such
as equilibrium conformations and enthalpies of fusion (Lifson and
Warshel, 1968).

For the carbon–carbon bond the stretching force constant is
5 �105 dyne cm�1, or 660 kcal ¯

�2 mole�1. This means that a
displacement of only 0.1 ¯ will exceed thermal energy at room
temperature. Many covalent bonds have stretching force constants
that are within an order of magnitude of the carbon–carbon bond
force constant, which means that bond stretching is not going to
soften things up very much. Bond bending force constants are
generally about ten-fold weaker, and deformations of about 0.2 ¯
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can be expected for thermal energies. Finally, a typical force con-
stant for stretching a hydrogen bond is about 30 kcal ¯�2 mole�1.
Although any one of these degrees of freedom does not have much
compliance, the effects of many such motions in a large macromo-
lecule can accumulate to allow considerable flexibility.

The harmonic potential arises quite naturally from a formal
representation of the potential energy of a macromolecule as a
general function of all the positions of its atoms. The internal
coordinates are denoted as a vector x ¼ (x1, x2, x3 . . . xN), where
the xs cover the x, y, and z coordinates of all the atoms. We further
specify the coordinate system to be centered at a potential energy
minimum, U0, so we do not have to deal with the x0 in Eq. (2.17).
Near this minimum, the potential energy is

UðxÞ ¼ U0 þ
X

ij

aijxixj (2:18)

This is a multidimensional parabola, and any nonzero set of xi will
increase U above U0. The quantities aij can ultimately be related to
the force constants of stretching and bending the bonds.

We can rewrite Eq. (2.18) in matrix-vector notation (Appendix 2) as

UðxÞ ¼ U0 þ xAxt (2:19)

The vector x is a row vector on the left and xt, the transpose of x, is a
column vector on the right. The matrix A has the property of being
positive semidefinite, which guarantees that all displacements away
from x ¼ 0 leave U unchanged or increased. In this form the poten-
tial energy can be transformed with the aid of powerful methods
from matrix algebra (Appendix 2). A positive semidefinite matrix
can be diagonalized by a similarity transform TAT�1¼G, where G is a
matrix in which the only nonzero elements fall on the diagonal. These
diagonal elements, �ii, are referred to as the eigenvalues of the matrixA.
How to find the matrix T is another problem that need not concern us
here. It is enough to know that it exists to rewrite Eq. (2.19) as

UðxÞ ¼ U0 þ xT�1 TAT�1 Txt

¼ U0jGjt (2:20)

in which j ¼xT�1 and jt ¼Txt. Thus, each element of j is a linear
combination of the xi.

Casting off the matrix-vector notation allows us to express Eq. (2.20)
as

UðfÞ ¼ U0 þ
X

i

�i�
2

i (2:21)

The potential energy has now become a sum of terms like Eq. (2.17).
It is an important general property of any arbitrary potential energy
function that near the minimum it can be rewritten in the form
of a sum over terms identical to that of a harmonic oscillator. If
this representation of the potential energy is incorporated into an
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equation for the atomic motions, a similar mathematical analysis
yields the modes of vibration of a complex molecule. These are
referred to as the normal modes of vibration of a molecule (Wilson
et al., 1955). In fact, in a polyatomic molecule it is actually these that
are measured by vibrational spectroscopy rather than the frequen-
cies of individual bonds. A potential energy function also has nor-
mal modes, and it often helps to think about molecular flexibility in
terms of a sum of deformations of the form in Eq. (2.21).

Since x in Eq. (2.19) is composed of the x, y, and z coordinates for
each atom, a molecule with N atoms is represented by a vector with
3N dimensions. The matrix A must therefore have 3N eigenvalues
(Section A2.3). However, not all of these eigenvalues will reflect
deformations of the molecule. There are three modes correspond-
ing to movement of the whole molecule along the x, y, and z axes
and three modes corresponding to rotations around the x, y, and z
axes. There is no potential energy change associated with such
displacements, and the eigenvalues corresponding to these modes
of motion will reflect this by assuming values of zero. This leaves
3N � 6 nonzero eigenvalues of A, and this is how many normal
modes of deformation the molecule will have. These nonzero eigen-
values can span a considerable range. Smaller eigenvalues corre-
spond to ‘‘soft’’ modes of motion for which deformation is easy.
These are often the most interesting because they reflect global
changes in structure (Levitt et al., 1985).

Statistical mechanics is especially easy with the harmonic potential.
With Eq. (2.17) the classical configuration integral (Eq. (1.4)) becomes

Q ¼
Z1
�1

e��ðx � x0Þ2=2kTdr ¼

ffiffiffiffiffiffiffiffiffiffiffi
2kTp
�

s
(2:22)

and the free energy is

G ¼ �kT ln Q ¼ 1

2
kT ln

�

2kTp

� �
(2:23)

Thus, increasing the force constant raises the free energy. This reflects
the decrease in entropy resulting from confining x to a smaller region.
In general, a strong force constant that might exist in a tight complex
between two molecules has this hidden free energy cost, which must
be considered in performing a complete free energy tally (Section 4.8).
The extension of this analysis to the multidimensional harmonic
potential leads to a remarkably simple form (Problem 11).

2.13 Stabilizing forces in proteins

To function properly a protein must fold up into its native state. The
native state is a global state comprising a minute subset of all the
possible conformations available to a protein (Sections 1.1 and
3.11). The molecular forces between the different amino acid side
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chains and backbone groups must pull the protein together into its
compact native state. A great deal of effort has gone into assessing
the energetic contributions made by the various forces to the stabi-
lity of a protein’s native state. Studies have focused on the relative
contributions made by hydrogen bonds, salt bridges (contacts
between oppositely charged side chains), and hydrophobic contacts.
Indeed, one should also ask whether general guiding principles
of protein folding exist, or whether each individual protein has
its own unique energetic mix of forces that maintain its native
structure.

Some of the earliest work on this subject attempted to assess
electrostatic contributions. This was based on the idea that salt
bridges form between positively and negatively charged amino
acid side chains. However, because of the large self-energies asso-
ciated with burying charges, even as ion pairs, such interactions
would be restricted to the surfaces of proteins exposed to water.
Crystallographic studies reveal very few buried ion pairs in
proteins. There are more on the surface, but the high dielectric
constant of water reduces the energetic contribution of an ion
pair to 1–2 RT (as noted in Section 2.1). Ion pairing at protein
surfaces therefore does not play a major stabilizing role. In general,
ion pairs are not highly conserved in evolution, and when charged
amino acids are replaced the effect on the stability of the native
state is usually rather small. Experimentally, electrostatic interac-
tions can be manipulated by varying the pH or salt concentration.
The results of these investigations are somewhat equivocal, but
overall it appears that ion pairs are of secondary importance in
stabilizing the native state of a protein (Dill, 1990).

There is growing evidence that cation–p interactions (Section 2.6)
play a role in protein stability (Gallivan and Dougherty, 1999). The
energy is greater than that of a salt bridge and the aromatic side chain
could lie slightly below the surface, within range of a positively
charged side chain at the surface. Tryptophans in particular are
frequently positioned with the right orientation near arginines and
lysines. Experiments have not yet assessed the energetic contribution
of these contacts to protein stability, but work in model peptides
indicates that properly oriented pairs of tryptophan and arginine at
the appropriate spacing can stabilize a-helices, presumably through a
cation–p interaction (Shi et al., 2002b). However, the magnitude of
this effect is below theoretical estimates of the strength of the
cation–p interaction.

A large body of research indicates that hydrophobic interactions
do most of the work in protein folding (Dill, 1990). Structural studies
clearly show that hydrophobic groups are buried in the interior
(Fig. 2.11). Analysis of protein structures and interpretations with
the aid of solvent transfer data (Fig. 2.8 and Section 2.8) provide a
quantitative assessment of the hydrophobic contribution to protein
stability (Spolar et al., 1992). As solvents are made more hydro-
phobic, the native states of proteins are destabilized and proteins
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are denatured. For example, alcohols are more hydrophobic than
water, and they are very effective denaturants. Propanol works
better than ethanol, reflecting its greater hydrophobicity. The dena-
turing action of alcohols and other hydrophobic solvents reflects
their ability to compete with the hydrophobic contacts between
residues in the protein interior. Additional evidence for the impor-
tance of hydrophobic interactions in protein folding comes from
the analysis of mutants and their effect on stability (Section 1.4).
This work indicates that each buried CH2 group contributes
about�2 RT to the free energy of the native state (Pace, 1992).

As noted in Section 2.8, the hydrophobic force is temperature
dependent. Cooling weakens the hydrophobic force to the point
where it is no longer strong enough to stabilize the native state of
a protein. At very low temperatures (usually below 0 8C) there is
enough order in bulk water so that the presence of a hydrophobic
surface makes relatively little difference. This weakening of the
hydrophobic force denatures proteins. Thus, both low temperatures
and high temperatures can denature proteins, although to see cold
denaturation requires supercooling, or adding urea to shift the cold
denaturation temperature to an accessible range (Griko and
Privalov, 1992).

Nearly 90% of all the groups in a protein that can form a hydro-
gen bond do so, but the abundance of hydrogen bonds in proteins is
not sufficient to conclude that they are energetically important in
protein folding. When viewed as an exchange process (Scheme (2A)
and Section 2.10), there is no guarantee that hydrogen bonding will
favor the folded state. How can hydrogen bonds stabilize the folded
state when they can form just as easily with water? One explanation
for the abundance of hydrogen bonds in proteins is that they
form after hydrophobic interactions take the lead in pulling parts
of a protein together to form a compact state (Section 3.16). Once
hydrogen-bonding groups find themselves sequestered away from
water they hydrogen bond with one another, driving the formation
of a-helices and b-sheets. According to this view, the hydrophobic
effect indirectly drives the formation of secondary structure.

+

+

+

–

–

–

Fig: 2:11: The folding of a protein

internalizes residues with hydro-

phobic side chains (gray), allowing

polar groups (black) to coat the

surface. Charged groups form

occasional salt bridges at the

surface.
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As noted above, experiments with solvents such as alcohols suggest
that hydrogen bonds are less important to protein stability than hydro-
phobicity. However, experiments on the stability of mutant proteins
suggest that hydrogen bonds are doing more than merely following
the lead of hydrophobic interactions (Myers and Pace, 1996). Proteins
are in fact destabilized by mutations of hydrogen bonding residues.
Although any mutation has multiple energetic effects, after carefully
assessing the various contributions, losing a hydrogen bond was found
to destabilize the native state by as much as 4 RT.

An interesting approach to the role of hydrogen bonds has been
developed using hydrogen–deuterium exchange (Shi et al., 2002a).
Deuterium partitions selectively into weaker hydrogen bonds.
Stronger hydrogen bonds prefer protons. The deuterium/hydrogen
ratio (measured by NMR) can thus be used to estimate the energy of
individual hydrogen bonds in a protein. Furthermore, weakening
hydrogen bonds by isotope exchange shifts the equilibrium between
the native and denatured states. These experiments lead to an estimate
of 0.7 kcal mole�1 (about 1 RT) for the contribution of a hydrogen bond
in an a-helix to the stability of the folded state. The stabilizing effect
varies among different proteins, and in proteins with less a-helix and
more b-sheet, the stabilizing effect of hydrogen bonds is no longer
evident. Thus, the variable strengths of hydrogen bonds between
different atoms, in different geometries, and in different environ-
ments can produce a significant drive for protein folding in some
but not all proteins. Water–water hydrogen bonds appear to be stron-
ger than water–protein and intramolecular protein hydrogen bonds.
This drives the exchange equilibrium (Scheme (2A)) to the right,
allowing hydrogen bond formation to contribute to protein stability.

In an a-helix the amide dipoles and carbonyl dipoles are fixed in
orientation and position by the structure of the helix (Fig. 2.12). The
dipole–dipole interaction energy varies as 1/r3 and has a complex
dependence on orientation (Section 2.4). Adjacent bonds are nearly
side-by-side so their inter action is repulsive (Fig. 2.12b). But for more
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Fig: 2:12: (a) The peptide bond

has a dipole moment. (b) These

dipole moments are aligned in an

a-helix and add together.
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distant pairs of bonds the orientations are nearly end-to-end so the
interactions become attractive. Despite the short range, when all
these interactions are summed the attractive terms win out to give a
net stabilizing energy of about 1–2 kcal mole�1 per residue. This
stabilizing effect is greater for longer helices.

An important consequence of the alignment of dipole moments is a
substantial net dipole moment of the entire a-helix, as though there
were half an elementary charge at each end. This dipole creates a field
that can influence ligand binding and enzyme catalysis (Hol et al.,
1978). The dipole moments of a-helices draw cations into the aqueous
cavity of an ion channel selective for Kþ (Section 14.10). The dipole
moments of transmembrane helical segments allow the membrane
potential to influence orientation, providing a potential driving force
for voltage-induced transitions (Section 1.8).

2.14 Protein force fields

The quantitative expressions for the various forces developed above
should in principle allow one to calculate the total potential energy
of a protein in a particular configuration. In fact, a major effort has
been made to find good quantitative representations for the poten-
tial energy of a protein as a function of the positions of all the atoms.
These protein force fields are generally written as a sum of many terms
of the form (Brooks et al., 1983; Weiner et al., 1986; Levitt et al., 1995)

U ¼
X

bonds

aaðxi � xi0Þ2

þ
X

bond angles

bbð�i � �i0Þ2

þ
X

dihedral angles

cgð1� cosðnið�i � �i0ÞÞÞ2

þ
X

charges

qiqj

"ðrÞrij

þ
X

neutral atoms

4dd
rij0

rij

� �12

� rij0

rij

� �6 !
(2:24)

The first sum represents the stretching energy of all the covalent
bonds in the protein. The aa are the force constants for the bonds
(Section 2.12), with the subscript a indicating the particular type of
bond, and xi0 is the length of the bond for which the stretching
energy is at its minimum. The second sum represents the bending
energy of all the bonds, with the bb and �i0 taking on meanings
analogous to the corresponding parameters in the first sum. The
third term represents rotational potentials of the dihedral angles,
with the parameters defined as in the first two sums. The fourth
sum is for electrostatic interactions between charges, with a dielec-
tric constant that depends on the position within the protein.
The fifth term represents nonbonded interactions represented by
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a Lennard–Jones potential (Eq. (2.16)). A computer program can take
the coordinates of all the atoms of a protein (typically a ‘‘pdb’’ file) as
input, and use Eq. (2.24) to calculate U.

Detailed force fields have a wide range of applications. One of
the most important is simulating dynamic fluctuations in structure.
Here one starts with Newton’s law of motion, F ¼ ma, and uses
Eq. (2.24) to calculate F as the gradient of U. It is thus a vector with
three components for each atom in the protein. The acceleration, a,
is also a vector with three components per atom. One then takes an
initial state with thermally randomized velocities, incorporates a
random element to reflect thermal effects, and uses a computer to
integrate the equation numerically. These kinds of computer simu-
lations have been widely used to study rapid processes occurring on
timescales of up to nanoseconds (Karplus, 2002).

It is tempting to try to use the protein force field to predict the
structure of a protein. Presumably, a structure obtained by mini-
mizing the potential energy in Eq. (2.24) would be the native state.
The energy difference between two different local minima would
then give the relative stability of two global states. However, some
serious problems arise when such calculations are attempted. First
of all, the computer time needed to find the true minimum
increases exponentially with the size of the molecule. For even
small proteins the problem is impossible for present day computers.

Another problem is that each term in the potential energy func-
tion is of limited accuracy. It is very difficult to calculate the elec-
trostatic terms accurately because the dielectric constant is position
dependent and is rarely known to better than a factor of about 2.
The environment dependences of other interactions are poorly
understood as well. Aside from these uncertainties, one must bear
in mind that the total energy is a sum of thousands of such terms.
The statistics in this kind of situation dictates that the error in the sum
will be roughly equal to the average error per term times the square
root of the number of terms (see Chapter 12). The error in this sum
turns out to be much larger than the energy differences between many
of the local minima in this potential energy function.

To illustrate this point, consider an average energy per term of
10 �1 kcal mole�1. With N such terms the total energy will be
10N � 1

ffiffiffiffi
N
p

. If N ¼ 10 000 then we have 100 000 � 100 kcal mole�1.
The error in this quantity of 100 kcal mole�1 is a relatively small
fraction of the total energy (0.1%), but 100 kcal mole�1 is very
large compared to the free energy changes occurring during typical
conformational transitions (for example thermal unfolding, see
Chapter 1). This problem cannot be overcome by better computers.
It depends not only on having a better understanding of molecular
forces, but also on an accuracy in the potential energy function that
is probably unattainable.

Monumental efforts have been made to overcome these difficul-
ties. Year by year methods improve in the use of force fields to
calculate the native structure of a protein, and these methods are
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starting to become useful. The determination of a protein’s struc-
ture from its amino acid sequence has spawned a large scale semi-
annual competition known as CASP (critical assessment of protein
structure prediction). Much more goes into these efforts than just
protein force fields, but the CASP competitions provide an excellent
venue for testing and evaluating developments in this area (Lesk
et al., 2001).

2.15 Stabilizing forces in nucleic acids

Molecular forces determine the conformation and behavior of oligo-
nucleotides, single-stranded polynucleotides (e.g. RNA), and double-
stranded polynucleotides (e.g. DNA) (Bloomfield et al., 1974; Record
et al., 1981). The three most important interactions in nucleic acids
are (1) stacking interactions between the aromatic bases, (2) electro-
static interactions between the charged phosphates of the polymer
backbone, and (3) hydrogen bonds in Watson–Crick base pairs.

The stacking interaction between base pairs is quite strong and
makes the flat aromatic bases stack together like plates. It causes
monomeric nucleotides to associate weakly in solution, and more
importantly, provides the major driving force in the formation of
the DNA double helix. Because this force has a relatively small
entropic contribution, it is not the same as the hydrophobic inter-
action. The stacking of nucleic acid bases depends on dispersion
forces, which are especially strong because of the very similar
electronic structures of the different bases. The bases have large
overlaps in the frequency dependence of their polarizabilities, and
as emphasized above, this is a key element in generating strong
dispersion forces (Section 2.7).

Hydrogen bonds form between bases of the different strands in a
DNA double helix, and this forms the basis for complimentarity in
Watson–Crick base pairs. The energy contributed by a single hydro-
gen bond in a DNA duplex has been estimated to fall in the range
0.8–1.6 kcal mole�1 (Fersht, 1987).

Guanine–cytosine base pairs have three hydrogen bonds and
adenine–thymine base pairs have two, so one would naturally
think that this accounts for why a double helix rich in guanine–
cytosine base pairs is more stable than a double helix rich in adenine–
thymine base pairs. This hypothesis has been difficult to test because
of the thermodynamic complexity of double helix melting. Although
the specific energetic contributions have been difficult to quantify, it
is a remarkable result that the temperature, �H, and �S of melting all
are simple linear functions of the fraction of guanine–cytosine base
pairs. The linear dependence is significant because it indicates that,
overall, the base composition of DNA is far more important to the
stability of a double helix than the actual sequence.

The interplay between hydrogen bonding and stacking makes
double helix formation a highly cooperative process. When the first
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base pair forms between two single-stranded molecules, there are
only hydrogen bonds to hold it together, so the complex is not
very stable. After the first base pair forms, the immediately adjacent
bases are aligned in a pairing configuration by the stacking force.
This gives the double helix a rapid rate of growth following
the nucleation process of forming the first basepair. This nearest
neighbor interaction is an excellent example of the kind of
cooperativity used to develop theories for helix–coil transitions
(Section 3.12).

Nucleic acids have strongly acidic phosphate groups, a large
fraction of which are ionized at neutral pH. The repulsive force
between these charges tends to straighten the molecule out, extend-
ing single-stranded polymers and increasing their persistence
length (Section 3.4). The repulsion between phosphates on the
two chains also opposes strand association and double helix form-
ation. Increasing the salt concentration reduces this repulsion and
stabilizes a double helix. There is a surprisingly simple linear rela-
tion between melting temperature and logarithm of the salt con-
centration. The effect can be accurately explained with a theory
based on counterion binding (Section 11.11).

2.16 Lipid bilayers and membrane proteins

The lipid bilayer provides a perfect solution to the puzzle of how to
arrange amphipathic molecules in such a way as to minimize con-
tact between hydrocarbon and water. The approximately parallel
alignment of the phospholipid hydrocarbon chains excludes water.
This allows the polar headgroups to form a flat surface that is
solvated by water, while the hydrocarbon tails are exposed to one
another and to the hydrocarbons of the opposite leaflet of the
bilayer. Integral membrane proteins accommodate this scheme
with hydrophobic membrane-spanning segments (see Fig. 2.13,
and compare it with Fig. 2.11). The interior of a membrane thus
maintains its hydrophobic character as one passes from lipid to
protein and back to lipid. Segments of a membrane protein with
polar side chains are immersed in water and contact the polar
phospholipid headgroups.

The principle of hydrophobic matching is particularly useful in
membrane proteins. The membrane-spanning segments of a pro-
tein vary quite a bit in their content of hydrophobic amino acids.
The segments in contact with surrounding lipid are more hydro-
phobic than the segments that are buried in the protein core (Rees
et al., 1989). Indices of hydrophobicity were calculated for the
a-helical membrane-spanning segments of photosynthetic reaction
centers, which are composed of several membrane proteins. The
mean hydrophobicity of residues buried within the interior of these
membrane proteins is similar to that for residues buried inside
globular proteins. So the factors that influence the internalization
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of amino acid side chains appear to be generally applicable to both
classes of protein. The peripheral domains of membrane proteins
that come in contact with the lipid hydrocarbon tails are much
more hydrophobic than the buried domains, and this can be seen
as a matching of the protein and lipid tail hydrophobicities.

The parallel hydrocarbon chains in a lipid bilayer attract one
another by dispersion forces, which vary as 1/r5 (Section 2.7).
Without headgroups, solid paraffin has an average area per hydro-
carbon chain of about 18–19 ¯

2, and this reflects the minimum
potential energy for the combination of attractive dispersion forces
and steric repulsion. In the ordered gel phase of lipid bilayers, the
chains are straight and parallel with an average area of about 21 ¯

2.
This is greater than in paraffin because of the polar headgroups,
which have greater packing areas than the two appended hydro-
carbon chains. The headgroups repel one another, and this spreads
the hydrocarbon chains out.

Raising the temperature causes a melting transition as the
hydrocarbon chains of a lipid bilayer become disordered. In this
fluid state the chains become disordered, assuming kinked and bent
conformations. The hydrocarbons spread out further, reaching an
area of nearly 30 ¯

2. The packing density is then very similar to that
of liquid paraffin, and the increased disorder of the hydrocarbon
chains decreases the thickness of the bilayer (Weiner and White,
1992). The lipids in biological membranes tend to be fluid at phy-
siological temperatures, allowing membrane proteins greater flex-
ibility and freer diffusion.

Fig: 2:13: A lipid bilayer with

an integral membrane protein.

Hydrophobic (gray) elements are

buried. Polar elements (black) line

the surface exposed to water.
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Problems for Chapter 2

1. Derive an expression for the enthalpy of hydration from Eq. (2.4).
The solid curve in Fig. 2.1 has the form C/r. Calculate a numerical
value for C from your result using the temperature dependence
of "w mentioned below Eq. (2.2) (Rashin and Honig, 1985).

2. The energy of an arrangement of charges is given by the integral
over all space of the quantity "E2/(8p), where E is the field
( Jackson, 1975). Use this to derive Eqs. (2.4) and (2.7).

3. Derive the potential energy of interaction between two dipoles
lying in the same plane as a function of distance and orientation.

4. Derive the potential energy of interaction between the quadru-
pole of Fig. 2.5c and a cation on the axis of the quadrupole.

5. Calculate the difference in Born energy for transferring tetra-
phenylphosphonium from oil to water. Treat the molecule as a
sphere and use your own estimate of its size based on the che-
mical structure.

6. The amino acid lysine has a primary amino group at the end of its
side chain. Take the radius of this amino group as 1.7 ¯, and
calculate the energy of transfer from water to oil. Take the pK of
the primary amino group as 10 and calculate the free energy of
deprotonation of the acid form (RNH3

þ) at a physiological pH
of 7.3. Based on a comparison of these energies would you expect
the protonated or deprotonated form of lysine to be inserted into
a lipid bilayer?

7. Calculate the hydrophobic free energy for transferring tetraphe-
nylphosphonium from oil to water. As in Problem 5, base your
calculation on your own estimate of area from the chemical
structure. Compare the magnitude of this with that from
Problem 5.

8. Estimate the difference between the free energy of transferring
tyrosine and phenylalanine from oil to water.

9. Derive the position of minimum potential energy for the
Lennard–Jones potential (Eq. (2.16)) and the depth of that
minimum.

10. Calculate the force constant at the energy minimum of the
Lennard–Jones potential in terms of " and r0. What is the force
constant when "¼ 10 kcal mole�1 and r0¼ 2.8 ¯. Compare the
value with the force constant given for the stretching C–C bond
in Section 2.12.

11. Evaluate the partition function and free energy of a multi-
dimensional harmonic potential in Eq. (2.19) using the classical
configuration integral (Eq. (1.4)). Express the result in terms of
the matrix A.
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Chapter 3

Conformations of
macromolecules

The idea of a global state was introduced in Chapter 1 as a way of
looking at the behavior of a large molecule without getting bogged
down in details. Here we will face the details head on, examining
the vast variations of microstates, and in the process gaining some
insight into the nature of certain types of global states. With help
from the ideas about molecular forces in Chapter 2, we will develop
more detailed descriptions of macromolecules. We will rely heavily
on simple polymers as model systems for the more complex biolo-
gical macromolecules.

3.1 n-Butane

To get a feel for the more complicated models, we start off with a
simple model based on the small molecule, n-butane. This molecule
has three favored conformations, defined by rotating the central
C–C bond to give different dihedral angles. These conformations are
trans, gauche-left, and gauche-right (Fig. 3.1). The electronic structure
of the C–C bond restricts rotations around the central bond,1 so
that the molecule will spend most of its time in these three
configurations.

Trans and gauche conformations differ in energy by about
1/2 kcal mole�1 (Rosenthal et al., 1982). With the aid of the
Boltzmann distribution, this information can be used to calculate
the relative probabilities of an n-butane molecule being trans or
gauche. If the trans conformation has an energy Et and a gauche
conformation has an energy Eg, then the Boltzmann distribution
gives the relative abundance of the two states in terms of the energy
difference �E¼ Eg� Et as

1 The traditional explanation for the rotational preferences of n-butane and other

straight-chain aliphatics is steric repulsion. However, rigorous analysis suggests

that the repulsion is negligible, and that the rotational preferences are dictated by

bond orbital interactions (Reed and Weinhold, 1991).



Pg-r
Pt
¼ Pg-l

Pt
¼ e��E=RT (3:1)

Here we specify trans, gauche-right, and gauche-left with the subscripts
t, g-r, and g-l, respectively. Energy is in units per mole so the gas
constant R can be used (Section 1.1).

It is convenient to use the Boltzmann weight (Section 1.1), which
for state i is

wi ¼ e�Ei=RT (3:2)

In the context of n-butane, the subscript i could be t, g-r, or g-l. With
Et ¼0, Eg-r ¼ Eg-l ¼ 0.5, and RT � 0.6 kcal mole�1 (at room tempera-
ture), the Boltzmann weights are

wt ¼ e�0=0:6 ¼ 1 (3:3a)

wg ¼ e�0:5=0:6 ¼ 0:43 (3:3b)

where wg is used for both the gauche-left and gauche-right configura-
tions. The probabilities of n-butane being trans or gauche can be
expressed in terms of these weights

Pt ¼
wt

wt þ 2wg
¼ 1

1þ 2� 0:43
¼ 0:54 (3:4a)

and

Pg ¼ Pg-r þ Pg-l ¼
2 wg

wt þ 2 wg
¼ 2� 0:43

1þ 2� 0:43
¼ 0:46 (3:4b)

Note that Ptþ Pg ¼1, because a sum over all probabilities must add
up to one.

The factor 2 multiplying wg in Eqs. (3.4a) and (3.4b) enters
because we stopped worrying about whether we had a right- or left-
gauche bond and lumped the two configurations together. This fac-
tor of 2 is referred to as a degeneracy, the term used for a count of
the energetically equivalent variants of a state. We can multiply the
Boltzmann weight and degeneracy together and call the product an
elementary weight (2e��E/RT for the gauche state). These terms often
facilitate the calculation of the probabilities.

Equations (3.4a) and (3.4b) show how the energies and degen-
eracies influence the relative abundance of each configuration. As
Eg gets larger, wg gets smaller, Pg approaches zero, and Pt approaches
one. When RT is small compared to the energy differences,

C

C

C

C

0 ° 120 ° 240 °

C

C

C

C

C

C

C

C Fig: 3:1: Three rotational

isomers of n-butane. In the trans

conformation the carbon atoms all

lie on a plane, and the dihedral angle

formed by the three C–C bonds is

assigned the value zero. Rotation of

this angle to 1208 and 2408 gives the

gauche-right and gauche-left

conformations.
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a molecule spends most of its time in the lowest energy state. As the
temperature increases, the effect of the energy difference becomes
smaller as the Boltzmann weights approach one. The states then
become probable in proportion to their degeneracies.

To illustrate how these statistical ideas come into play, the mean
end-to-end distance of n-butane will be calculated. Each of the two
conformations discussed above has a length denoted as lt and lg. If all
of the molecules were trans then the average would be lt, and if they
were all gauche it would be lg. But since there is a mixture in the
proportion determined by Pg and Pt (from Eqs. (3.4a) and (3.4b)), we
take the average of the two lengths, weighted by their relative
abundance.

�l ¼ ltPt þ lgPg (3:5)

It is common to take the end-to-end length as a vector, but then
the average over all orientations gives zero. For this reason the root-
mean-square (rms) length is widely used as a basic quantitative
index for the size of a molecule.

ffiffiffiffiffi
l 2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2
t Pt þ l 2

g Pg

q
(3:6)

The rms length is a very important property of flexible macro-
molecules, and will be calculated later in this chapter for longer
molecules using the same basic method of averaging over all
conformations.

3.2 Configurational partition functions
and polymer chains

The denominator in Eqs. (3.4a) and (3.4b) is the sum of the
Boltzmann weights of all the configurations of n-butane. Recall
that this is how the partition function is defined in statistical
mechanics (Section 1.1). More generally, for a molecule with n states
the partition function is

Q ¼
Xn

i¼ 1

e�Ei=RT (3:7)

One can also express the partition function using energy as the
summation index and take the sum over elementary weights

Q ¼
X

E

!Ee�E=RT (3:8)

This version is more convenient for many problems. The variable !E

is the degeneracy of the states with energy E. When several of the
states indexed with i in Eq. (3.7) have the same energy, then that
energy level is degenerate, so we count it !E times in Eq. (3.8).
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To illustrate the use of the partition function, take the average
energy of a molecule

E ¼

Pn
i¼ 1

Eie�Ei=RT

Pn
i¼ 1

e�Ei=RT

(3:9)

Differentiating Eq. (3.7) with respect to temperature gives

qQ

qT
¼ 1

RT2

Xn

i¼ 1

Eie
�Ei=RT (3:10)

Dividing through by Eq. (3.7), and using Eq. (3.9) for E gives the mean
energy as

E ¼ RT2 qlnQ

qT
(3:11)

In general, once a convenient form has been found for the partition
function, many important properties can be calculated.

The partition function can be used to illustrate an important
relation between a polymer and its constituent monomers. Take a
chain of N monomers. Each monomer can have a different energy
and we denote the energy of the nth monomer as En. The value of
n ranges from 1 to N, and each En can assume the values defined by a
set of rotational states. If the monomers are independent, the ele-
mentary weight for a particular configuration of the whole mole-
cule is then a product over all the individual monomer elementary

weights:
Q
En

!Ene�En=kT . The partition function is then the sum over all

these products

Q N ¼
X

E1;E2;... EN

YN
n¼ 1

!En e
�En=kT (3:12)

We can reverse the order of evaluating sums and products, and then
write out the product explicitly as

Q N ¼
X

E1

!E1 e�E1=kT

 ! X
E2

!E2 e�E2=kT

 !
� � �

X
EN

!EN e�EN=kT

 !

(3:13)

Each sum in this product is the partition function of a monomer,
and can be denoted as Q 1. The result is

Q N ¼ Q N
1 (3:14)

So if the monomers are independent, then the partition function of
the polymer is just the partition function of an isolated monomer
raised to the power N.

Take the polymer polyethylene as an example. This is a chain of
CH2 groups. If we think of the rotations around each C–C bond as
being like the rotations in n-butane (Fig. 3.1), then Q 1 is the partition
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function of n-butane, and the partition function of polyethylene is
this to the Nth power. (This ignores the fact that the end segments
are different. For N carbon atoms we should really take Q 1

N–3

because the total number of n-butane-like bonds will be N–3.)
This illustrates how easy things are when you assume that each

of the component parts is independent. Trying to take interactions
between adjacent bonds into account makes things more difficult.
This will be apparent in the analysis of random coils and the helix–coil
transition below, where limited forms of interaction between
adjacent chain segments are considered.

3.3 Statistics of random coils

Flexible polymer chains such as polyethylene tend to bend and coil
randomly. This is a common property of polymers, including many
of biological interest, and statistical models for this random behav-
ior are important tools in understanding their physical properties.
These models are generally referred to as random coils. There are a
number of versions and they fall into a hierarchy with increasing
constraints on the bonds between segments. The least constrained
model is the freely jointed chain, where each segment has complete
freedom to rotate, and any angle is equally probable. The freely
rotating chain model has fixed bond angles, but the dihedral angles
can assume any value. Finally, the rotational isomer model has bonds
like n-butane, for which dihedral angles have a few favored values.

We will first look at the freely jointed chain, and calculate the
mean square end-to-end distance. This is illustrated in Fig. 3.2. For
clarity the picture shows all of the bonds in one plane, but the treat-
ment here will deal with a three-dimensional chain of N segments.

The mathematics of the freely jointed chain is essentially ident-
ical to that of a random walk, a model for diffusion that will be
studied in Chapter 6. The analysis of the freely jointed chain will be
developed here in a way that helps us understand the physics of
polymers. In a chain of N segments, we can define the vector from
the beginning of the first segment to the end of the Nth segment as
RN (Fig. 3.2). This end-to-end vector is a sum over the N segment
vectors.

RN ¼
XN

n¼ 1

rn (3:15)

The average over all configurations is RN ¼ 0, because for every RN

there is a vector pointing in the exact opposite direction that will
cancel (as noted above for n-butane). Instead, we average the square
of this length

RN
2 ¼

XN

n¼ 1

rn

 !2

¼
XN

n¼ 1

XN

m¼ 1

rn � rm (3:16)

RN rn

l

Fig: 3:2: A freely jointed chain

contains N segments connected by

bonds of length l. The end-to-end

vector, RN, is a vector sum of the

N segment vectors, r1 through rN.
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where the vector dot product is indicated. We can break the double
sum up into terms according to whether n ¼m or n 6¼m

R 2
N ¼

XN

n¼1

r 2
n þ

XN

n 6¼m

XN

rn � rm (3:17)

For the freely jointed chain all the terms with n 6¼m are zero
because with completely free joints the orientations of any two
different segments are completely uncorrelated. Only terms of the
form r 2

n remain, and these are all equal to l2. With N such terms in
the sum, we end up with a mean square end-to-end length of

R 2
N ¼ Nl2 (3:18)

So the rms end-to-end-length increases as
ffiffiffiffi
N
p

. This is a funda-
mental property of random chain molecules. This proportionality
appears again and again not only in chain molecules but in a large
number of statistical problems. The key to obtaining this simple
result is the independence of the segments.

When neighboring segments interact, the proportionality
between R 2

N and N still holds as long as the interactions do not
extend indefinitely up and down the chain. This is illustrated with
the freely rotating chain, where the angle formed by two connected
bonds is fixed to a value, �. Now, the segments are correlated. The
terms in Eq. (3.17) of the form rn � rnþ1 are now l2cos�. This is a
straightforward trigonometric result. The angle between adjacent
segments is always �, so averaging over � is not necessary. To
evaluate rn�rnþ 2, we divide rnþ2 into components parallel and per-
pendicular to rnþ rnþ 1. The perpendicular component contributes
zero to the average and the parallel component gives l2cos2�. This
reveals the trend that for any pair of segments with n 6¼m:
rn � rm ¼ l2 cosjn�mj �. For the lower values of n–m each sum is taken
nearly 2N times in Eq. (3.17). Returning to Eq. (3.17), the terms with
n 6¼m become a geometric series in 2Ncos�. When all the terms are
added together with the aid of the sum of a geometric series
(Appendix 1), the mean square end-to-end length is

R 2
N ¼

1þ cos�

1� cos�
l2N (3:19)

Note that except for the angular factor in front, this expression is
the same as Eq. (3.18) for a freely jointed chain. The result becomes
nonsensical as � goes to 08 or 1808. The approximations in this
derivation loose their validity because the sums no longer converge,
but these angles are not relevant to flexible polymers.

For the rotational isomer model rotations around bonds are
restricted, and this makes the mathematics more complicated.
The solution will simply be stated as

R 2
N ¼

1þ cos�

1� cos�

� �
1þ cos�

1� cos�

� �
l2N (3:20)
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And we still have R 2
N / l2N. The angle � is the dihedral angle formed

by three successive bonds. For more thorough treatments of these
models see Flory (1969) and Cantor and Schimmel (1980).

The rotational isomer model is very much like stringing the
monomers along the points of a lattice. If the bonds were con-
strained to 908 and the dihedrals to multiples of 908, then we have
a cubic lattice. There is no such molecule but for polyethylene the
angles are quite close to 1208, so a hexagonal lattice is not a bad
approximation. The lattice approach gives us a helpful visual image
of macromolecule statistics, and will appear in a number of guises
later in this chapter.

3.4 Effective segment length

These random chain models lead to increasingly complicated solu-
tions as more constraints are added, but the complexity is all con-
tained in the factor multiplying l2N. The proportionality with N
remains. This suggests that the results can be generalized if we
absorb the various model-specific factors into an effective segment
length, leff. We can then generalize Eqs. (3.19) and (3.20) to

R 2
N ¼ leff

2N (3:21)

In this form any of the models will look like a freely jointed chain,
but the segments are not the true segments. Instead, they are effec-
tive segments with an effective length leff. This provides a useful
measure of the stiffness of a polymer. If leff is only slightly longer
than l, that means the molecule is very flexible; leff >> l means that
the molecule is stiff.

Another index widely used for conformational flexibility is the
characteristic ratio, defined as

C ¼ R 2
N

l 2N
¼ leff z

l
(3:22)

where z is a geometric factor used to account for the fact that a fully
extended chain may have a length less than Nl (for example, in fully
extended polyethylene the bond angles are 1128, so the length Nl
must be reduced by a geometric factor). The characteristic ratio tells
us how much longer the mean square end-to-end distance is than it
would be if it were a freely jointed chain. Values for l, leff, z, and C are
given in Table 3.1 for a few common polymers. Values for leff and C
are quite large for DNA because it is stiff. Flexible molecules such as
polyethylene and poly-L-alanine have smaller values. It is important
to appreciate that even a very stiff molecule such as double-stranded
DNA will coil randomly if it is long enough. In this case, long enough
means several times longer than leff. Looking at these numbers for
DNA we can expect random-coil behavior for a 3000 ¯ molecule
containing on the order of 1000 base pairs.
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Fo r the sake o f co mpleteness w e sho u ld m entio n one o ther
wid ely used meas ure of polymer stiffness, persistence length. This
quantity, denoted as lp , is defined as the sum of the proje ctions of all
segments on one bond

lp ¼ lim
N !1

rj

l
�
XN

n ¼ 1

rn (3: 23)

The aver age is taken o ver all conformations. If a chain is stiff,
segments separ ated by signific ant distances w ill still be correlated
and contribute t o t his sum. Thus, a stiffer chain will have a lo nger
persisten ce length. The persistence length can be used to r ep lace
many of the terms in the double sum of Eq. ( 3.17) that gives the
mean square end-to-end distance. Af t er suitable rearrangin g, one
can r ecover the following rel ationship between persistence length
and character istic ratio (Cantor and Schimmel, 1980).

lp ¼ 1
2 ðC þ 1Þl (3: 24)

For a stif f chain, with z ¼ 1, we can combine this with Eq. (3.22)
to obtain the simple approximate result t hat lp ¼ l eff /2.

3.5 Nonideal polymer chains and theta solvents

In the above analysis of random chains, the only intersegment inter-
actions that were considered were constraints on bond angles. Two
additional kinds of interaction are also important. They strongly
influence the conformations available to a molecule, but the mathe-
matical treatment is much more difficult. The first of these is attractive
interactions such as hydrogen bonds and hydrophobic forces
(Chapter 2), which pull distant segments together and tend to make
a chain more compact. The second is steric repulsion (also discussed in
Chapter 2), which prevents two segments from occupying the same
space at the same time. This is referred to as the excluded volume
effect, and tends to work against the attractive forces to spread a chain
out. Exact mathematical solutions to models with these interactions
have not been found. This makes the random-coil model especially
important as a reference point. From this perspective random-coil

Table 3.1. Flexibility parameters for chain molecules

l(¯) leff (¯) z C

Polyethy lene a 1.5 4 12.4 0.83 6.7

Poly- L-ala nine b 3.8 36 0.95 9.0

Doub le-strande d DNA b

(in 0.2 M salt)

3.5 300 1 86

aCantor and Schimmel (1980).
bRecord et al. (1981).
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models are referred to as ideal chains, and the more realistic but approx-
imate models that incorporate attractive and excluded volume inter-
actions are referred to as nonideal chains.

For the excluded volume effect a number of approximate treat-
ments indicate that the rms end-to-end distance is proportional to a
fractional power of the number of segments.

ffiffiffiffiffiffiffiffi
R 2

N

q
/ N� (3:25)

For an ideal chain � ¼ 1/2 (Section 3.3). The theories for the excluded
volume effect give values somewhat greater than 1/2; � ¼3/ 5 is
typical. A theory by De Gennes (1972) gave � ¼ 0.5975. These theo-
retical results make the reasonable point that when a polymer is not
allowed to overlap onto itself it will spread out further; the ends will
on average be separated by a greater distance. Thus, the excluded
volume effect tends to increase the effective size of the molecule
relative to that expected for an ideal chain.

The set of all configurations available to a chain subject to
excluded volume is necessarily a subset of the configurations avail-
able to the corresponding ideal chain. Excluded volume reduces the
total number of configurations, and this means that the random-
coil model overestimates the configurational entropy of a polymer.
If we consider an ideal chain strung out randomly on a cubic lattice
(recall the final comments about the rotational isomer model in
Section 3.3), the number of possible configurations would be 6N.
This follows because each site has six neighboring sites, so that each
new segment can be added in six ways.

Computers have been used to count the number of non-
overlapping configurations of a chain on a cubic lattice, and the
result was empirically fitted by the expression N1/ 64.68N (Chan and
Dill, 1991; Camacho and Thirumalai, 1993). Dividing 6N by this
expression indicates that the ideal chain model on a cubic lattice over-
estimates the true number of configurations by a factor of 1.28N/N1/ 6.
We could easily improve the random-coil model by realizing that
the value six, the number of ways to add a new segment to a lattice,
must include at least one site already occupied. Subtracting this one
site is clearly an improvement, and this leaves five ways to add a new
segment. There are then 5N configurations, and this simple improve-
ment of the random-coil model overcounts by a factor of 1.07N/N1/ 6.

Attractive interactions between segments have the opposite
effect. They tend to draw the segments together and make the
molecule more compact. They thus oppose the spreading out effect
of excluded volume interactions. This depends strongly on the
choice of solvent. If the polymer segments are weakly soluble,
then the segments will clump together to reduce the unfavorable
interactions with the solvent. On the other hand, a good solvent will
make the chain more extended.

A solvent can be chosen to make intersegment attractions count-
eract the excluded volume repulsions. If the right balance is found,
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then the rms length will scale according to ideal chain theory. The
solvent is then called a theta solvent. Because a solution of polymers
then conforms to theories for ideal chain molecules, the theta
solvent creates unique conditions for evaluating the basic proper-
ties of chain molecules. However, one should bear in mind that
although the rms length scales as N1/2, in other respects the beha-
vior is different from that of a true random coil. Excluded volume
tends to prevent more of the compact configurations from forming,
and this is compensated by attractive forces that make the more
extended conformations less likely. The result is that the probabil-
ity distribution for the end-to-end distance of a polymer in a theta
solvent is sharper than that of an ideal chain (Sanchez, 1979).

3.6 Probability distributions

The mean square end-to-end distance is only one of many properties
of a flexible polymer. A more complete description requires know-
ledge of the probability distribution of the end-to-end distance, P(R).
In an ideal chain the effective segments are uncorrelated, and this
information is sufficient to permit the use of a very powerful gen-
eral result from probability theory called the central-limit theorem.
This theorem states that any sum of independent random quantities
with the same mean will be distributed as a Gaussian function.
Thus, from a fundamental perspective the answer is already in
hand. Recall that in the calculation of the rms end-to-end distance
above, the assumption of no correlations between segments was
also the key to obtaining a simple solution.

To see how the Gaussian distribution arises in polymers, we start
with a simplified model of a random chain in one dimension. Each
segment can point in only two possible directions, right or left. If we
see that a chain of N segments ends at position x, then we know that
the chain of N�1 segments leading up to this point must have
terminated at either xþ l or x� l. We can therefore relate the prob-
ability PN (x) to the two probabilities PN� 1(x� l) and PN� 1(xþ l) as
follows

PNðxÞ ¼ 1
2ðPN�1ðx� lÞ þ PN�1ðxþ lÞÞ (3:26)

where the factor of 1/2 appears because for either of the two possi-
ble locations of segment N� 1, the next step can be either toward or
away from x. Expanding each of the terms on the right as a Taylor
series around x gives

PNðxÞ ¼ 1
2 PN�1ðxÞ � l

qP

qx
þ 1

2 l2
q2P

qx2
þ PN�1ðxÞ þ l

qP

qx
þ 1

2 l2
q2P

qx2

� �
(3.27)

¼ PN�1ðxÞ þ 1
2 l2

q2P

qx2
(3:28)
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Bringing PN�1(x) to the left-hand side, we see the difference PN (x) �
PN�1(x) can be taken as �P(x). Since �N ¼1, this then can be
approximated as a derivative, leading to a differential equation in P

qP

qN
¼ 1

2 l2
q2P

qx2
(3:29)

This is the diffusion equation (to be studied further in Chapter 6),
and it has a Gaussian function as a solution.2 This takes the form

PNðxÞdx ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pNl 2
p e

� x2

2Nl2 dx (3:30)

as can be verified by substitution back into Eq. (3.29).
This result was for an artificial one-dimensional chain. A more

realistic three-dimensional chain is a simple extension. The prob-
ability of finding the end of the chain at a position (x, y, z) is taken as
the product of three Gaussians of the form in Eq. (3.30)

PNðx; y; zÞdxdydz ¼ 1

ð2pNl 2Þ3=2
e
�x2þ y2þ z2

2Nl 2 dxdydz (3:31)

To go from this form to a function of the end-to-end distance
means transforming from Cartesian to spherical coordinates, where
x2þ y2þ z2 ¼R2 and dxdydz ¼4pR2dR

PNðRÞdR ¼ 4pR2

ð2pNl 2Þ3=2
e
� R2

2Nl 2 dR (3:32)

This actually represents a random chain that follows the points
on a cubic lattice (mentioned at the end of Section 3.3). For other
forms and models of random chain molecules we would expect that
Eq. (3.32) should still apply but with leff replacing l.

3.7 Loop formation

How easy is it to bring the two ends of a random coil together?
Equation (3.31) can be used to calculate the probability of loop
formation. The molecule will form a loop when the end has a
position near x ¼ y ¼ z ¼0 as

PNð0Þdxdydz ¼ ð2pNl2Þ�3=2dxdydz (3:33)

Of course, the actual probability of two ends being within a certain
distance will depend on the size of an arbitrary volume element,
dxdydz. But for a given value of this volume element, the probability
will vary as (2pNl2)�3/ 2. Thus, the probability of loop formation in an
ideal chain decreases as the number of segments or the segment
length increases. Equation (3.33) provides a good estimate of the

2 This solution also satisfies the appropriate boundary conditions that P! 0 as x!�1,

and P(x)! d(x) as N! 0.
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rate of formation of circular DNA from linear DNA (Record et al.,
1981; Crothers et al., 1992). For example, the enzyme DNA ligase will
join the ends of a molecule of linear DNA together if they are
‘‘sticky,’’ i.e. have short single-stranded ends that are complemen-
tary. The rate of this cyclization reaction effectively measures the
probability of loop formation. With very short pieces of DNA
Eq. (3.33) fails because the stiffness of the molecule makes it harder
for the ends to join than expected for a random-coil. The stiffness of
short chains is more effectively treated with the ‘‘worm-like chain’’
model (see chapter 19–7 of Cantor and Schimmel, 1980).

3.8 Stretching a random coil

If we hold the ends of a random coil at fixed positions, Eq. (3.31) tells
us that the molecule will have more configurations when the ends
are closer together than when they are far apart. As a consequence,
the molecule will exert a force to pull its ends together. This force is
entropic, resulting from the thermal motions of the chain. It can be
calculated by looking at how the number of configurations changes
during an extension. For a given value of x the number of config-
urations available to the chain molecule will be

�PðxÞdx ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pNl 2
p e�

x2

2Nl2 dx (3:34)

where � represents the total number of configurations of the chain.
The chain entropy as a function of length will then be given by
Boltzmann’s expression for the entropy as k ln (number of states)

SðxÞ ¼ k ln ð�PðxÞdxÞ

¼ k ln
�ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pNl 2
p e�

x2

2Nl 2 dx

� �

¼ k ln
�dxffiffiffiffiffiffiffiffiffiffiffiffiffi
2pNl 2
p
� �

þ k ln e�
x2

2Nl 2

� �
(3:35)

The left-hand term is independent of x, so it can be ignored. In
ideal chains there are no other physical interactions, so the free
energy arises entirely from entropy

GðxÞ ¼ �TS

¼ �kT ln e�
x2

2Nl 2

� �

¼ kTx2

2Nl 2
(3:36)

The force pulling the ends together is the derivative with res-
pect to x

FðxÞ ¼ kTx

Nl 2
(3:37)
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This is identical to Hook’s law for a spring; the force increases
linearly with distension. This means that a random coil behaves like
a simple elastic spring. A longer random coil (larger N) will be looser
and easier to stretch. The factor 1/N makes the force smaller as the
number of segments increases. It is notable that the restoring force
increases with temperature. This reflects the fact that the force
arises from the thermal tendency toward disorder.

Equation (3.37) is an old result first derived from the theory of
rubber elasticity. This spring-like elasticity is a basic property of
materials made up of chain molecules, and rubber is a good example.
Recent experiments with microscopic probes tethered to the ends of
chain molecules have measured the force of extension of individual
molecules. For short extensions one does see a linear force, but for
longer extensions, and especially for stiff molecules like DNA, the
random-coil model does not work well. Instead, as with loop formation
just discussed, the worm-like chain model is preferred because it treats
the stiffness property more effectively (Kellermayer et al., 1997).

3.9 When do molecules act like random coils?

With the exact results derived above for random-coil models, it is
important to know when this behavior is observed. Poly-amino
acids and long linear DNA often behave like random coils. For a
denatured protein the random-coil model may seem like a natural
choice, but denatured proteins can be quite compact even though
they are very disordered.

In its native state, a protein has a well-defined structure, which is
anything but random. However, even a well-folded protein has
some regions that fail to adopt the standard secondary structures
of a-helix and b-sheet (Section 3.10). In some of these cases parts of
the crystal structure look blurred, indicating some disorder. These
may represent stretches of random coil, so even native proteins
have occasional small segments for which some form of random-
coil model may apply.

From the perspective of a rotational isomer model, a well-
defined native state of a protein can be thought of as one particular
rotational isomer among a very large number of possibilities. How
one particular configuration comes about is a challenging question
which is discussed at the end of this chapter (Section 3.16).

3.10 Backbone rotations in proteins: secondary
structure

The polypeptide backbone has three kinds of chemical bonds, the
bond between the a and carboxyl carbons (the Ca–C0 bond), the bond
between the amide nitrogen and a carbon (the N–Ca bond), and the
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bond between the carboxyl carbon and amide nitrogen (the C0–N
peptide bond) (Fig. 3.3). The Ca–C0 and N–Ca bonds can rotate, but
the partial double bond character of the peptide bond, due to reso-
nance with the C–O double bond, forces the carbonyl group and
adjacent Ca and N atoms to lie in one plane. With this bond angle
fixed, the problem of specifying the conformation reduces to speci-
fying the dihedral angles of the Ca–C0 and N–Ca bonds. By conven-
tion we denote the Ca–C0 bond dihedral angle as  and the N–Ca

bond dihedral angle as �. A set of  and � then specifies the con-
formation to a considerable extent, leaving only the side chains to
be defined.

As with n-butane,  and � for the backbone rotations have three
energy minima. However, the positions of these minima have not
been unambiguously located and the energies are not known. Steric
repulsions can restrict the allowed bond angles of a polypeptide
chain considerably. For a given value of  there will be a range of �
for which adjacent backbone and side chain atoms overlap. Such
values are energetically prohibited. A useful way to evaluate this
effect is by plotting energy contours as a two-dimensional function
of  and �, and highlighting regions not excluded by steric repul-
sion. Such plots are referred to as Ramachandran plots, after the
originator of this approach (Ramachandran and Sasisekharan,
1968). An example is shown in Fig. 3.4 for a peptide containing
alanine. The contours enclose regions where  and � are allowed,
i.e. not excluded by steric repulsions.

In the case of glycyl–glycine about 50% of the area in the �– plot
is energetically excluded. Adding a side chain restricts the available
area much more. Alanine, with its methyl side chain, has only about
25% of the area accessible (regions within the dashed contours of
Fig. 3.4).3 Adding a second methyl group to the a-carbon produces a
nonstandard amino acid called a-aminoisobutyric acid. This further
constrains rotations, restricting access in a �– plot to only a small
percentage of the total area.

One especially useful feature of the �– plot is that certain
values of the angles correspond to the common secondary structure
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N i
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C  i + 1
C  i –  1

O

α

α
α ′

C  ′i –  1

Fig: 3:3: Rotations of the

backbone bonds of a peptide chain.

The partial double bond character

of the peptide bond prevents

rotation. Rotations about the

N–Ca bond, �, and about the Ca–C0

bond,  , define the backbone

conformation of a protein.

3 The precise shapes of the contours as well as their areas depend on the choice of the

potential energy functions for bond rotations and steric repulsion.
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motifs of proteins. For an a-helix we have � ¼�578 and  ¼�478.
This point is indicated in Fig. 3.4. The other important forms of
secondary structure, parallel and antiparallel b-sheets, are also indi-
cated. It is interesting that although much of the space in a �– plot
is prohibited by excluded volume interactions, the a-helix region
and b-sheet regions are usually allowed. This helps explain the high
incidence of a-helix and b-sheet in proteins. Even in peptides
formed from the highly constrained amino acid a-aminoisobutyrate,
the region around (�578, �478) is still energetically accessible.
Incorporating this amino acid into a polypeptide virtually forces
the formation of an a-helix.

There is growing experimental and theoretical evidence that the
minimum potential energy conformation of simple hydrated poly-
peptides is a somewhat extended, left-handed helix in which
� ¼�758 and  ¼ 1458 (Han et al., 1998; Shi et al., 2002c). This point is
also plotted in Fig. 3.4 and it falls in an allowed region of the �– 
space. This conformation is referred to as polyproline II, one of the
two conformations allowed to a polypeptide formed from proline.
Polyproline I and II refer to the N–Ca bond being either cis or trans,
respectively. The five-membered pyrrolidine ring of proline restricts
rotation around the N–Ca bond (�) and makes polyproline much less
flexible than peptides formed from other amino acids. This prevents
it from forming a-helices.

Figure 3.5 shows �– plots based on the structures of four well-
studied proteins. Each residue provides a point on the plot. The
points generally are clustered in the a-helix and b-sheet regions.
Hemoglobin has a large proportion of its points in the helical zone,
reflecting its high helical content. Green fluorescent protein (GFP)
has a large barrel formed from b-sheet, and this is reflected in the
high density of points in this zone. Lysozyme has both structural
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decline. Points corresponding to

a-helix, b-sheets, and polyproline II

(P II) are indicated (after
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motifs. The microbial Kþ channel (KcsA) contains two membrane
spanning a-helices, and little else in the way of secondary structure.
All of the proteins have some points scattered through the plot,
indicating that they have some residues that do not participate in
the more common forms of secondary structure.

3.11 The entropy of protein denaturation

The native state of a protein depends on many internal contacts
between the constituent amino acids. There are two general kinds,
local contacts such as those between neighboring residues in an
a-helix, and distant contacts between residues separated by tens or
hundreds of amino acids. Both kinds of contacts can have an impact
on the overall stability of the native state. With such a complex web
of interconnections it is not possible to break one or a few contacts
without simultaneously breaking many others. This makes the
formation of the native structure a highly cooperative process.
A protein cannot be partially folded, at least not for any significant
amount of time; it must be either completely folded or highly
disordered. Experimental studies support the view that thermal
unfolding is a two-state transition between a unique native state
and a denatured state consisting of a large ensemble of configura-
tions (Section 1.6).

150
Hemoglobin

100

50

0

–50

–100

–150

–150 –100 –50 0 50 100 150

ψ

φ

150 Lysozyme

100

50

0

–50

–100

–150

–150 –100 –50 0 50 100 150

ψ ψ

φ

150 KcsA

100

50

0

–50

–100

–150

–150 –100 –50 0 50 100 150

φ

ψ

150
GFP

100

50

0

–50

–100

–150

–150 –100 –50 0 50 100 150

φ

Fig: 3:5: Plots of �– for four

proteins. Calculated from PDB

files 1 LFY (hemoglobin),

2 EMO (GFP), 1 LJH (lysozyme), and

1BL8 (KcsA).

3.11 THE ENTROPY OF PROTEIN DENATURATION 71



The origins of cooperative protein folding will be discussed further
in Section 3.16, but here we will accept the cooperativity as a fact and
try to use the random-coil model to estimate the unfolding entropy.
The native state is taken as a single rotational configuration, with a
configurational entropy of k ln 1¼0. The denatured state is taken as a
random coil where each bond can assume three different rota-
tional energy minima. With two rotating bonds per residue ( and �
mentioned above) each residue has 23¼8 rotational states in the
random coil. The side chains have some conformational flexibility as
well. The number of additional rotating bonds varies quite a bit
between different amino acids, but on average there are 3. This
gives an additional factor of 33¼27. The number of configurations
for a chain with N residues is then (8�27)N¼ 216N (the resemblance
to Eq. (3.14) is not a coincidence). This gives a configurational entropy
of k ln 216 per residue per molecule, or R ln 216¼ 10.6 cal K�1 per
residue per mole of protein.

If this seems too simplistic there are ways to improve it. First,
allow the native state to have more configurations. Let 10% of the
polypeptide backbone be disordered in the native state. This effect
is small, and only increases the entropy of the native state by 0.1�
R ln 8 ¼0.4 cal K�1. A more important source of entropy in the
native state is the side chains, especially on the protein surface.
Allowing half of these bonds to rotate increases the entropy by R ln
(31.5)¼ 3.3 cal K�1. These two considerations reduce our estimate of
the entropy of denaturation to 6.9 cal K�1. Recall that the random-coil
model overestimates the entropy because excluded volume reduces
the number of configurations. Using the factor of 1.28N/N1/ 6 men-
tioned above (Section 3.5) for nonideal chains, we find that for a 100
residue chain there will be a correction of 2.4�1010. This reduces the
entropy by only 0.47 cal K�1 to 6.4 cal K�1 per residue.

An extensive experimental analysis of thermal denaturation
yielded an estimate of 4.2 cal K�1 per residue per mole (Privalov,
1979). This estimate was made at 110 8C, a temperature where the
hydrophobic interaction is driven mostly by enthalpy rather than
entropy (see Section 2.8). Our rough estimate of the configurational
entropy of the polypeptide and side chains is about 50% higher than
this experimental value. A very likely explanation for this discre-
pancy is that the denatured state of a protein does not have as much
freedom as a truly random coil. The polyproline II conformation
(Section 3.10) is probably the lowest energy conformation once a
polypeptide has unfolded, so rather than rotating freely, many
bonds have angles indicated for this conformation in Fig. 3.4.
Thus, using eight rotational states per residue is probably an over-
estimate, and computer modeling studies of unfolded proteins gave
estimates of 1.5 to 3 (Dinner and Karplus, 2001).

The large entropy decrease that occurs when a protein folds into
its native state raises an interesting question about how much time
folding is expected to take. With an entropy of 420 cal K�1 mole�1

for a 100 residue chain we have e212 ¼1092 unfolded configurations.
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It was pointed out by Levinthal (1968) that if an unfolded protein
sampled configurations at a rate of 1 per nanosecond (a reasonable
value based on the known rate of rotation of individual bonds), then
this sampling process could go on for 1075 years before chancing
upon the correct native state. This is a hopelessly long time and this
conundrum is commonly referred to as Levinthal’s paradox. The
fact that protein folding requires only seconds to minutes rather
than 1075 years indicates that the sampling of configurations cannot
be random. Without some form of guidance the protein will never
fold. Indeed, almost any model that incorporates some energetic
bias toward the correctly folded state can give realistic folding
times. Models have been proposed in which certain parts of a pro-
tein form secondary structure and this nucleates the spread of
structure throughout the protein. Other models have incorporated
a small bias toward the native state at every residue. Distinguishing
between these and other models will require experiments to follow
the actual pathway that a protein takes through configuration space
as it folds (Section 7.10).

3.12 The helix–coil transition

The a-helix is one particular rotational configuration of a polypep-
tide chain, characterized by  ¼�478 and � ¼�578 (Fig. 3.4). This
configuration is stabilized by hydrogen bonds between backbone
carbonyl oxygen atoms and amide nitrogen atoms three and four
residues apart. However, restricting the rotations around the back-
bone bonds reduces the entropy. These two forces oppose one
another, and depending on factors such as temperature, solvent,
and amino acid side chain, either the ordering effect of hydrogen
bonds or the disordering effect of chain entropy will prevail.

The relative stability of the a-helix versus the random coil is the
subject of an important theory. Helix–coil theory provides a con-
ceptual basis for many efforts to predict the conformational state of
a polypeptide, and illustrates some of the basic ideas of cooperative
transitions in macromolecules (Zimm and Bragg, 1959; Poland and
Scheraga, 1970; Cantor and Schimmel, 1980).

The essence of the helix–coil transition is recognizing that the
tendency of a residue to assume a helical conformation is very
sensitive to the state of its immediate neighbors. In the above
discussion of the entropy of protein unfolding it was argued that
it is hard to break a few contacts in the native state of a protein
without breaking many others. In the a-helix we make a less restric-
tive assumption about the interdependence of different contacts.
We assume that it is harder for one residue to break its own helix
stabilizing hydrogen bonds if its nearest neighbor is also helical. If
one residue is already helical, it will be easier for a neighbor to fall
into step. Thus, the helical configuration of one residue restricts the
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 , � angles of its neighbors, and as a result these neighbors do not
loose any more rotational entropy when they hydrogen bond with
their neighbors. Some of these points are illustrated in Fig. 3.6,
where overlapping hydrogen bonds reinforce one another.

Another important point seen in Fig. 3.6 is that part of the
molecule is helical and part is coiled. Thus, the helix–coil transition
is not global. However, the interactions between neighboring resi-
dues tends to force helical sections to join together into longer
contiguous stretches. Although only one helical stretch is shown
in Fig. 3.6, multiple stretches of helix are certainly possible, and the
average over all configurations, worked out in the following sec-
tion, takes this into account.

*3.13 Mathematical analysis of the helix–coil
transition

The theory of the helix–coil transition starts with a derivation of the
partition function for a polypeptide chain. Recall that the partition
function for n-butane was a simple sum of the Boltzmann weights
for trans and gauche molecules. For polyethylene, a partition func-
tion was computed as the n-butane partition function raised to the
Nth power (Eq. (3.14)). One might think that this example can be
applied to a polypeptide. Just determine the partition function for
the backbone bond rotations of each amino acid, and then multiply
them together. (That was the main idea in Sections 3.2 and 3.11.)
However, this ignores the interactions between residues, and these
interactions are the essential feature of the helix–coil transition.
The Boltzmann weights have to include these interactions, so we
will have to estimate the interaction energy for each configuration.

In an a-helix, a residue interacts with residues three and four
positions away. To make the mathematics easier we will use a
simpler model with interactions just between adjacent residues.
A rigorous analysis of the more realistic model shows that this
simplification leaves intact the important features of the helix–coil
transition (Lifson and Roig, 1963). As already noted, a long chain
will have parts that are helical and parts that are coiled (Fig. 3.6).
To represent this essential feature symbolically, we denote helical

Helix

CoilCoil

Fig: 3:6: A polypeptide can have

helical and coiled stretches. The

helical stretches are stabilized by

hydrogen bonds (dashed lines)

along the peptide chain. The coil

has greater rotational freedom.
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segments with the letter h and coiled segments with the letter c. We
might have a segment of a chain with the following arrangement of
helix and coil

cccccchhhhhccchccccccchhhhhhhhhhcccccccc

This is just one of the 240 possibilities for this 40-residue chain.
This particular configuration has three helical stretches of 5, 1, and
10 residues.

To calculate the elementary weight for a configuration such as
this we define three elementary weights for the states available to
individual residues as products of a state degeneracy and Boltzmann
weight, !e�E/ kT, as in Eq. (3.8). The need for elementary weights for
the h and c states is clear, but we also need to take into account the
interaction between nearest neighbors. This requires an additional
elementary weight for a helical residue at a helix–coil boundary. We
can then combine these three elementary weights for single resi-
dues into a product (Eq. (3.12)) to obtain the elementary weight of
any configuration of the entire chain. These elementary weights can
be calculated directly if we know the relevant degeneracy and
energy. They are more often left as free parameters to be deter-
mined from fits to helix–coil transition data.

The coil is taken as the ground state with zero energy. If we then
normalize all degeneracies to that of the coil then its elementary
weight is 1. The elementary weight for a helical residue is denoted
as s, and represents only the favorable contribution from forming
the hydrogen bonds. This applies to the continuation of an already
started helical stretch; s is often referred to as the helix continuation
parameter. For a helical residue at a helix–coil boundary, the ele-
mentary weight must also include the unfavorable entropy term of
restricting backbone bond rotations. If we denote this entropy term
as �, the elementary weight for a boundary residue becomes the
product �s. The term � is often referred to as the helix initiation
parameter. Note that for a stretch of helix we have two boundaries
with coil on each side. Each helical stretch should have only one
helix initiation factor, so we will include a factor of � only for c–h
boundaries and not the h–c boundaries.

Now we can calculate the elementary weight of a particular
configuration as a product of the three segment elementary statis-
tical weights, 1, s, and �s. For the configuration of the 40-residue
chain above we see one 5-residue stretch of helix, which gives s5�.
The isolated h gives s�, and the remaining 10-residue stretch of helix
gives s10�. Thus, we have s5�s�s10� ¼ s16�3. The partition function is
the sum of such products of weights over all possible combinations
of c and h as follows

Q ¼
X

ij

!ijs
i� j (3:38)

where !i, j is the degeneracy for the number of ways that a chain can
have i helical residues arranged in j helical stretches.
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Recall that the partition function can be used to calculate the
average energy of a molecule (Eq. (3.11)). Similarly, the mean num-
ber of helical residues is the average of i

i ¼

P
i; j

i!i; jsi� j

P
i; j
!i; jsi� j

(3:39)

Differentiating Eq. (3.38), dividing, and comparison with Eq. (3.39)
(in the same manner used to obtain Eq. (3.11)) provides a useful
expression for the mean number of helical residues

i ¼ s

Q

qQ

qs
¼ s

qlnQ

qs
(3:40)

The mean number of helical residues is clearly a useful index for the
extent of the transition, and knowing the partition function will
allow us to calculate it.

Now we will derive the partition function for an N-residue chain.
First, divide it into two parts. The first part is the partition function
of the molecule in which the right-most segment is coiled (Q Nc) and
the second part is the partition function of the molecule in which
the right-most segment is helix (Q Nh). Then Q N¼Q NcþQ Nh. If we add
another segment to the chain and try to calculate Q Nþ 1, we see that
for a chain with a c at the end, adding another c multiplies Q Nc by 1
(the elementary weight for a coiled residue), and adding an h multi-
plies Q Nc by �s (the elementary weight for a helical residue at the
boundary). Likewise, if the chain has an h at the end, adding a c
multiplies Q Nh by 1 and adding an h multiples it by s. This gives

Q N þ 1 ¼ ð1þ �sÞQ Nc þ ð1þ sÞQ Nh (3:41)

If we separate out the parts according to their right-most segment,
we have two equations

Q ðN þ 1Þc ¼ Q Nc þ Q Nh (3:42a)

Q ðN þ 1Þh ¼ �sQ Nc þ sQ Nh (3:42b)

These two equations can be expressed in matrix-vector form
(Appendix 2). We designate the two parts of the partition function
as components of a vector (Q Nc, Q Nh), and Eqs. (3.42a) and (3.42b)
become

Q ðN þ 1Þc
Q ðN þ 1Þh

� �
¼ 1 1

�s s

� �
Q Nc

Q Nh

� �
(3:43)

If our first segment is coiled then its state vector is (1, 0). Adding N
segments means multiplying by the 2� 2 matrix in Eq. (3.43) (denoted
as M) a total of N times. This gives

Q Nc

Q Nh

� �
¼MN 1

0

� �
(3:44)

76 CONFORMATIONS OF MACROMOLECULES



Multiplying from the left by the row vector (1, 1) performs the task
of adding the two components to get the partition function for an
N-residue polypeptide.

Q N ¼ ð1; 1ÞMN 1
0

� �
(3:45)

Putting the partition function into matrix form allows us to use
the powerful mathematical method of matrix diagonalization. It is
possible to find a matrix T and its inverse T�1 that diagonalize M
such that

T�1MT ¼ � ¼ l1 0
0 l2

� �
(3:46)

where l1 and l2 are the eigenvalues of M. Since TT�1 gives the
identity matrix, Eq. (3.45) can be written as

Q N ¼ ð1; 1ÞT T�1 MTT�1 MT . . .T�1 MTT�1 1
0

� �

¼ ð1; 1ÞT�NT�1 1
0

� �
(3:47)

This simplifies things quite a bit because raising a diagonal matrix
to the Nth power gives a diagonal matrix with elements l1

N and l2
N.

The eigenvalues of M are4

l1 ¼
1þ sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� sÞ2 þ 4�s

q
2

(3:48a)

l2 ¼
1þ s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� sÞ2 þ 4�s

q
2

(3:48b)

For T and T�1 we have

T ¼
l1 � s
�s

l2 � s
�s

1 1

 !
(3:49a)

and

T�1 ¼ 1

l1 � l2

�s s� l2

��s l1� s

� �
(3:49b)

One can verify these expressions for l1, l2, T and T�1 by substitution
back into Eq. (3.46). Putting these expressions for T and T�1 into
Eq. (3.47) and performing the matrix and vector multiplications
gives us the following expression for the partition function

4 This result is obtained by first expanding the determinant of the matrix obtained by

using M in Eq. (A2.17). The resulting quadratic equation has these two solutions.
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Q N ¼
l1

Nþ1ð1� l2Þ � l2
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l1 � l2
(3:50)

If l1 >l2, then with large N the first term in the numerator
dominates, leaving

Q N � l N
1 (3:51)

From this we can use Eq. (3.40) to obtain the average fraction of
helix as
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This gives us an expression for the extent of the transition as a
function of the basic parameters s and �.

3.14 Results of helix–coil theory

Equation (3.52) tells us what fraction of a polypeptide will be helical
as a function of s. Remember that s has the form !e�E/ kT, where E is
the energy of forming a hydrogen bond within a helical segment.
Thus, if conditions such as solvent or temperature change so that
helix is favored, s will become larger. For small s, �i/ N is near zero,
and for large s, �i/ N approaches 1; s ¼1 defines the midpoint of the
t r a n s i t i o n w h er e �i/  N ¼ 1/2 (Problem 11) .

To see how the fraction of helix varies with a condition that
affects helical stability, we plot�i/ N versus s for various values of the
cooperativity parameter, � (Fig. 3.7). The fraction of helix increases
with s, as expected. The shape of the transition varies in a striking
way with different choices of �. The reason for this is that � is a
cooperativity parameter reflecting the ease of forming a boundary
between a helical stretch and a coiled stretch. When � is small, then
it is hard to form a boundary, and large stretches are forced to
undergo the transition together. The transition is thus more
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cooperative. On the other hand, when � ¼1 the state of one residue
is completely insensitive to the state of its neighbor. It can be shown
that Eq. ( 3.52) t hen reduces to s /(1 þ s ) (Problem 10). This is how a
collection of noninteracting segments should behave. Small values
of � can be thought of as increasing the size of a cooperative unit of
the transition, providing an interesting parallel with the idea of size
and cooperativity in global transitions discussed in Chapter 1.

For shorter chains cooperativity becomes less of an issue.
Equation (3.52) cannot show this because it is a limit based on
large N. To see how chain length matters we must go back to
Eq. (3.50) and differentiate lnQ with respect to s. The result is quite
a bit more complicated, so it will not be written out. Plots for a few
values of N are shown in Fig. 3.8. As the chain gets shorter we see a
characteristic end effect, i.e. the transition shifts and gets broader.
The shift of the transition point to higher s reflects the fact that end
segments cannot be flanked by helical segments. For a long chain
this does not make much of a difference, but for a short chain the
end segments contribute significantly to the total chain free energy.

Finally, we note that near the transition point, s ¼ 1, one sees the
greatest number of separate helical and coil stretches. To see this we
differentiate the partition function, Eq. (3.38), with respect to �

rather than s. This gives the average of j, the number of boundaries,
or equivalently, the number of helical stretches.

j ¼ �

Q

qQ

q�
¼ �qlnQ

q�
(3:53)

A plot of the resulting function is shown in Fig. 3.9.
In Fig. 3.9 we see that, at the transition midpoint, a 1000-segment

chain has about 16 separate helical stretches. The average size will
by 500/ 16¼ 31.25 segments. We might think of this as a cooperative
unit for the transition, by analogy with the concept of cooperative
unit from Section 1.4. Global transitions get sharper as the size of
the cooperative unit increases. However, in the helix–coil transition
the cooperative unit size is not fixed and the transition is definitely
not two-state.
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3.15 Helical propensities

The equation for the helical fraction,�i/ N, from helix–coil theory has
been fitted to a large body of experimental data, generally with good
results. The parameters obtained from these fits vary for peptides
composed of different amino acids. This reflects the variable ten-
dencies of different amino acids to form a-helices. In proteins, some
amino acids are found within a-helices far more frequently than
others. This indicates that the parameters � and s might be useful in
the prediction of secondary structure. These parameters can thus be
viewed as helical propensities, and a great deal of work has gone
into measuring and interpreting them.

Experiments with homopolymers are impossible for many of the
amino acids because of solubility problems. Instead, a ‘‘host–guest’’
strategy has been developed. One makes a series of peptides using a
host sequence that has one guest location where different amino
acids are inserted. The helix–coil transition will then be shifted to
different temperatures according to the helical propensity of the
guest amino acid. From the analysis of these kinds of data the initia-
tion parameter, �, was found to be small, �10�4, as expected. The
continuation parameter, s, is what changes as a peptide goes through
the transition, but the value can be determined for a standard set of
conditions, and used as an index for comparing the tendencies of
different amino acids. Table 3.2 shows a set of ��Ga values deter-
mined by measuring the shifts in a dimerization equilibrium in
which the peptides are helices as dimers and coils as monomers.
The numbers reflect the preference of each amino acid for residence
in an a-helix. These values show a rough agreement with a variety of
other indices of helical preference (O’Neil and DeGrado, 1990)

The values of ��Ga give some clues about why amino acids
differ in their individual tendencies to form a-helices. One of the
most important factors already mentioned (Section 3.10) is steric
hindrance caused by the side chain. The group attached to the
a-carbon restricts the range of �– angles quite a bit, but usually
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the values corresponding to an a-helix are still allowed. Thus, glycine is
one of the weakest helix formers. With no side chain to restrict
rotation, the entropy cost for a-helix formation is high. By restrict-
ing these rotations, the a-methyl carbon of alanine makes it one of
the best helix formers. Another factor is the conformational
entropy of the side chain. Side chains are tightly packed in an
a-helix, which means that large flexible side chains will lose rota-
tional freedom. This explains why, for example, alanine has a higher
helical propensity than valine (Aurora et al., 1997). The alanine side
chain has no conformational entropy to lose, but the valine side
chain does.

There are a number of other factors relevant to the stability of an
a-helix. For example, end effects are quite important, as reflected by
the low value of �. Serine and threonine have side chains that can
form hydrogen bonds with the backbone. This makes it easier to
form a junction between helical and coiled stretches. This effect is
called ‘‘capping’’ and the strategic location of capping residues can
make a big difference in the ease of helix formation. On the other
hand, the side chain of asparagine interacts with the backbone in a
manner that destabilizes the a-helix. Proline cannot form an a-helix
because its ring structure constrains the rotations of its backbone
bonds; � and  cannot assume the correct values for an a-helix so
proline has the lowest s value by far of all the amino acids (and
highest ��Ga value, see Table 3.2).

Despite understanding much about the stability of a-helices, it is
hard to predict where one will find helices in the amino acid
sequence of a protein. In general, predictions based on helical
propensities have a success rate of about 60%–70%. Furthermore,
many helical stretches in proteins are short, and this is hard to
reconcile with the unfavorable boundary energy, which should
favor longer helices (Dill, 1990). Capping cannot account for the
large number of short helices observed.

Table 3.2. Helix formation energies

Amino acid ��Ga Amino acid ��Ga

ala � 0.77 cys � 0.23

arg � 0.68 ile � 0.23

lys � 0.65 tyr � 0.17

leu � 0.62 asp � 0.15
met � 0.50 val � 0.14

trp � 0.45 thr � 0.11

phe � 0.41 asn � 0.07

ser � 0.35 his � 0.06

gln � 0.33 gly 0

glu � 0.27 pro 3

Source: from O’Neil and DeGrado (1990).
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One reason that it is so hard to predict which parts of a protein
will form a-helices is that helix stability is sensitive to the environ-
ment. The polarity of the environment influences the energetics of
hydrogen bonds (Section 2.10). In water, hydrogen bonding is an
exchange process in which contacts with water are replaced by
intramolecular contacts; the free energy change associated with
hydrogen bond exchange is small. When a hydrogen bond forms
between two groups confined within a protein interior, water has
already been excluded. Hydrogen bonding is then no longer an
exchange process, so that the full bond energy is available to drive
secondary structure formation.

From this perspective, the side chain of an amino acid is less
relevant. If nonlocal forces pull an amino acid into the interior of a
protein, it is much more likely to form highly hydrogen bonded
secondary structures, regardless of its side chain. This means we
have to figure out which stretches will fold up inside the protein
and which will remain on the surface. Of course, this is a hard
problem. But if we can make some headway towards its solution,
we may be able to improve our ability to predict secondary structure
as well.

3.16 Protein folding

Models examined so far were mostly based on homopolymers such
as poly-L-alanine. These models were good at explaining homopoly-
mer behavior. They coil randomly and undergo a helix–coil transi-
tion. But some key properties elude them. They cannot fold up into a
highly structured native state, and they cannot undergo global
transitions. Proteins are special in these regards. The closest a
homopolymer can come to a native state is a compact ‘‘molten-
globule,’’ which is compact but still very random and fluid-like.
The molten-globule state behaves very much like a nonideal ran-
dom coil with very strong attractive interactions between the
monomers.

The formation of a molten-globule from a random coil is accom-
panied by a drastic reduction in the number of conformations.
A homopolymer with 100 segments can be arranged in about 1067

ways on a cubic lattice without having any segments overlap
(Camacho and Thirumalai, 1993). Compacting this chain to its maxi-
mum density reduces the number of configurations to about 1017,
and this is a rough estimate of the number of possible compact
configurations of a 100-residue protein. The big question is what
makes a protein prefer only one of these 1017 possibilities.

Of course, describing the native state as having only one con-
formation is an oversimplification. It is more realistic to think of the
native state as a cluster of structurally similar conformations, or as a
global state comprising a small but significant number of micro-
states. Even from this perspective, the native state of a protein is
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vastly more restricted than the set of all compact states, and we still
have a very challenging problem of figuring out what determines
the folding of a protein to its native state.

The crucial property of a protein that enables it to fold is its
sequence of amino acids. The molecular forces discussed in Chapter 2 –
electrostatic interactions, hydrogen bonds, and hydrophobic inter-
actions – can be incorporated into a full potential energy function of a
protein that depends on thousands of these interactions. Efforts to use
these protein force fields to solve the protein folding problem were
discussed in Section 2.14, and we pointed out that they have yet to
succeed.

Some basic principles of protein folding have been elucidated by
models based on potential energy functions that are much simpler
than the full protein force fields. One example is the H–P lattice
model, in which two amino acid types, hydrophobic (H) and polar (P)
occupy sites on a lattice. Taking the view that the hydrophobic
interaction is the predominant force responsible for the stabiliza-
tion of the native state (Section 2.13), the H–P model focuses exclu-
sively on these interactions. If we think of the standard amino acids
as a 20-letter alphabet, the H–P model can be thought of as a reduc-
tion to an alphabet with only two letters.

The H–P model simplifies things not only by ignoring nonhydro-
phobic interactions, but also by lumping all of the hydrophobic
interactions together. The hydrophobicities of the hydrophobic
amino acids vary quite a bit (Section 2.8), but the H–P model ignores
this, employing a single energy parameter, ", for any H–H contact.
The value is typically ��2 kcal mole�1, but it can be varied to see
how sensitive predictions are to the strength of this interaction.
Most H–P models use a lattice representation, so that a configura-
tion is defined as a sequence of connected lattice points (Fig. 3.10).
This makes it easy to identify contacts. To calculate the energy
for any particular configuration, we count the total number of
H-residues that are in contact with other H-residues. The number
of such contacts times the basic energy parameter gives the energy
of that configuration.

Most of the analysis of H–P models was carried out with a com-
puter. This was the only practical way to examine each sequence
and enumerate all of its configurations. A thorough analysis turned
up an interesting result for short sequences on a two-dimensional
lattice. Although the number of configurations was enormous, some

8 H-H contacts5 H-H contacts

Fig: 3:10 A 20-residue H–P

chain with the sequence

PHPPHPPHHPPHHPPHPPHP

(H-filled, P-open). The left

configuration has five H–H contacts

and the right has eight. Three other

configurations of this sequence have

five H–H contacts, but no other

configuration has eight. Thus, this

sequence has a unique energy

minimum (Dill et al., 1995).
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sequences had very few configurations with the minimum energy.
To illustrate this point, the 20-segment H–P chain shown in Fig. 3.10
has a minimum energy state (right) with eight H–H contacts, giving
an energy of 8". This is the only configuration of this particular
sequence with this many H–H contacts; all the others have less.
Another configuration of this sequence has five H–H contacts
(Fig. 3.10, left). Counting up all the configurations of this sequence
revealed a total of four configurations with this number of H–H
contacts.

Relatively few H–P sequences are like the one in Fig. 3.10, with
only one minimum energy configuration. Other sequences had
many, making their energy minima degenerate. For chain lengths
ranging from 11 to 18, about 2.5% of the sequences had only a single
configuration with the minimum energy, and this configuration
was generally highly compact. The low degeneracy energy mini-
mum of some of the sequences implied that if you find the right
sequence, an H–P chain can simulate the special ability of proteins
to fold up into a unique configuration. From this perspective, the
mystery of protein folding is explained as the sequestering of hydro-
phobic residues into the protein core. Since the hydrophobic effect
is generally viewed as not very specific, it comes as a surprise that a
model based solely on hydrophobic interactions gives a unique
minimum energy configuration. The key is the sequence. Its speci-
ficity allows a nonspecific force to generate a uniquely folded
structure.

H–P sequences vary greatly in how many of their configurations
share the energy minimum. Those with just a few minimum energy
configurations can be considered ‘‘good-folding’’ sequences and
come closer to capturing the protein-like property of a native
state. The odds of finding a good-folding sequence are better
among those with a ratio of H to P residues of 1:1. Higher ratios of
H-residues favor collapse into compact structures, but there are
then many such compact states with the same minimum energy.
On the other hand, at high ratios of P-residues sequences will not
fold into a compact configuration, but will assume extended con-
figurations to solvate the P-residues. The optimum ratio of 1:1 is
close to the ratio of hydrophobic to hydrophilic amino acids found
in globular proteins (Camacho and Thirumalai, 1993). The small
number of good-folding H–P sequences is probably relevant to the
similar small number of folding patterns exhibited by proteins.
Protein sequences of unknown structure can often be threaded
into known structures of proteins with very different amino acid
sequences. We do not yet know how hard it is to find this property
(good-folding) among randomly generated sequences composed of
the 20 amino acid building blocks of proteins.

When the chains get longer and a three-dimensional lattice is
employed to make things more realistic, H–P chains no longer fold
uniquely. Sequences with only one minimum energy configuration
were not found, but some sequences still had low degeneracy
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energy minima. In a limited study of 88-residue H–P chains on a
three-dimensional lattice, it was found that some had fewer than
five configurations with the minimum free energy (Dill et al., 1995).
Another study of 48-segment sequences on a three-dimensional
lattice found 103–106 minimum energy configurations for all of
the 10 sequences examined (Yue et al., 1995). Thus, although opti-
mizing H–H contacts narrows down the search for the native state
considerably, this factor alone does not get us all the way to a
unique endpoint.

Clearly other interactions are necessary to achieve a unique
native configuration, and more sophisticated potential energy func-
tions have more success in predicting the formation of unique
native states (Kolinski et al., 1993). This amounts to adding letters
to the alphabet. Thus, side-chain packing can be incorporated into
the potential energy function as well as cooperativity parameters
for hydrogen bonding such as the parameter � introduced above in
helix–coil theory.

A parallel experimental approach to this issue involves investi-
gating the association of synthetic peptides (Raleigh and DeGrado,
1992; Betz et al., 1995; Schafmeister et al., 1997). A prototypical H–P
peptide was made with leucines as the Hs and glutamates as the Ps.
The leucines and glutamates were spaced so that when the peptide
adopted an a-helical conformation it had distinct polar and hydro-
phobic surfaces. Four such helical segments bundled together into a
tetramer with a hydrophobic le ucine core (Fig. 3.11 a). Spectroscopic
analysis indicated that this structure was quite disordered. The side
chains exhibited fluid-like behavior, indicating that there is a lot of
‘‘wiggle-room’’ in the hydrophobic core.

(a) (b)

GLEELLEELEELLEEG EELLKQALQQAQQLLQQAQELAKK

Fig: 3:11: (a) An assembly of helices with an H–P-like sequence (sequence below in one-

letter code) forms a bundle as viewed along the helical axes. The hydrophobic groups

(black) form a surface along the edge of each helix. These buried side chains are disordered

and the bundle does not resemble the native state of a protein (Raleigh and DeGrado,

(1992). (b) A more complicated sequence with strategic alternation of leucines and alanines

gives a roughly flat hydrophobic surface. The complementary surfaces pack very well

so that this bundle is structured and mimics the native state of a protein (Schafmeister

et al., 1997). Abbreviations: G¼ gly, L¼ leu, E¼ glu, A¼ ala, K¼ lys, Q¼ gln.
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Mixing up the leucines with other amino acids which are also
hydrophobic but have different sizes freezes the four-helix bundle
into a highly structured state. Alternate leucines and alanines form a
flat interior surface that packs more tightly. The lower side chain
mobility of this structured bundle comes closer to mimicking the
native state of a protein (Fig. 3.11b). According to this picture, a
protein interior is like a jigsaw puzzle in which the pieces interlock
to form a tight structure with little or no room for motion. By contrast,
the interior of the bundle in Fig. 3.11a is more like an oil droplet.

The oil droplet and the jigsaw puzzle represent two extreme
views of a protein interior (Kallenbach, 2001). H–P sequences are
good at forming oil-droplet interiors but not jigsaw-puzzle interiors.
How closely do the interiors of proteins resemble oil droplets versus
jigsaw puzzles? Protein crystal structures generally show a high
density in the interior, suggesting that packing is tight. A protein
with a jigsaw-puzzle interior should be far less tolerant of mutations
than a protein with an oil-droplet interior. Large scale mutagenesis
studies have been undertaken, replacing core interior hydrophobic
residues with other hydrophobic residues and testing catalytic
activity and stability. Two of these studies gave quite different
answers, suggesting that protein interiors do not adhere to a unique
model. The ribonuclease barnase was found to tolerate hydrophobic
substitutions at many sites (Axe et al., 1996). By contrast, in triose-
phosphate isomerase mutation of most residues in the protein core
substantially reduced catalytic activity (Silverman et al., 2001). For
triosephosphate isomerase it was estimated that only one in 1010

variants of the core sequence preserves activity. By contrast, one
fourth of the variants of the barnase core sequence are functional.
These two examples indicate that proteins vary in how tightly their
amino acid side chains pack in the folded structure. Both oil dro-
plets and jigsaw puzzles can be found in nature.

3.17 Cooperativity in protein folding

One particularly significant failure in the theoretical performance
of H–P sequences is that they can be disordered in small increments
by small increases in energy. They melt gradually, not coopera-
tively. This is counter to the cooperative nature of protein folding.
In Section 1.6 protein unfolding was seen to be a global transition.
Adding energy (actually, increasing the temperature) induces a
cooperative transition from a highly structured compact state to a
random mixture of many looser states. There are relatively few
stable intermediate states. The fact that one can slightly expand a
good-folding H–P chain to realize small increases in energy and
entropy means that the H–P chain misses an essential aspect of
protein behavior.

Simply adding letters to the alphabet does not overcome this
problem (Kolinski et al., 1996; Kaya and Chan, 2000; Pokarowski
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et al., 2003). The general problem is that treating the energy as a
simple sum over pairwise contacts does not produce a molecule
with a two-state unfolding transition, even when there are many
different types of contacts. In order to generate cooperative folding,
models must have some form of multibody (nonpairwise) interac-
tion. The simplest form of interaction that satisfies this requirement
is the cooperative interaction introduced in helix–coil theory
(Section 3.12). The parameter � of this theory reflected the depen-
dence of contact formation (in this case a hydrogen bond) on the state
of a neighbor. If the potential energy function includes this kind of
cooperativity term (which was intuitively very reasonable in the
context of helix–coil theory), cooperative folding can be produced.

Modeling studies of cooperative folding took as their benchmark
the calorimetric criterion (Section 1.6) that the van’t Hoff enthalpy
of the transition equals the calorimetric enthalpy (Kaya and Chan,
2000; Pokarowski et al., 2003). A distribution of conformations could
be evaluated for any temperature by using a computer to generate
large numbers of configurations and calculating the energy for
each. These distributions had fairly large gaps between the native
and denatured states, and increasing the temperature shifted the
distribution from one group of configurations to the other. From
the slope of this shift versus temperature one obtains a theoretical
van’t Hoff enthalpy. From the difference between the mean ener-
gies of these two populations one obtains the calorimetric enthalpy.
The models with cooperative terms in the potential energy function
satisfied the two-state condition: the calorimetric enthalpy equaled
the van’t Hoff enthalpy. These models thus mimicked the coopera-
tive nature of protein folding.

In summary, simple pairwise contact energies for two residue
types, hydrophobic and polar, are sufficient to account for the
compactness of proteins in their native state. However, additional
packing interactions are necessary to define a unique native state of
a protein. Cooperative transitions between folded and unfolded
states cannot be explained by pairwise contacts between residues.
This property requires a multibody term in the potential energy
function to reflect the dependence of contact energies on the states
of neighboring residues.

Problems for Chapter 3

1. Show that Eqs. (3.4a) and (3.4b) are consistent with Eq. (3.1).
2. Calculate the average energy of butane as a function of temper-

ature. Evaluate this quantity at T¼0 K, T¼298 K, and in the limit
T!1.

3. Calculate the probability of finding a chain of n-pentane with no
gauche bonds, and with only one gauche bond.

4. Use Eq. (3.19) to determine an explicit value for leff of polyethylene
assuming that it is a freely rotating chain.
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5. Use Eq. (3.20) to determine leff for polyethylene, using the prob-
abilities for different dihedral angles derived from n -butane.

6. Use the data in Table 3.1 to calculate the rms end-to-end distance
of poly- L -alanine and DNA. Use lengths of 100 and 1000 (residues
and base pairs, respectively) for both.

7. Calculate the concentration of one end of a polymer at the other
end for poly-L-alanine and DNA using the lengths from Problem 6.

8. Use Eq. (3.23) to calculate lp for a freely rotating chain.
9. A protein called ‘‘modulin’’ has a melting temperature of 350 K

and a �H8 of 50 kcal mole�1. It is treated with a chemical reagent
that selectively modifies valine residues so that their rotational
freedom is reduced. Prior to modification the valine side chain
has three rotational configurations, and after treatment there is
only one. Modulin has five valines, all in the interior. Estimate
the changes caused by the chemical modification in entropy,
enthalpy, and temperature for thermal unfolding.

10. Show how Eq. (3.52) reduces to a simple form when �¼1.
11. Evaluate Eq. (3.52) for s¼1. What is the significance of the

absence of � from the answer?
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Chapter 4

Molecular associations

The preceding chapters treated molecules as isolated entities. Now
we will look at how molecules interact with one another. In bio-
logical systems molecules are continually binding together and
coming apart. Molecular associations are the first step in most
forms of biological signaling, as well as in enzyme catalysis.
Hormones, neurotransmitters, second messengers, and metabolites
bind to proteins to regulate their activity. Pharmacology is rooted in
the molecular association between drugs and receptors. On a larger
scale, associations between macromolecules direct the assembly of
organelles. Here, we will examine the thermodynamic and statistical
mechanical principals underlying chemical association processes.
These concepts will serve as a useful prelude to the theory of allosteric
interactions in the following chapter.

There are two guiding principles in understanding association
processes in molecular biology. (1) The forces that control associa-
tions are usually noncovalent. These kinds of forces were covered in
Chapter 2. Here we will discuss how noncovalent interactions such
as electrostatic forces, hydrogen bonds, and hydrophobic inter-
actions combine in various ways to stabilize molecular complexes.
(2) Associations are stereospecific, and depend on a precise spatial
arrangement of the interacting groups. A binding site within a protein
is viewed as a lock, and a ligand that fits into this binding site is a key.
As a result biological associations are highly specific; molecules can
recognize one another and distinguish subtle variations in structure.

4.1 Association equilibrium in solution

If two molecules A and B in solution associate to form a complex C,
then we have a chemical equilibrium, as shown in Scheme (4A):

A þ B! C (4A)

A will usually be taken as a large protein molecule, and B will be
taken as a small ligand molecule. Alternatively, both A and B can be



macromolecules. For either case, the complex of the two is denoted
as C. For now, this doesn’t matter; the formulation is general. At
equilibrium, the concentrations of these three molecules will be
related by the basic equilibrium condition

½C�
½A�½B� ¼

1

Kdis
(4:1)

where Kdis is the dissociation constant, and has units of concentration.
The reciprocal of the dissociation constant is also often used, and is
referred to as an association constant. A higher association constant
means tighter binding so this quantity can be taken as a measure of
ligand affinity or the strength of the interaction. The advantage of
using the dissociation constant is that with units of concentration, it
can more readily be used to assess concentrations. Overall, binding
will be favored when the concentrations are above Kdis.

With B as a small ligand and A as a protein with a binding site for
B, we can use the equilibrium relation above to calculate the frac-
tion of binding sites occupied as a function of ligand concentration.
The total amount of protein is a constant, so that the concentrations
of free and bound protein must add up to the total [Ptot]

½Ptot� ¼ ½Pf � þ ½Pb� (4:2)

Here Pf, the free protein, takes the place of A in Scheme (4A), and Pb,
the protein with a ligand bound to it, takes the place of C. We can
now rewrite Eq. (4.1) in terms of [Pb], replacing [Pf] by [Ptot] � [Pb]

½Pb�
½L�ð½Ptot� � ½Pb�Þ

¼ 1

Kdis
(4:3)

where L denotes ligand, and takes the place of B. A simple rearrange-
mentgives us f, the fraction of protein bindingsites occupied by ligand, as

f ¼ ½Pb�
½Ptot�

¼ ½L�
½L� þ Kdis

(4:4)

Plotting this fraction versus [L] shows the basic saturation behavior
characteristic of a protein–ligand binding interaction (Fig. 4.1).
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Fig: 4:1: Plot of Eq. (4.4), with

Kdis¼ 10. Dotted lines indicate

that at [L]¼ Kdis, f¼ 0.5.
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Figure 4.1 shows that f increases smoothly with increasing [L],
starting from 0 and approaching 1 asymptotically at high [L]. The
point where half of the sites are occupied is [L]¼Kdis. The behavior
illustrated in Fig. 4.1 is very common. It is seen whenever a protein has
a single binding site, and some measurable form of activity depends on
the fraction of binding sites occupied. A familiar example is the
Michaelis–Menten equation for enzyme activity (see Chapter 10).

4.2 Cooperativity

There are many situations where ligands bind to proteins in a
cooperative fashion, and when this happens there is a clear departure
from the behavior depicted in Fig. 4.1. Cooperativity is seen when a
macromolecule has more than one ligand binding site, and the bind-
ing sites influence one another. There are many ways to picture inter-
actions that make binding cooperative. A few examples will be
examined here.

4.2.1 Concerted binding
Let a protein have n binding sites. We assume that some interaction
through the whole protein forces all the binding sites to be either
simultaneously occupied or simultaneously empty. This is called
concerted binding, because the binding sites all fill up at once
rather than in sequence. We represent this process with Scheme
(4B) as follows

P0 þ nL ! Pn (4B)

where P0 denotes a protein with empty binding sites, and Pn denotes
a protein with all sites occupied. There are no intermediate partially
occupied states. This situation is reminiscent of global transitions in
a multisubunit protein where all of the subunits undergo a transi-
tion concomitantly (Section 1.6).

The absolute exclusion of intermediate states follows from the
assumption of perfect cooperativity. For ligand binding this
assumption is especially artificial because there is no reason to
believe that the physical forces holding different ligands in their
binding sites should be so strongly interdependent. We will have to
wait for the treatment of allosteric processes in Chapter 5 to see
a reasonable model for cooperative binding, and then we will see
that the cooperativity of binding is less than perfect. The present
example may not be very realistic, but it is instructive, and very
widely used.

Scheme (4B) specifies an equilibrium condition for the
concentrations

½Pn�
½L�n½P0�

¼ 1

Kn
(4:5)
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where Kn is a compound dissociation constant reflecting the con-
certed binding of all n ligands. From here we proceed as before. Just
as with Eq. ( 4.2), [P0] and [Pn] must add up to [Ptot]. So we can
eliminate P0.

½Pn�
½L�nð½Ptot� � ½Pn�Þ

¼ 1

Kn
(4:6)

Rearrangin g as in t he derivation of Eq. ( 4.4), we o btain

f ¼ ½Pn�
½Ptot�

¼ ½L�n

½L�n þ Kn
(4:7)

This is often r ef erred to as the Hill equatio n. A plot of Eq. (4.7) has a
sigmoidal char acter when n > 1 (Fig. 4.2). This means t hat the curve
is steeper in the middle than at the start. Cooperativity makes the
binding curve rise more steeply because of the [L]n term in the
numerator o f the right-han d side of Eq. (4.7). Recall t hat t he same
increase in steepness was observed when global transitions became
more cooperative ( Section 1.4) .

Equatio n 4.7 can be rearranged into the following fo rm

ln
1� f

f

� �
¼ n ln ð½L�Þ � ln ðKnÞ (4:8)

This form suggests that a plot of ln ((1� f ) / f ) versus ln ([L]) should be
linear, with a slope of n. This kind of plot, often referred to as a Hill
plot, is widely used to evaluate cooperativity. The value of n obtained
as the slope of a Hill plot is referred to as the Hill coefficient. Plots of f
versus L can also be referred to as Hill plots. It is common to fit Eq. (4.7)
directly to such a plot of f versus [L] in order to estimate n.

One of the most important examples of a cooperative association
is O2 binding to hemoglobin. Each of the four subunits of hemo-
globin binds O2 at an iron–heme binding site. Plots of binding site
occupancy versus oxygen tension are sigmoidal; Hill plots give a
value of n ¼2.7. However, hemoglobin has four subunits, each with
an oxygen binding site. The reason n is not 4 is that binding is not
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Fig: 4:2 : Plots of Eq. (4.7), with n

as indicated and with Kn¼ 10n. (This

assures that at [A]n¼ Kn, f¼ 0.5, as

indicated by the dotted lines.) The

curve for n¼ 1 is identical to that

plotted in Fig. 4.1.
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perfectly cooperative. There is some sequential binding so that
partially saturated intermediates can exist. This makes binding
less cooperative, so the observed Hill coefficient is less than the
number of binding sites. The cooperativity of oxygen binding by
hemoglobin is examined with allosteric theory in Section 5.8.

In general, one never finds a Hill coefficient exactly equal to the
number of binding sites in a multisubunit protein because coopera-
tivity cannot be absolute. The general rule is that an experimentally
determined value of n, obtained from a Hill plot or a curve fit of
Eq. (4.7), is a lower bound to the number of binding sites that the
protein can have. If one sees n ¼ 2.5 in an experiment, then there
must be at least three binding sites, and there could in principle
be many more. This point can be seen more clearly with sequential
occupancy models, as will be discussed next.

4.2.2 Sequential binding
To see why Hill coefficients are less than the actual number
of binding sites, we consider a more general situation in which
binding to the different sites on a protein is not concerted, but
sequential (Tanford, 1961; Cantor and Schimmel, 1980)

P0

L L L L

P1 Pn – 1P2 Pn (4C)

For each binding step in Scheme (4C) we have an equilibrium con-
dition of the form

½Pi�
½L�½Pi�1�

¼ 1

Ki
(4:9)

This forms a system of equations relating the concentrations of the
various states of occupancy. There are n[Ptot] total binding sites, and
the fraction that are occupied is

f ¼ ½P1� þ 2½P2� þ 3½P3� þ � � � þ n½Pn�
n½Ptot�

(4:10)

With the aid of Eq. (4.9) we can express the concentration of each
partially occupied state, [Pi], in terms of [P0] as

½Pi� ¼
½L�i½P0�

K1K2K3 . . . Ki
(4:11)

This result is obtained by deriving the result first for [P1], then [P2],
etc. We use this result for each of the [Pi] in Eq. (4.10), and then factor
out [P0] to obtain

f ¼
½L�
K1
þ 2½L�2

K1K2
þ � � � þ n½L�n

K1K2 ... Kn

n 1þ ½L�
K1
þ ½L�2

K1K2
þ � � � þ ½L�n

K1K2 ... Kn

� � (4:12)

Equation (4.12) cannot rise as steeply as [L]n because of all the
terms in the numerator with lower exponents. Thus, intermediate
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states of receptor occupancy reduce the sigmoidicity of the satura-
tion curve, and this in turn lowers the value of n that would be
determined by fitting Eq. (4.7). With only n binding sites, there is no
way that f can increase with a higher power than [L]n. So as a general
rule, an experimentally determined Hill coefficient must be less
than or equal to the number of binding sites.

4.2.3 Nearest neighbor interactions
Another way to incorporate cooperativity into a binding process is to
assume that binding depends on the state of occupancy of neighboring
binding sites. This is depicted in Fig. 4.3 for a linear array of binding
sites on a long molecule. This model provides a good description of
nucleotide binding to a long single strand of DNA or RNA, and is also
useful in understanding ligand binding to filamentous proteins.

To understand this form of cooperative binding we need two
equilibrium constants, one for the binding of an isolated ligand to a
site, K0, and another for the binding of a ligand adjacent to an occupied
site, K1. At this point we can see a strong resemblance to the helix–coil
transition (Section 3.12), and in fact the mathematical treatment of
this binding problem is essentially the same. The helix continuation
parameter corresponds to K1, and the helix initiation parameter cor-
responds to K0. Because of this close correspondence, the general
observations regarding how the shape of the helix–coil transition
varies with the different parameters carries over to the present exam-
ple (Figs. 3.6–3.8). The binding curve will be more sigmoidal if the
ligand binds more tightly in the presence of a neighboring ligand than
in its absence. When this multisite molecule is short, then the steep-
ness will be limited by its length. Lengthening the molecule will
increase the number of sites, and increase the sigmoidicity of the
binding curve. However, this effect reaches a limit determined by
the strengths of the interaction between sites. Adding more binding
sites by lengthening the molecule will only go so far to increase the
sigmoidicity of binding. As with the helix–coil transition, the coopera-
tivity can be viewed in terms of the average length of a contiguous
stretch of occupied sites. Increasing the length of the molecule beyond
this point will not make binding significantly more cooperative.

4.3 Thermodynamics of associations

So far, the phenomenon of molecular association has been discussed
without looking into the specific interactions that hold molecules

Fig: 4:3: A long molecule has

many binding sites arranged in a

row. A ligand can interact with

another ligand in one of the

adjacent sites, and this can

stabilize the association.
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together. Now we will try to relate dissociation constants to ener-
getics, and evaluate the strengths of the noncovalent contacts that
stabilize a complex. We take the molar free energy for a solute in an
ideal solution

G ¼ Go þ RT ln ½A� (4:13)

where Go is the molar free energy of the standard state.
Equation 4.13 is now used to write down an expression for each

of the three species. Subtracting the free energy of the reactants
from the free energy of the products gives �G, which is taken as
equal to zero when the associating molecules are at equilibrium.
This provides a relation between �Go and Kdis (Eq. (4.5)).

�Go ¼ �RT ln
½Pb�
½L�½Pf �

¼ RT ln Kdis (4:14)

This gives the molar free energy change for the standard state,
nearly always taken as the state where all species are present at
concentrations of 1 M. Thus, �Go is the free energy change that
occurs when 1 M protein and 1 M ligand associate to form 1 M complex.
We will soon see that the choice of standard state is critical in
determining the magnitude of one of the contributions, the transla-
tional contribution, to the binding free energy.

This is the starting point in attempting to understand associa-
tions in terms of molecular interactions. We will now assess �Go in
terms of the relevant physical forces.

4.4 Contact formation

The first thing one thinks about when trying to visualize what
drives an association process is energetically favorable contacts
between the two molecules. A complex is viewed as being held
together by contacts such as hydrogen bonds, salt bridges, and
juxtaposed hydrophobic surfaces. If we know the structure of the
complex then we might try to figure out which interactions hold it
together, and then estimate the energies of those contacts with
some of the formulas from Chapter 2. We could then add them all
together to get the total contribution made by these contacts to �Go

in Eq. (4.14). If the ith contact contributes an energy "i, then the
contribution of contacts to the binding free energy could be
approximated by the sum

�Gct
o ¼

X
i

"i (4:15)

For hydrogen bonds, "might be taken from Tables 2.1 and 2.2. If the
contacts obeyed the Lennard–Jones potential (Eq. (2.13)), then the
contact energy would be " from that equation. For the attractive
forces that stabilize a complex, these terms will be negative, and
they will help drive the association. There might also be positive,
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repulsive terms if the fit between the two molecules is less than
perfect, so that some nonattracting groups are forced together. If
charges of the same sign are near one another, or if groups are
pushed together against their steric repulsions, or if hydrophobic
groups are in contact with hydrophilic groups, these contacts will
oppose the association.

This sum (Eq. (4.15)) assumes that the contacts are independent. For
example, it ignores possible distortions of the structures of the two
molecules brought about by their association. There could be small
stretching and twisting distortions of the bonds within each molecule,
or larger scale conformational changes. The conformational changes
will be discussed further below. In general, distortion effects must raise
the free energy of the complex, and thus oppose the association process.

We could generalize Eq. (4.15) to express the energy with the aid of
an all-atom force field between the two molecules (Section 2.14), so that
all of the possible intermolecular interactions are included. However,
no matter how carefully we try to evaluate this energy in terms of
molecular forces, the value computed will fail to give the actual free
energy of association. The reason for this is that there are other impor-
tant effects that have to be considered. When two molecules associate
there is a large decrease in entropy due to restricted motion of the two
molecules with respect to one another. These contributions are extre-
mely important, and so we will now evaluate them.

4.5 Statistical mechanics of association

We take the partition function of a molecule, denoted by Q (Section 1.1),
and break it down into various terms

Q ¼ qctqtqrqvqcf qs (4:16)

where qct denotes the contributions of intermolecular contacts just
discussed, qt denotes the translational contribution, qr denotes the
rotational contribution, qv denotes the vibrational contribution, qcf

denotes the contribution of conformational flexibility, and qs

denotes solvation effects. Electronic states are also discussed in
standard texts, but they do not matter much in association pro-
cesses, so they will be ignored here.

Equation (4.16) is our starting point. It helps that this partition
function is a simple product of terms representing the various con-
tributions. The partition function factors in this way because of an
assumption that each of the different forms of energy is independent
and additive. Because the Boltzmann weights are exponentials of
energy, additivity of energies allows the Boltzmann terms to be fac-
tored into the product on the right-hand side of Eq. (4.16).

One first takes the ensemble partition function as the product
over all N molecules, QN, divided by a combinatoric or ‘‘counting’’
factor, N!, due to the indistinguishibility of states resulting from
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interchanging identical molecules. The free energy is then given
in terms of the partition function for an ensemble formed from
N molecules of the same species.1 This is written as

G ¼ �kT ln ðQ N=N!Þ (4:17)

To treat the association of molecules A and B into the complex C,
we extend the partition function to a mixture of these three species.
We assume that the molecules in a solution do not interact with one
another, except through the association process we are trying to
understand. This independence makes the partition function of the
mixture of A, B, and C a product of the partition functions of each of
the three species. The free energies are therefore additive, so we can
express the free energy of the mixture of A, B, and C by adding
expressions of the form in Eq. (4.17) as follows

G ¼ �kT ln
Q NA

A

NA!

 !
� kT ln

Q NB
B

NB!

 !
� kT ln

Q NC
C

NC!

 !

¼ �kT ln
Q NA

A Q NB
B Q NC

C

NA!NB!NC!

 !
(4:18)

If the association process has reached equilibrium, then the free
energy is at its minimum. Converting an infinitesimal amount of
A and B into C will then not change the value of the free energy. We
apply this principle by combining just one molecule of A and one
molecule of B into one molecule of C and calculating G. Therefore NA

and NB will each decrease by one and NC will increase by one. Since
this small conversion leaves the free energy unchanged, we have

kT ln
Q NA

A Q NB
B Q NC

C

NA!NB!NC!

 !
¼ kT ln

Q NA�1
A Q NB�1

B Q NCþ1
C

ðNA � 1Þ!ðNB � 1Þ!ðNC þ 1Þ!

 !
(4:19)

Equating the terms in parentheses we can easily derive the follow-
ing equilibrium condition.2

Q AQ B

Q C

¼ NANB

NC
(4:20)

Since concentration is the number of moles per unit volume, we
can convert the number of molecules to concentration by multi-
plying and dividing by volume, V. With concentrations, we can then
obtain an expression for the dissociation constant, Kdis, of Eqs. (4.1)
and (4.14)

1 See texts such as MacQuarrie (1976), Hill (1960) or Moore (1972) for a derivation of the

partition function of a system of N molecules, and for further discussion of the free

energy contributions of translation, rotation, and vibration.
2 The method used in standard texts is to differentiate with respect to NA, NB, and NC, set

the derivative equal to zero, and solve for the Ns using Stirling’s formula to appro-

ximate the factorial.
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Q CV ~A

Q BQ A

¼ ½C�
½A�½B� ¼

1

Kdis
(4:21)

where Ã is Avogadro’s number, which entered because [A] in moles
per unit volume is equal to NA/VÃ.

Now we can go on to dissect the various contributions made by
contacts, translation, rotation, etc. Replacing each Q with the appro-
priate product from Eq. (4.16) gives an expression for the dissocia-
tion constant in terms of factors reflecting each contribution

1

Kdis
¼ qCct

qActqBct

� �
qCtV ~A

qAtqBt

 !
qCr

qArqBr

� �
qCv

qAvqBv

� �
qCcf

qAcf qBcf

� �
(4:22)

The reason for placing VÃ together with the translational term will
become clear immediately in the discussion of translational free
energy.

If we take the logarithm of Eq. (4.22) and multiply by RT, we can
return to an expression for �Go. We can now view �Go as a sum of
contributions reflecting each of the factors in Eq. (4.22). It was noted
at the beginning of this section that the additivity of each form of
energy in a single molecule allows us to factor the partition function
into terms as in Eq. (4.16). So now when we have reached the level of
molar free energy by taking RT ln Kdis, we see that we have recovered
this additivity property. Equation (4.22) allows us to decompose the
association free energy into its separate parts.

In evaluating the translational, rotational, and vibrational con-
tributions, it helps to think in terms of numbers of degrees of free-
dom. All molecules have three translational degrees of freedom,
corresponding to movement in the x, y, and z directions. Except
for certain symmetrical molecules, they also have three rotational
degrees of freedom, corresponding to rotations about the x, y, and
z axes. Two molecules have a total of 12 translational and rotational
degrees of freedom and when they associate, the resulting complex
has only three of each for a total of six. Six degrees of freedom
appear to be lost when the two molecules combine. Actually, they
are converted in the complex to six new internal vibrational and
librational (rocking-rotational vibrations) degrees of freedom (to be
analyzed in Section 4.8). The important point is that the total num-
ber of degrees of freedom stays the same. The complete picture
emerges by sequentially examining translation, rotation, and vibra-
tion, and then putting them all together.

4.6 Translational free energy

The translational contribution to the free energy arises from the
freedom that molecules have to roam within a given volume, V. This
freedom can be quantified as entropy by counting the number of
positional states. We divide the space available to a molecule into
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many small cells or cubicles. The molecule will have the same
potential energy in any one of these cells (unless a force is applied),
so the partition function will just be a count of the total number of
cells. This makes the translational partition function proportional
to the volume available to the molecule. The volume of one cell or
cubicle is derived from quantum mechanics using the wave func-
tion of a particle in a box. The result is (h2/(2pmkT))3/2 (McQuarrie,
1976; Hill, 1960; Moore, 1972), where m is mass and h is Planck’s
constant. This gives us the translational partition function for a
molecule in a volume V, as

qt ¼ V
2pmkT

h2

� �3=2
¼ V

�3
(4:23)

Denoting the volume of the quantum mechanical cell as �3 gives the
result a simple form, which makes clear how qt is the number of such
cells in a given volume. This result is generally quoted for an ideal gas,
but it can be extended to solutions (Steinberg and Scheraga, 1963; Tidor
and Karplus, 1994; Gilson et al., 1997). The variable � has units of length,
and is called the thermal de Broglie wavelength. Because �3 is a volume,
the units in qt cancel to give a dimensionless count of the number of
translational states. Applying this expression for qt to each species, A,
B, and C, we can calculate the translational factor in Eq. (4.22) as

qCtV ~A

qAtqBt

¼ � 3
A � 3

B
~A

� 3
C

(4:24)

This represents the translational contribution to the association
free energy.

The only molecule-specific property that appears in this expres-
sion is the mass, so we can make a reasonably general estimate of
the translational contribution. If we consider a protein, A, binding a
small ligand, B, then �A and �C will be nearly the same and cancel,
leaving Ã�B

3 as a good approximation for Eq. (4.24). For a molecular
weight of 100, and at a temperature of 300 K, �B ¼10�9 cm. The
standard state translational free energy is simply –RT ln (1 M), reflect-
ing the choice of 1 molar for all of the relevant species. Converting
�B

3 to liters then lets us calculate the translation contribution to
�Go as follows

�Gt
o ¼ �RT ln ð~A� 3

B =1 MÞ ¼ 0:588 ln ð6:02� 10�7Þ
¼ 8:4 kcal mole�1 (4:25)

This is a fairly general result, with the only ligand-specific part being
the mass that appears in �B. A ten-fold increase in the mass of molecule
B increases the free energy in Eq. (4.25) by 2 kcal mole�1. Thus, the result
is relatively insensitive to the specifics of the ligand. Furthermore, when
we take the vibrational contribution into account, we will see that this
mass dependent part of the translational free energy cancels out, leav-
ing a binding free energy with essentially no dependence on mass
(Gilson et al., 1997).
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To get an intuitive feel for the translational contribution, we can
think of binding as reducing the volume available to a molecule
from 1 liter per Ã molecules in a 1 M solution (1.7 �10�24 liter
molecule�1) to �3 per one molecule (10�30 liter molecule�1). The
translational partition function is proportional to the volume per
molecule (Eq. (4.23)), so the change in translational free energy
upon association is the logarithm of the ratio of these two volumes.

It is important to emphasize that �Gt
o depends on the choice of

standard state. In the above derivation, the standard state was 1 M,
and a different choice would change �Gt

o. In fact, the only part of
the free energy that depends on concentration is the translational
contribution. Thus, an association equilibrium should be thought of
as a balance between the translational part and all the other parts.
That is perhaps the most fundamental explanation for why chan-
ging the concentration changes the degree of association.

The term ‘‘cratic’’ is widely used for the translational contribu-
tion to the free energy of an association process (Gurney, 1953). This
is a useful idea because it distinguishes the translational part, which
depends on standard state rather than molecular properties, from
intrinsic contributions, which depend intimately on molecular pro-
perties and on the detailed nature of the interactions. Early efforts to
estimate the cratic contribution used the volume per molecule of
water at its concentration of 55 M to calculate the entropy of the
bound state. It is now generally recognized that this seriously under-
estimates the degree to which association restricts translation.

The translational contribution is mostly, but not entirely, entropy.
To see this, take the derivative of Eq. (4.25) with respect to tempera-
ture. (Note that � depends on temperature so the derivative is not
simply R ln Ã�B

3.)

�St
o ¼ R ln ~A� 3

B � 3
2R (4:26)

Subtracting T�St
o from �Gt

o in Eq. (4.25) gives

�Ht
o ¼ 3

2RT (4:27)

This result has a natural interpretation in terms of the number of
degrees of freedom. Association removes three translational
degrees of freedom, each of which has 1/2 RT of kinetic energy per
mole. The value of �Ht

o is only about 0.9 kcal mole�1 at room
temperature, and it is generally recovered as kinetic energy in
new vibrational degrees of freedom within the complex (to be dis-
cussed in Section 4.8). The only situation where this fails to occur is
when the association is so tight that quantum mechanical effects
come into play to reduce the kinetic energy of a harmonic oscillator
below 1/2 RT. Since the enthalpic contribution to the translational
free energy is small, and is conserved during association, we can
think of �Gt

o as essentially purely entropic in origin.
An alternative approach to estimating the translational contri-

bution can be developed by looking at the change in translational
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entropy as the volume per molecule in the standard state (1 liter/Ã)
divided by a volume defined in terms of the restricted movement
that a bound molecule experiences (Finkelstein and Janin, 1989;
Gilson et al., 1997). This restricted volume takes the form (�x)3,
where �x is defined as the freedom within the complex permitted
by vibrations. The change in translational free energy then reflects
the effective free volume available to the bound ligand within the
confines of its binding site.

�G o
t ¼ �RT ln

�
ð�xÞ3~A=1 MÞ

�
(4:28)

This equation is the same as Eq. (4.25), but with �x replacing �.
The motivation for doing it this way is that within the complex,
translational freedom is not really as restricted as implied by the
very short length, �. However, the relative motion of the two mole-
cules within the complex, reflected in the value of �x, is due to the
new vibrational modes, and this contribution will be estimated
separately below. The advantage of keeping them separate is that
the translational free energy change is virtually independent of the
specific properties of the two interacting molecules, whereas the
vibrational contribution is not.

4.7 Rotational free energy

A molecule in solution can rotate about its axes; typical asymme-
trical biological molecules have three orthogonal axes. The number
of rotational states for each axis might be visualized as proportional
to the circumference of a circle of molecular radius, r; for example
/ 2pr. The actual number can be calculated explicitly for a rigid
molecule using quantum mechanics to obtain the rotational parti-
tion function. This follows the same strategy used for the transla-
tional contribution, and gives an expression for the rotational
factor in Eq. (4.16) (McQuarrie, 1976; Hill, 1960; Moore, 1972)

qr ¼ p1=2 8pIxkT

h2

� �1=2 8pIykT

h2

� �1=2 8pIzkT

h2

� �1=2

(4:29)

where Ix, Iy, and Iz represent the principal moments of inertia for
rotation about the three orthogonal axes. Each has the form of a
sum �(mr2) over all atoms, where m is the mass of an atom and r is
the distance to the axis of rotation. (Symmetry factors included in
most standard texts are not considered here because they are largely
irrelevant in biological associations.)

We can use this expression to calculate the rotational factor
qCr/qAr qBr in Eq. (4.22). Again, if we take molecule A as the protein,
B as the ligand, and C as the complex, the rotational factors for A and
C will nearly cancel because IAx � ICx, etc. So we are left with 1/qBr.
For a reasonable value of the moment inertia of a small molecule
(2�10�37 g.cm2), we obtain qBr¼ 106 from Eq. (4.29). Thus, the loss
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of three rotational degrees of freedom makes the following contribu-
tion to the free energy of association

�Gr
o ¼ �RT ln ð1=qBrÞ ¼ 8:2 kcal mole�1 (4:30)

This is similar in magnitude to the translational contribution
(Eq. (4.25)).

As with the translational contribution, the entropy can be
obtained by differentiation with respect to temperature. Most of
�Gr

o is entropy, but as with the translational contribution, at room
temperature one obtains �H o

r ¼ 3=2RT � 0:9 kcal mole�1, reflect-
ing rotational kinetic energy around the three principal axes.
Again, as with translational kinetic energy, the lost rotational
kinetic energy will reappear in the new vibrational modes of the
complex. So the rotational contribution to �Go, like the transla-
tional contribution, can be viewed as purely entropic.

This calculation was based on the assumption that the two
molecules do not rotate relative to one another within the complex.
If they were attached by only one contact, then there would be an
internal rotation that would have to be considered, and this would
reduce the change in rotational free energy. However, most non-
covalent complexes encountered in biology are stabilized by multi-
ple contacts, and that will prevent free rotation.

4.8 Vibrational free energy

The translational and rotational free energy contributions just eval-
uated were necessarily positive. Because association removes these
modes, the resulting loss of freedom opposes association. Since
these modes are converted into vibrational modes, we would expect
vibrations to make a compensatory negative contribution to the
free energy of association. The complex formed by the association
of two molecules has six new vibrational degrees of freedom that
were not present when the molecules were separate. These new
modes of vibration arise from stretching and distorting the contacts
that hold the molecules together. The fact that there are six modes
is fundamental to a binary association and is completely indepen-
dent of the actual number of contacts (as long as there are more
than one). We will now evaluate the free energy associated with
these vibrations.

The factor in Eq. (4.22) for the vibrational contribution was
qCv/qAvqBv. To evaluate this expression we exploit the fact that the
many vibrations of a complex molecule can be decomposed into
normal modes (Section 2.12). A normal mode is a collective vibra-
tion of many atoms that has the important mathematical character
of behaving like an isolated harmonic oscillator. With the energy as
a sum of separate terms representing each of the normal modes
(Eq. (2.21)), the vibrational partition function becomes a product of
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terms for each normal mode. A harmonic oscillator has the follow-
ing partition function (McQuarrie, 1976; Hill, 1960; Moore, 1972)

qvi ¼
e�h�i=2kT

1� e�h�i=kT
(4:31)

where �i ¼ ð1=2pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�i=�iÞ

p
is the vibrational frequency, with � as the

reduced mass, and � as the force constant. The index i specifies
a particular normal mode. The complete vibrational partition func-
tion for a molecule is then the product of terms of the form of
Eq. (4.31) over all of the normal modes.

We first simplify Eq. (4.31) by noting that the noncovalent contacts
that hold the two molecules together are much weaker than covalent
bonds. This will lead to weak force constants compared to those for the
covalent bonds in each molecule. The vibrational frequencies for these
weak noncovalent contacts will be low, so h� << kT. We can thus
expand the exponential as e�h�/kT�1� h� /kT. The numerator of
Eq. (4.31) is then one and the denominator is h� /kT, so we have

qvi ¼
kT

h�i
¼ kT

2ph

ffiffiffiffiffi
�i

�i

r
(4:32)

using the expression immediately following Eq. (4.31) for �i. This is
the classical limit for a harmonic oscillator in which the average
kinetic energy is 1

2 RT per mole. Thus, the lost translational kinetic
energy is completely recovered in vibrations as long as the contacts
are weak enough to make the vibrations classical.

In the formation of a complex C from A and B, the normal modes
all change, because they are functions of the complete potential
energy function of a molecule. Thus, the vibrational contribution
depends on the details of the molecule much more strongly than the
translational and rotational contributions. Tidor and Karplus (1994)
carried out a detailed computer analysis of changes in vibrational
energy in the dimerization of insulin. They showed that in addition
to adding the six new vibrational modes, association alters many of
the preexisting internal modes of the monomers. Their analysis
yielded a vibrational entropy contribution of 23 cal K�1 mole�1 for
dimerization, to give �7.2 kcal mole�1 of free energy contributed
by vibrations.

Although a quantitative analysis of vibrations requires struc-
tural information and a detailed potential energy function, we can
get a good qualitative understanding of the situation by taking a
simplified approach. We assume that the internal vibrations of
A and B do not change much when the complex forms. This allows
us to approximate qCv as the product of qAvqBvq0v, where q0v represents
the six new vibrational modes due to stretching and flexing the
contacts that hold the two molecules together. Now when we insert
this expression for qCv into the vibrational factor qCv/qAvqBv from
Eq. (4.22), we see that qAvqBv cancels out, leaving just q0v. So the
problem is reduced to estimating this quantity.
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We start by making reasonable estimates of � and �. By equipar-
titioning of energy (Section 12.4), we know that the mean potential
energy of harmonic motion �(�x)2/2 ¼ RT/2 (in the classical limit). If
we take �x from typical rms motions observed in proteins as ranging
from 0.15 to 0.25 ¯, we can then solve for � ¼RT/�x2. We take the
molecular weight of a typical ligand as 100 Da and use this value
for �. Inserting these values for � and� into Eq. (4.32) tells us that qv for
a single mode can range from 3.7 to 6.3. For six such modes we have

�Gv
o ¼ �RT ln ðq0 6

v Þ ¼ �4:6 to�6:5 kcal mole�1 (4:33)

With this number in hand we can estimate the total entropic barrier
to association due to restricted motion. Summing the translational and
rotational terms from Eqs. (4.25) and (4.30), and subtracting Eq. (4.33)
gives 10.0–12.2 kcal mole�1. The favorable free energy from contact
formation must exceed this value to drive an association process.

We can also make an estimate for the case of insulin dimeriza-
tion just discussed (Tidor and Karplus, 1994). We use the molecular
weight of insulin (5700 Da), and estimate the force constant as
above for an rms variation in position of 0.15 ¯. For a single mode
qv ¼ kT/h� ¼ 29 (Eq. (4.32)). This gives 2 kcal mole�1 per mode or
12 kcal mole�1 when all six new vibrational modes are counted.
To compute the entropy we note again that a classical harmonic
oscillator has a total internal energy per mole equal to RT (12 RT
kinetic energy and 1

2 RT potential energy). Subtracting 6RT leaves
�8.4 kcal mole�1 as the entropic contribution, which is not far
from the result of �7.2 kcal mole�1 obtained by Tidor and Karplus.

Now that we have worked out expressions for the translational,
rotational, and vibrational contributions, we can combine these
results to make the important point that the equilibrium constant
for molecular association has essentially no dependence on mass.
Extracting the mass from the translational factor (�B

3 in Eq. (4.25))
gives mB

�3/2. For the rotational factor the mass dependence is con-
tained in the principal moments of inertia, so from Eq. (4.30) we
extract (IBxIByIBz)

�½. The vibrational factor reduces approximately to
q0v for the modes of stretching and twisting the contacts between the
molecules, and will be proportional to the product of the square roots
of the six reduced masses of the new vibrational modes. If we consider
a large protein binding to a small ligand, then the reduced mass for
three of the vibrational modes will be close to the mass of the small
molecule, giving a factor of mB

3/2. The other three modes are librations,
and their reduced masses will be the principle moments of inertia of
the ligand, giving (IBxIByIBz)

½. When the translational, rotational, and
vibrational factors are multiplied together, these mass dependent
terms completely cancel out. The masses in the translational factor
cancel the masses in the vibrational factor. Likewise, the masses in the
rotational factor cancel the masses in the librational terms. The bot-
tom line is that equilibrium constants for association will have very
little dependence on mass (Gilson et al., 1997).
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4.9 Solvation effects

Since associations of biological interest occur in an aqueous solu-
tion, we have to consider the effect of water at the surfaces of the
associating molecules. When two molecules associate, water will
be displaced (unless these waters remain behind to help hold
the complex together by forming bridges). The interaction between
hydrophobic surfaces and water is unfavorable and the displace-
ment of solvent is the basis for the attractive hydrophobic interac-
tion (Section 2.8). For polar groups on a ligand or protein surface,
water will be attracted rather than repelled. X-ray diffraction and
NMR studies of protein-bound water support the general con-
clusion that a large amount of water is bound weakly and nonspecifi-
cally. However, most protein molecules have a few sites that can
bind water rather tightly (Bryant, 1996). When association
displaces these bound water molecules, there will be a significant
free energy cost.

For a tightly bound water molecule the strengths of the contacts
holding the water in place might be roughly similar to the contacts
formed by the same site when binding to a ligand. For example, a
hydroxyl group on a ligand might form a hydrogen bond to replace
one formed with a bound water molecule. If the contact strengths
are similar, then contact formation will not provide the impetus for
a protein to bind a ligand rather than water. On the other hand, the
loss of translational and rotational entropy will be quite different
for the water and the ligand. If one large ligand displaces several
water molecules, then there should be a large net increase in trans-
lational and rotational entropy. However, the tally of entropy for
water is complicated. The high concentration of water lowers its
molar entropy. The statistical mechanical formulas used above to
calculate these contributions do not work well for water because
water molecules are densely packed and highly correlated. This
makes the entropy lower than that predicted above on the basis of
free translation and rotation.

Instead of using the statistical mechanical formulas above, we
take advantage of thermodynamic measurements (Dunitz, 1994).
The entropy of liquid water is 16.7 cal mole�1 K�1 at 298 K. For water
bound in crystals, entropy measurements give values of about
10 cal mol�1 K�1. This value reflects the vibration of a water molecule
within a crystal. The difference between these two measurements
can be used as an upper bound to the entropy cost of binding water to
the surface of a protein. With a difference of 6.7 cal mole�1 K�1

between the entropy of water in the liquid and bound states, we
see that at 298 K the free energy cost for displacing the most tightly
bound water molecule is about 2 kcal mole�1, and of course it will be
less for the more typical water molecules that are only loosely teth-
ered to the surface of a protein.
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This free energy cost of 2 kcal mole�1 for immobilizing water at
the surface of a protein is much less than that for immobilizing a
ligand at the standard-state concentration of 1 M. Recall that summing
Eqs. (4.25), (4.30), and (4.33) gives a total of more than 10 kcal mole�1

that opposes association. Now, imagine that an association between
two molecules is driven by contacts similar in strength to those that
bind water. The much lower entropy cost of immobilizing water
would strongly favor the binding of water. So a ligand that displaces
only one water molecule would not be competitive in binding. (This
point is actually trivial as it also reflects the greater availability of
water in an aqueous solution.) However, if a ligand is large and
displaces several water molecules, the tables start to turn. A ligand
that displaces 10 water molecules might be expected to form as
many contacts with the protein as those 10 displaced water mole-
cules. If the contact energies balance out, �H will be zero. However,
freeing 10 water molecules could increase the entropic free energy by
10�2¼ 20 kcal mole�1, which is roughly twice that lost by binding
this one large ligand, so the ligand will bind tightly. Entropy thus
favors the binding of large ligands.

4.10 Configurational free energy

Associations can produce large conformational changes. When
small molecules bind to proteins, structural changes in the small
molecule are usually not considered because small molecules do not
have much flexibility. On the other hand, proteins sometimes
undergo large conformational changes when they bind small
ligands, and this is the basis of allosteric theory (Chapter 5).

The conformational change induced by association is often
viewed as a restriction in the number of configurations. Thus, a
portion of a molecule may behave like a random coil (Chapter 3)
prior to association, and be forced to assume a single conformation
after association (Fig. 4.4). For these molecules association and
folding are coupled. We can look at thermal unfolding of proteins
for a comparison. The native state is taken as one unique configura-
tion and the denatured state is taken as a random coil. An analysis of
this model provided an estimate of the entropy change per residue
during protein folding (Section 3.11). If we knew how many residues
were ordered by the association process, we could use the per
residue entropy change in thermal denaturation to estimate the
expected configurational entropy change for ordering of a bound
peptide.

Thermodynamic and structural data have been examined in an
effort to test these ideas (Spolar and Record, 1994). The translational
and rotational contributions were each estimated with the aid of
formulas similar to Eqs. (4.25) and (4.30). A hydrophobic entropy
term was estimated from the hydrocarbon areas coming into con-
tact (Section 2.8). These terms were then subtracted from the
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measured �So of association. In some association processes there
was nothing left, and these were interpreted as rigid-body associa-
tions (subtilisin binding its inhibitor was an example). Structural
data confirmed that there were hardly any conformational changes
in these cases. However, in other associations there was a large
excess entropy, which was attributed to a change in configurational
freedom. This excess entropy was divided by a per residue value to
estimate the number of residues that were folded during association.3

These numbers compared well with estimates of the number of
folded residues from crystal and NMR data.

Data from the enzyme ribonuclease A illustrate this analysis well.
This protein can be cleaved into two fragments, one of which is a
20-amino acid peptide, the S-peptide. These pieces reassociate, and
the entropy change can be measured. The translational, rotational,
vibrational, and hydrophobic contributions were estimated and sub-
tracted out, and the remainder was taken as configurational. Dividing
this configurational entropy by the per residue value indicated that 14
of the 20 amino acids became ordered during association. Analysis of
structural data identified 17 of the original 20 amino acids of the
S-peptide as being ordered in the complex. Thus, this association gives
an entropy change near that expected for conversion of the S-peptide
from a random coil to a fixed conformation, as depicted in Fig. 4.4.

4.11 Protein association in membranes – reduction
of dimensionality

When a protein is in a membrane, its translation is restricted to two
dimensions within a plane (Fig. 4.5). Membrane-bound proteins
generally do not tumble in and out of the lipid hydrocarbon core.

Fig: 4:4: The binding of a

randomly coiled peptide to a

protein binding site forces the

peptide to assume a rigid

conformation. This will result in an

unfavorable entropy decrease.

3 Spolar and Record (1994) used 5.6 cal K�1 for the entropy of folding per residue, based

on their own analysis of thermal unfolding of a large number of proteins.
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Their orientation is fixed by membrane spanning segments, so they
can only rotate around a single axis perpendicular to the membrane
plane. Attaching molecules to a membrane thus constrains them,
and this reduces the entropic barrier for subsequent associations.

Association of two proteins already bound to a membrane will
remove only two translational degrees of freedom instead of three,
so instead of 8.4 kcal mole�1 in Eq. (4.25) we have 5.6 kcal mole�1.
Association will remove one rotational degree of freedom, so
instead of 8.2 kcal mole�1 in Eq. (4.30), we have 2.7 kcal mole�1.
The complex will have three new vibrational modes instead of six,
so this contribution will range from �2.3 to �3.2 kcal mole�1 instead
of the range given in Eq. (4.33). This adds up to an overall free energy
of 5–6.1 kcal mole�1 that has to be overcome by energetically favor-
able contacts. This is considerably less than the entropic barriers to
association estimated above for two molecules in solution. This
makes it easier for two molecules to associate with one another
when they are in a membrane. Sequestration of molecules into a
membrane thus will facilitate their association. This effect has been
referred to as dimensionality reduction. It can facilitate association
processes, making membranes better places for some forms of sig-
naling processes to occur.

Reduction of dimensionality not only makes association easier;
it can also make it quite a bit faster. Breaking the process down into
two steps can reduce how long it takes two freely diffusing mole-
cules to encounter one another for the first time. First the molecules
bind to a membrane. Then they search for one another within
the membrane. Both the membrane-binding step and the two-
dimensional diffusion-controlled association within the membrane
can be faster than diffusion-controlled association in three dimensions.
The kinetic implications are examined in Sections 8.8 and 8.9.

4.12 Binding to membranes

The restricted translation and rotation of a molecule in a membrane
will influence how that molecule partitions between the water and
the membrane. This has to be considered when trying to understand
the binding of proteins and peptides to a lipid bilayer. A membrane-

Fig: 4:5: The translational

movement of a protein in a

membrane is restricted to two

dimensions. Rotation is restricted

to one axis normal to the

membrane plane.
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bound protein is free to move in two dimensions, compared to three
in solution. So it loses one translational degree of freedom when it
binds. The loss of one translational degree of freedom amounts to
one third of the value in Eq. (4.25), or 2.8 kcal mole�1. A membrane
protein can rotate around one axis in a membrane, versus three
in solution. The loss of two rotational degrees of freedom gives
two thirds of the value in Eq. (4.30), or 5.5 kcal mole�1. A total of
8.3 kcal mole�1 then opposes the binding of a molecule to a membrane.

Once bound, there will be some wobbling along the axis normal
to the plane of the membrane, as well as angular wobbling of
the axis (Fig. 4.6). These contributions to the binding energy have
been estimated by Ben-Shaul et al. (1996), and they add up to about
3.7 kcal mole�1. For a peptide with many hydrophobic residues the
energy released by immersion in the lipid hydrocarbon chains can
easily overwhelm this opposition and lead to a strong association with
a membrane. Nevertheless, efforts to estimate the binding energy
quantitatively must take the immobilization factor into account.

Problems for Chapter 4

1. Derive Eq. (4.11) from Eq. (4.9).
2. Take the limit of Eq. (4.12) for Kn>>K1 . . . Kn�1.

3. Estimate the change in rotational free energy for binding of O2 to a
site in myoglobin or hemoglobin. Note that rotation around the
axis of the O–O bond is the same for bound and free O2.

4. Estimate the change in translational free energy for a binding
process in which a ligand is confined within a 1 ¯ cubic cavity at
298 K.

5. Assume all the contacts with a ligand are hydrogen bonds with
energies of�2.5 kcal mole�1. Approximately how many hydrogen
bonds are necessary to give a dissociation constant of 1 mM, or
1 nM? Assume a value of T¼298 K. Ignore water displacement.

6. Assume the contacts are hydrophobic. Approximately how large
does the binding surface have to be to obtain a dissociation con-
stant of 1 mM, or 1 nM? Assume that water displacement effects are
already included in the parameter that relates free energy to the
area of hydrophobic water contact (see Section 2.8).

7. Consider an ideal chain molecule with a known leff and with ends
that can bind one another. A ligand is present at 1 mM, and this
ligand is chemically equivalent to one of the polymer ends. How
long does the chain have to be before the free ligand can displace
half of the polymer ends (see Section 3.7)?

Fig: 4:6: A protein in a

membrane will have one vibrational

mode perpendicular to the

membrane (straight double arrow),

and two librational modes, one in

the plane of the drawing (curved

double arrow) and the other

perpendicular to the plane of

the drawing (not shown).
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8. Consider an ideal chain with known leff and two ends that can bind
to two distinct sites on a protein separated by a distance r. How
does the binding free energy vary with chain length (see
Section 3.8)?

9. Calculate the vibrational free energy at 298 K for a 16 Da atom held
in place by a Lennard–Jones potential with "¼2 kcal mole�1 and
r0¼1 ¯ (hint: use the second derivative evaluated at the minimum
for the force constant). Compare the vibrational free energy
arising from this entropy with the depth of the potential energy
well (").
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Chapter 5

Allosteric interactions

The importance of molecular associations in biological signaling
processes was mentioned in the preceding chapter. That chapter
concentrated on the physical aspects of the association process
and paid little attention to the signaling events that are initiated
by ligand binding. This chapter will accept the binding event as
given, and go on to look at what consequences this has on the
biological function of a protein.

Powerful theories to explain this kind of signaling can be
developed by combining the concepts of molecular associations
from Chapter 4 with the concepts of global states and transitions
from Chapter 1. In putting these two ideas together, a key point
to remember is that both processes are governed primarily
by the kinds of noncovalent forces covered in Chapter 2. As a
result the energies for global transitions and binding events are
often in the same range. This enables an association reaction to
trigger a conformational transition in a protein, and this is what
makes allosteric interactions possible. Here, we will develop this
theory, known as allosteric theory, and illustrate its use with
examples.

The word allosteric is quite popular in molecular biology. The
word was introduced as a combination of the Greek words allo
and steric to mean other-site. A classical usage in this sense is
when a ligand binds to a regulatory site of an enzyme and alters
the enzyme’s effectiveness as a catalyst. The regulatory site of
the enzyme can be altogether different from the catalytic site
where the chemistry takes place. With no structural overlap
whatsoever, the mechanism by which these sites influence
each other is an especially intriguing question. The seminal
paper by Monod et al. (1965) offered a theoretical solution to
this problem, and in doing so extended the meaning of the
word allosteric. Their theory has come to be known as allosteric
theory, and they used the term allosteric transition to describe a
special kind of a global transition that makes allosteric interac-
tions possible.



5.1 The allosteric transition

We start with a protein that has two functionally distinct global states.
Monod et al. proposed that one of these states is ‘‘tense,’’ using the
letter T, and the other is ‘‘relaxed,’’ using the letter R. These states
interconvert, as in Scheme (5A), so there is an equilibrium

T �! � R (5A)

If this protein were an enzyme then the T state might have low
catalytic activity and the R state might have high catalytic activity. If
the protein were an ion channel, then the T state could be closed
and the R state open. If the protein were the repressor of a gene,
then the T state might be able to bind to a specific sequence of DNA
and block transcription; in the R state the protein would fall off the
DNA and allow transcription to proceed. The idea is very general
and has many applications.

The allosteric transition is a special case of a global transition.
Both global states must be folded and functional for a transition to
be allosteric. Thus, thermal unfolding is global, but it is not allos-
teric because there is no function associated with the unfolded
state. It is essential, as will become clear below, that both states in
an allosteric transition are able to bind ligand. Thus, an allosteric
state corresponds to a well-folded, well-defined energy minimum
on a protein’s potential energy surface. The transition from one
allosteric state to another starts as a brief excursion into higher
energy configurations, but the intramolecular forces within the
protein pull it back into one of the well-folded low-energy states in
which the binding specificity and functional activity are precisely
defined.

5.2 The simplest case: one binding site
and one allosteric transition

To illustrate the principles of allosteric theory, we will start with the
simplest possible example: a protein with a single ligand binding
site undergoes an allosteric transition between two allosteric states.
The allosteric states have different affinities for ligand, so we have
two separate binding equilibria (Schemes (5Bi) and (5Bii))

T0 þ L �! � T1 (5Bi)

R0 þ L �! � R1 (5Bii)

where L denotes the ligand. The subscripts of R and T denote the
number of ligands bound, which in this case is either zero or one.
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The change in ligand binding affinity accompanying the allosteric
transition suggests a rearrangement of the polypeptide chain so that
either the number of contacts with the ligand increases, or the existing
contacts get stronger (Fig. 5.1). An essential element of this theory is
that the transition is concerted, with the whole protein changing
concomitantly. The protein cannot have R-like function and T-like
binding. What this assumption means in terms of the molecular
physics of a protein is that the potential energy minimum correspond-
ing to each allosteric state specifies a structure of the entire protein.
The R and T states correspond to well-separated minima in this multi-
dimensional potential energy function, and each of these minima has
its own characteristic binding energy and functional activity.

The protein structure does not change at the instant of ligand
binding. The structure of T0 is essentially the same as T1 and
the structure of R0 is essentially the same as R1. With the two
binding equilibria and the allosteric transitions of the liganded
and unliganded protein, we have the following complete scheme
(Scheme (5C))

(5C)

T0 + L

R0 + L

T1

Y0

R1

Y1

KT

KR

where KT and KR denote the two binding equilibrium constants, and
Y0 and Y1 denote the equilibrium constants of the allosteric transi-
tion for the unliganded and liganded protein, respectively.

To derive the biological activity of the protein as a function of
ligand concentration, we assume that it is proportional to the frac-
tion of the total protein in the R state. Denoting biological activity
as A, we have

A ¼ ½Total R�
½Total Protein� ¼

½R0� þ ½R1�
½R0� þ ½R1� þ ½T0� þ ½T1�

(5:1)

We then write the four equilibrium conditions for Scheme (5C)
above.

RT

Fig: 5:1: An allosteric transition

between two allosteric states, T and

R. The stronger binding by the

R state is indicated by a better fit

between the binding site and ligand.
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KT ¼
½T1�
½T0�½L�

(5:2a)

KR ¼
½R1�
½R0�½L�

(5:2b)

Y0 ¼
½R0�
½T0�

(5:2c)

Y1 ¼
½R1�
½T1�

(5:2d)

These equilibrium conditions can be used to express R1, T0, and T1 in
terms of R0. For example, [T0] ¼ [R0] / Y0 (Eq. (5.2c)). These are then
substituted into Eq. (5.1)

A ¼ ½R0� þ ½L�KR½R0�
½R0� þ ½L�KR½R0� þ ½R0�=Y0 þ ½L�KR½R0�=Y1

(5:3)

Factoring out R0 gives the response as a function of ligand
concentration.

A ¼ 1þ ½L�KR

1þ 1=Y0 þ ½L�KRð1þ 1=Y1Þ
(5:4)

This expression tells us that at [L] ¼0, A ¼Y0 /(1þ Y0), which
equals [R0] /([R0]þ [T0]). This is how it would be with only the transi-
tion between R0 and T0 to consider (Eq. (5.2c)). For very high [L],
Eq. (5.4) goes to A ¼Y1 /(1þ Y1), which is what we would get if we
only considered the transition between R1 and T1 (Eq. (5.2d)).

Remember that the protein is designed to respond to the ligand,
and have minimal activity in its absence. This means that we can
assume Y0 is very small, so the value of A at [L] ¼ 0 will be close to
zero; Y1 is very large, so the value of A at high [L] approaches one.
These points lead to a useful simplification of Eq. (5.4). First, multi-
ply the numerator and denominator by Y0

A ¼ Y0 þ ½L�KRY0

1þ Y0 þ ½L�KRY0ð1þ 1=Y1Þ
(5:5)

Since Y0 is small compared to the other terms in both the numerator
and denominator, we can ignore it (except where it is part of a
product). Since Y1 is large, 1 / Y1 can also be ignored. This leads to a
simple approximate expression

A � ½L�KRY0

1þ ½L�KRY0
(5:6)

Equation (5.6) tells us that the activity function is a rectangular
hyperbola, and resembles a simple binding process. The behavior
is indistinguishable from binding without an allosteric transition
(Fig. (4.1) and Eq. (4.4)). This is an important result because one
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might expect two allosteric states with different binding affinities to
give rise to qualitatively different behavior. An allosteric protein
responds to ligand as though it has a single binding site with an affinity
that is intermediate between that of the T and R states. When
[L]¼ 1 / (KRY0), A¼ 1/2, and the response is half maximal. Judging
from the response function, an allosteric protein behaves as though
it has a single binding site with an apparent affinity Kapp¼KRY0.

5.3 Binding and response

We call the quantity KRY0 the ‘‘apparent’’ affinity because it is not a
true binding equilibrium constant. The variable KR is a true binding
affinity, but it cannot be determined solely from a dose–response
experiment. In fact, it can also not be determined from a plot of
binding site occupancy as a function of [L]. To see this we denote the
fraction of binding sites on the protein that are occupied as B.

B ¼ ½Occupied sites�
½Total Protein� ¼

½R1� þ ½T1�
½R0� þ ½R1� þ ½T0� þ ½T1�

(5:7)

Once again, we use the equilibrium conditions (Eqs. (5.2a)–(5.2d)) to
express everything in terms of R0

B ¼ ½L�KR½R0� þ ½L�KR½R0�=Y1

½R0� þ ½L�KR½R0� þ ½R0�=Y0 þ ½L�KR½R0�=Y1
(5:8)

We factor out R0 and multiply through by Y0 to give

B ¼ ½L�Y0KRð1þ 1=Y1Þ
1þ Y0 þ ½L�Y0KRð1þ 1=Y1Þ

(5:9)

Again noting that Y0 is small and Y1 is large, we obtain the
approximation

B � ½L�KRY0

1þ ½L�KRY0
(5:10)

This is identical to the dose–response equation (Eq. (5.6)). Thus, a
binding measurement would tell us the same thing as a dose–response
plot. It would give us the apparent affinity, Kapp¼KRY0, without help-
ing us separate out the true binding equilibrium constant.1

These results show how the conformational transition is invisi-
ble to many forms of experiments. An allosteric protein behaves like a
simple ligand-binding protein without a conformational transition.
The activation scheme (Scheme (5D))

Pþ L ��! P* (5D)

1 One important case where the binding step can be distinguished from the allosteric

transition is when the allosteric transition is relatively slow. If one has a technique for

rapid measurement then one can capture the binding of ligand to the T state prior to

the transition to the R state.
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in which P is a protein an d P * is the protein act ivat ed by the lig and,
would fit a binding curve or dose–response plot ju st as well as the
simplest all o steric model.

One o f t he most profound conclusions drawn fr om this analysis
is that if a protein is manipulated in some w ay so that the conforma-
tio nal equilibrium is altered , the apparent binding affinit y will also
change. This is becau se the equilibrium co nstant, Y0 , is part of the
appar ent affinity. The allosteric transition is global, so a change in
the str ucture far from the binding site can alter Kapp through Y 0 . This
is what makes allosteric interactions possible. A b in ding cu rve can
now c hange without an y structur al c hange in the bind ing site itself .
This will be illu strated with examples below.

5.4 Energy balance in the one-site model

Pushing a protein from the T state to the R state requires energy. The
simple explanation is that this comes from ligand binding, but it
is actually the difference between the energy of ligand binding to
the two states that counts. We can get an appreciation of this distinc-
tion by looking carefully at the free energy changes associated with
each step.

In Scheme (5C ) t here are tw o p at hway s by whic h we c an get
from T0 to R1. One pathway is via T1; ligand binds first and then
the allosteric transition occurs. The other pathway is via R0; the
allosteric transition occurs first and then the ligand binds.
Regardless of which one of these pathways is more often traveled
in reality, the fact that they both exist has important implications for
the energetics. The reason for this is that if each of the steps
is reversible, then the net free energy change for either pathway
will be the same. This allows us to write down an energy balance
equation

RT ln KT þ RT ln Y1 ¼ RT ln Y0 þ RT ln KR (5 : 11)

The left-hand sid e is for t he pathway through T1 and t he right-hand
side is for t he pathway through R0 . This im mediat ely leads to the
following.2

KT Y 1 ¼ K R Y0 (5 : 12)

Thus, Kapp ¼ K R Y 0 could just as easily be expressed as K T Y 1 . This
result can al so b e o btained from t he condition o f detailed b ala nce,
a concept from kinetic theory where forward and reverse rates must

2 Equation (5.12) could also be derived without thinking explicitly about free energy.

The four equilibrium expres sions, Eqs. (5.2a )–(5.2d ), give two ways to compute the

ratio of concentrations of any two states in the scheme. This allows the ratio to be

eliminated, leaving Eq. (5.12) as a relation between the equilibrium constants

(Proble m 1). This is a gene ral result for a model with a loop such as Schem e ( 5C ).

Whenever a model has loops, the equilibrium constants are no longer independent

of one another.
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balance out if a system is at equilibrium such that concentrations do
not change with time (see Section 7.3).

If we arrange Eq. (5.12) to give

Y1

Y0
¼ KR

KT
(5:13)

we see that the factor by which Y changes during binding is equal to
the factor by which the binding equilibrium constant changes dur-
ing the allosteric transition. The expression RT times the logarithm
of the right-hand side of Eq. (5.13) gives the difference between the
binding free energy of the two allosteric states. Thus, the improve-
ment in binding energy is what drives the protein into the R state,
rather than the actual binding energy itself. If the ligand bound
equally well to both states, there would be no drive for the allosteric
transition, no matter how strong the binding.

We can pursue this point a bit further and try to visualize the
process in more detail with a simple sketch (Fig. 5.2). Here we see
that in the T state there are more contacts within the protein, and
fewer contacts between the protein and ligand. In the R state the
situation is reversed. There are more protein–ligand contacts and
fewer contacts within the protein. Equation (5.13) expresses the
balance between the improvement in ligand–protein contacts in
the ratio KT/KR, and the different relative stabilities of the two
conformations in the ratio Y0/Y1. Thus, for the ligand to be an
effective signal, the strengthening of these added contacts with
the binding site has to win out against the contacts within the
protein that stabilize the T conformation. It is easiest to picture
this process as forming and breaking contacts, but contacts could
also be stretched or displaced from their positions of minimum
potential energy. The idea encompasses virtually all forms of energy
relevant to protein stability.

5.5 G-protein coupled receptors

The G-protein coupled receptors make up a very large family of
proteins that mediate responses to chemical signals and light. All

T R

Fig: 5:2: The allosteric transition

of a ligand–protein complex is

shown again (see Fig. 5.1), but this

time key contacts (*––*) are

highlighted. The internal contacts in

the T state are lost in the transition

to the R state. In the R state new

contacts form between the protein

and ligand.
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members of this protein family contain seven hydrophobic seg-
ments that span the plasma membrane and anchor the protein at
the cell surface. When activated by the binding of ligand, these recep-
tors initiate a cascade of events by interacting with GTP-binding
proteins, hence the name G-protein coupled receptors.

Most G-protein coupled receptors exist as monomers and have a
single ligand binding site. Plots of binding and functional response
for these receptors generally show simple saturation behavior,
according to Eqs. (5.6) and (5.10). But direct comparisons between
the two are often complicated by the G-protein signaling cascade,
which places several additional steps between ligand binding and
the biological response. A great deal of work has gone into elucidat-
ing the detailed mechanisms of activation of G-protein coupled
receptors.

One approach is to use site-directed mutagenesis to search for
the ligand binding site. The receptor is mutated, and a function such
as binding or response is evaluated. However, as is clear from
Eqs. (5.6) and (5.10), the concentration for half saturation of either
response or binding gives an apparent binding constant, Kapp, equal
to the product KRY0. This suggests that there are two ways that the
saturation behavior of a receptor can be altered: (1) a mutation in
the binding site will change KR; (2) a mutation elsewhere in the
protein alters the equilibrium between the two allosteric states,
leading to a change in Y0.

Figure 5.3a shows a sketch of one of the G-protein coupled
receptors, the muscarinic acetylcholine receptor, which can be
activated by two closely related ligands, acetylcholine (a neurotrans-
mitter) and carbamylcholine (a drug that mimics acetylcholine).
In an effort to locate the binding site, the residues indicated in
Fig. 5.3a were mutated, and experiments showed that all of these
mutations altered acetylcholine binding to variable degrees (Fig.
5.3b1). Carbamylcholine binding showed mostly parallel variations
(Fig. 5.3b2). Looking at how these sites are distributed through the
protein in Fig. 5.3a, it is hard to imagine how molecules as small as
acetylcholine and carbamylcholine could interact with all of these
residues.

Equation (5.10) suggests a way to make sense of these results.
Note that Kapp, which equals KRY0, depends on both Y0 and KR.
Clearly, mutating a residue directly involved in binding will change
KR, and thus Kapp. But a mutation that alters Y0 will also change Kapp.
A change in Y0 will change Kapp by the same factor for different
ligands, so the ratio of Kapp for two ligands will not change. The
situation is different for mutations that alter residues that interact
with a bound ligand. Then KR is likely to change by different amounts
for different ligands.

The ratio of Kapp for acetylcholine and carbamylcholine is plotted
in Fig. 5.3b3. This shows that in spite of the shifts in Kapp for acetyl-
choline and carbamylcholine, the ratios are quite similar (�3) for wild
type and most mutants. This suggests that many of the residues that
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influence binding are not part of the actual binding site. Rather, they
exert their influence through the allosteric transition. Only two of the
mutants, at positions 502 and 537, change the ratio significantly. The
unequal shifts in the binding of acetylcholine and carbamylcholine in
these mutants cannot be explained solely by a change in Y0. These
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for acetylcholine in wild type and

mutant receptors. (b2) Plot of Kapp

for carbamylcholine. (b3) The ratio
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carbamylcholine. Data from

Wess et al., 1990. S¼ serine,
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Fig: 5:3: (a) A sketch of the

muscarinic acetylcholine receptor

shows the characteristic seven

membrane-spanning segments. The

residues indicated were mutated in

a study of ligand binding. D-R-Y

(aspartate–arginine–tyrosine) is

a conserved triad that influences Y0.
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residues, which are quite close together in the sketch of Fig. 5.3a,
therefore interact directly with the ligand. This is a more plausible
conclusion than direct binding interactions with residues distributed
throughout the protein. In general, looking at ratios of Kapp for a series
of similar ligands is a very powerful method for finding residues
involved in ligand binding (Jackson, 1993b).

Another interesting way to evaluate allosteric aspects of G-protein
coupled receptors is to find mutations that alter Y0 so that there is
higher basal activity. Mutations that elevate ligand-independent
activity still respond to a ligand by increasing activity, but Kapp¼
Y0KR is higher because Y0 is higher.

The D-R-Y motif shown in the sketch in Fig. 5.3a is highly con-
served and thought to play an important role in stabilizing the T
conformation of the protein. Replacing the aspartate residue of this
triad (the D) in the a1B adrenergic receptor (a receptor that mediates
responses to epinephrine and norepinephrine) with any other
amino acid increases the basal level of activity (Fig. 5.4; in this
case activity refers to the enzyme phospholipase C, the target of
the G-protein activated by the a1B receptor).

Figure 5.4 shows the qualitative trend expected: the greater the
basal activity, the greater Kapp. But we can go further by remember-
ing that Eqs. (5.6) and (5.10) were derived from more complicated
expressions by assuming that Y0 was very small. Since we are now
looking at mutant receptors with unusually high levels of basal
activity, we should be concerned about this approximation. So we
return to the exact expression (Eq. (5.9)), and estimate Kapp by set-
ting B ¼1/2 and solving for 1/[L]. The new apparent affinity is

Kapp ¼
Y0KRð1þ 1=Y1Þ

1þ Y0
(5:14)

This equation fits the data in Fig. 5.4 well. The curve has a limit-
ing value for Kapp at large Y0 of about 3 mM

�1, which according to
Eq. (5.14) is KR(1þ1/Y1). If Y1 >>1, then this limiting value becomes
KR, the binding constant of the R conformation. This makes sense
because as Y0 gets large the receptor spends most of its time in the
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Fig: 5:4: Plot of Kapp versus basal

activity. Each point represents a

pair of measurements from one

molecular variant of the a1B

adrenergic receptor. The fit of

Eq. (5.14) is shown. (Data from

Scheer et al., (1997). The arginine

mutant was excluded because it

gave anomalous results, possibly

due to defective G-protein

coupling.)
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R state regardless of whether ligand is bound or not. The T state then
becomes irrelevant.

Although G-protein coupled receptors provide a number of illus-
trations of the simple one-site, two-state model developed here, it
should be noted that this model cannot explain experimental
results from some of these proteins. In these cases models with a
third allosteric state have been proposed (Tucek, 1997).

5.6 Binding site interactions

A major goal of allosteric theory is to provide a mechanism for how
the occupation of a protein binding site can influence distant parts
of the protein. To illustrate this, consider a single-subunit protein
that undergoes an allosteric transition and binds two distinct
ligands at different sites (Fig. 5.5).

The complete model for binding of ligands A and B to this
protein is a combination of two schemes similar to Scheme (5C)
above. This gives a total of eight states (T0, TA, TB, TAB, R0, RA, RB, and
RAB), so the scheme is more complicated. But we can get some
understanding of how the binding sites interact without the full
treatment. To simplify things, we look at the case where the binding
of either ligand alone does not provide enough drive to convert the
protein from the T state to the R state (i.e. the equilibrium constants,
YA and YB, are<<1), but binding both ligands does (i.e. YAB >> 1). In
the presence of an excess of ligand B, its site will essentially always
be occupied, but without A the T state will prevail. We can describe
the binding of A in the presence of excess B with an adaptation of
Scheme (5C) as follows (Scheme (5E))

(5E)

TB + A

RB + A

TAB

YB

RAB

YAB

KTA

KRA

With YB << 1 the protein will not switch from TB to RB (the same is
true for YA and transitions from TA to RA). Because YAB is greater than
one, binding the second ligand will bring about the switch.

A

A
B

T R

B

Fig: 5:5: The allosteric transition

of this protein is accompanied by

structural changes that increase the

affinity of its two binding sites on

opposite sides of the protein.
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With reference to Scheme (5C), we can use Eq. (5.10) to get the
apparent affinity of the protein for A in the presence of excess B;
Kapp ¼KRAYB. Likewise, in the presence of excess A, the apparent
affinity for B will be Kapp ¼KRBYA. Exploiting the energy balance
condition (Eq. (5.12)), we see that Kapp can also be expressed as
KTBYAB and KTAYAB, for A and B, respectively.

It is interesting to compare these values with the apparent affi-
nities in the absence of the other ligand. For the binding of the first
ligand, the allosteric transition is irrelevant. Binding is then described
by the affinities of the T state, KTA and KTB (see Problem 2). Comparing
with KTBYAB and KTAYAB for the apparent affinities in the presence of an
excess of the other ligand, we see that each ligand increases the
affinity of the protein for the other by the same factor, YAB.

Now look at another case, where binding only one ligand is suffi-
cient to switch the protein. There is a striking parallel with the fore-
going analysis. The approximations that lead to Eq. (5.10) for Scheme
(5C) apply here, because each ligand can drive the transition on its own.
This makes Kapp¼KRAY0 and KRBY0 for A and B, respectively, in the
absence of the other ligand. With either one of these ligands bound, the
protein will be in the R state. The allosteric transition is then irrelevant
for further binding, and the affinities for the second ligand are simply
KRA and KRB. We again see that one ligand increases the affinity of the
protein for the other, and in this case the factor is 1/Y0 for both ligands.

For both of the above cases one ligand can influence the binding of
another at a remote site on the protein. The key is that an allosteric
transition forces both sites to change concomitantly. Interactions such
as this exemplify the general concept of linkage. The coupling of one
equilibrium to another can be studied by a thermodynamic analysis of
the cycles to derive a variety of formal relations between the various
parameters (Cantor and Schimmel, 1980).

These examples dealt with the binding of one ligand when the
other ligand is either absent or saturating. However, when the
other ligand is present at intermediate levels we see qualitatively
different behavior. If A is present at intermediate concentrations and
B is varied, A will be bound to a fraction of the receptors, and those
receptors will have an apparent affinity of KRA. But as B occupies its
site, the remaining sites for B on receptors having no A will have an
affinity of KTA. The saturation behavior will now be biphasic. Such an
experiment thus reveals the two allosteric states. A variant of this
model was used in the analysis of G-protein coupled receptors to
explain the biphasic behavior in adrenergic receptors, as well as
the change in ligand binding affinity induced by guanine nucleotides
(De Lean et al., 1980). This was actually a two-protein system consisting
of a G-protein and G-protein-coupled receptor. These two proteins
associate to form a complex in which the receptor binds its ligand
and the G-protein binds GTP. The binding of GTP to the G-protein
converts the associated receptor to a form with high affinity for its
ligand. Likewise, the binding of the ligand to the receptor converts
the G-protein to a form with a high affinity for GTP.
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5.7 The Monod–Wyman–Changeux (MWC) model

The focus until now has been on proteins with a single subunit.
However, the early efforts in allosteric theory were motivated by a
desire to understand cooperative processes in multisubunit pro-
teins. The idea that an allosteric transition in a multisubunit protein
can lead to cooperativity was introduced by Monod et al. (1965) to
explain a large body of results from many proteins. This idea formed
the basis for the MWC model.

The model starts with a protein composed of n identical sub-
units, each with a single binding site. This protein undergoes an
allosteric transition so that the binding affinities change. The tran-
sition is a concerted change in the tertiary structure of all the
subunits and a change in quaternary structure as the subunits
rearrange with respect to one another. The entire process of tertiary
and quaternary structural change is assumed to occur concomi-
tantly. This assumption is a defining feature, and the MWC model
is often referred to as the ‘‘concerted transition’’ theory. Separate
tertiary transitions by individual subunits are forbidden. We will
see later in this chapter that this assumption can be relaxed to
develop other classes of models (Koshland–Nemethy–Filmer and
Szabo–Karplus). For now we recall the analysis of global transitions
in multisubunit proteins (Section 1.6) and assume that the coopera-
tive unit is equal to the number of subunits.

Consider a sequence of binding steps for the T state. As long as
the protein is in this state, all binding events will be governed by
the same equilibrium constant, KT. Likewise, we can envision a seq-
uence of binding steps for the R state, with KR governing all of these.
Now we allow any state of occupancy to undergo the allosteric transi-
tion from T to R. The complete scheme can be depicted as (Scheme (5F))

(5F)

T0 + L

R0 + L

T1 + L Tn–1 + LT2 Tn

nKT ½ (n–1)KT KT /n

Y0 Y1 Yn–1Y2 Yn

nKR ½ (n–1)KR KR/n
R1 + L Rn–1 + LR2 Rn

The subscript denoting the number of molecules of bound ligand
ranges from 0 to n. It is important to realize that KT and KR describe
the binding to individual sites. Using these binding constants for the
binding steps in the model requires accounting for the multiple
sites and multiple occupancy states. This means multiplying KT and
KR by the number of sites available to accept a new ligand during a
move to the right, and dividing by the number of occupied sites on
the state to the right that could be vacated during a move to the left.
This is why KT and KR in Scheme (5F) are multiplied by n, (n� 1)/2,
etc., to obtain the equilibrium constants for the relevant steps.
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The equilibrium conditions corresponding to Eqs. (5. 2a ) and (5. 2b )
have to be modified by including these factors

KT ¼
ðiþ 1Þ½ Tiþ 1�
ðn� iÞ½ Ti�½ L� 

(5: 15a)

KR ¼
ðiþ 1Þ½ Riþ 1�
ðn� iÞ½ Ri�½ L� 

(5 :15b)

For ea c h stat e of occupancy w e have an equil ib rium constant for t he
allosteric transition

Yi ¼
½Ri�
½ Ti� 

(5 : 16)

With thes e relations we can der ive t he r es ponse generated by t he
protein, or if we wish, t he fractio n of binding sites occupi ed. We w ill
illustrate the derivation o f o ccupied b in ding sit es here and le ave t he
response function as an exercise (Proble m 4).

The fraction of occupied binding sites can be written as (see Eq. (5.7))

B ¼ ½R1� þ 2½R2� þ � � � þ n½Rn� þ ½T1� þ 2½T2� þ � � � þ n½Tn�
nð½R0� þ ½R1� þ ½R2� þ � � � þ ½Rn� þ ½T0� þ ½T1� þ ½T2� þ � � � þ ½Tn�Þ

¼ 1

n

Pn
i¼ 0

i½Ri� þ
Pn
i¼ 0

i½Ti�

Pn
i¼ 0
½Ri�þ

Pn
i¼ 0
½Ti�

(5:17)

Equations (5.15a) and (5.15b) are then used to derive expressions for
[Ri] and [Ti] in terms of [R0] and [T0]

½T1� ¼ n½T0�KT½L� (5:18a)

½T2� ¼
n� 1

2
½T1�KT½L�

¼ nðn� 1Þ
2

½T0�ðKT½L�Þ2 (5:18b)

Recognizing the trend leads to a general expression for [Ti]

½Ti� ¼
n!

ðn� iÞ!i! ½T0�ðKT½L�Þi (5:19a)

and likewise for [Ri]

½Ri� ¼
n!

ðn� iÞ!i! ½R0�ðKR½L�Þi (5:19b)

Since n!=ðn� iÞ!i! is the expression for the coefficients of the binomial
expansion (Eq. (A1.7)), the sums in the denominator of Eq. (5.17) can
be evaluated
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Xn

i¼ 0

½ Ti� ¼ ½T0�
Xn

i¼ 0

n!

ðn� iÞ! i ! ðKT½ L�Þ  i ¼ ½T 0�ð 1þ KT½ L�Þ  n (5: 20a)

Xn

i¼ 0

½ Ri� ¼ ½R 0�
Xn

i¼ 0

n!

ðn� iÞ! i! ðKR½ L�Þ  i ¼ ½R 0�ð1þ KR½ L�Þ  n (5 :20b)

The sums in t he numerator o f Eq. ( 5.17) c an be evaluated by t aki ng
the derivativ e of Eqs. (5 . 19 a ) and  (5.19b) w ith respect to [L], an d t hen
multiplying b y KT [L] or K R [L] a s f ollows

Xn

i¼ 0

i½ Ti� ¼ ½T0�
Xn

i¼ 0

i
n!

ðn� iÞ!i ! ðK T½ L�Þ  i ¼ n½T 0� K T½ L�ð 1þ KT½L�Þn�1

(5: 21a)

Xn

i¼ 0

i½ Ri� ¼ ½R 0�
Xn

i¼ 0

i
n !

ðn� iÞ! i ! ðKR½ L�Þi ¼ n½ R 0�K R½ L�ð 1þ KR½ L�Þn�1

(5 :21b)

Substituting these sums into E q. (5. 1 7 ) and taking [T0 ] ¼ [R0 ]/ Y 0
(Eq. ( 5. 1 6 )) gives the fr action of occupied sit es v ersus ligand
concentration

B ¼ KR½L�ð 1þ KR½ L�Þ  n�1þð KT½ L�=Y0Þð 1þ KT½ L�Þ  n� 1

ð1þ KR½ L�Þ  n þ ð1= Y0Þð 1þ KT½ L�Þn (5 : 22)

Equation (5.22) gives sigmoidal binding for n > 1. This may seem
surprising because no explicit assumption was made that binding
itself was cooperative. Each binding step was treated as a simple
association equilibrium. The cooperativity of the MWC model arises
from the assumption that the transition is concerted: all of the
subunits of the protein make the transition together. So when the
protein is in the T state and a few of the binding sites are occupied,
the protein will switch more readily to R. The remaining empty bind-
ing sites will then have a higher affinity and the curve will rise more
steeply. The important result here is that even when cooperative
binding is not explicitly assumed, a cooperative global transition
will still lead to cooperative binding. If biological activity is measured
as the fraction of protein in the R state, then biological activity
will have the same sigmoidal concentration dependence (Problem 4).

The quantity n in Eq. (5.22) is much more meaningful than the
Hill coefficient, n, in Eq. (4.7). Because the assumption of concerted
binding is unrealistic, the Hill coefficient cannot be equated with
the actual number of binding sites. The MWC model is more realis-
tic because it allows different numbers of binding sites to be occu-
pied. Thus n in this model is a real estimate of the number of
subunits. It should therefore take on an integral value. In the case
of hemoglobin it was noted that the Hill coefficient of 2.7 was less
than the number of subunits, 4 (Section 4.2.1). We will now see that
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Eq. (5.22) with n ¼ 4 replicates the binding behavior of hemoglobin
very well. The n in the MWC model is thus more than just a quali-
tative index of the degree of cooperativity.

5.8 Hemoglobin

Although Monod et al. (1965) developed their model for cooperative
enzymes, they considered hemoglobin as well, calling it an ‘‘honorary
enzyme.’’ Hemoglobin provided the earliest example of sigmoidal
binding, and this protein has received a great deal of attention
in efforts to understand the physical basis of cooperativity. The
concerted binding model (Section 4.2.1) could account for this
qualitative behavior with the artificial assumption of simultaneous
binding, but when we use the knowledge that hemoglobin has four
subunits and set n¼4, the Hill equation does a poor job of fitting the
O2 binding data (Fig. 5.6). By contrast, the MWC model with n¼4 fits
the data very well.

Aside from the good fit to the binding data, more detailed study
of hemoglobin supports many of the principles developed for the
MWC model (Perutz et al., 1998). For example, crystals of the T form
bind O2 with a low affinity, and because the crystal environment
suppresses large-scale quaternary structural transitions, the bind-
ing curve is a simple rectangular hyperbola with no cooperativity.
Likewise, crystals of the R form bind noncooperatively, but with
high affinity. Thus, without the allosteric transition, there is no
cooperativity, and this is exactly what MWC theory predicts.

The T form really does appear to have tension. The conformation
is held in a state of high potential energy by interactions between
the subunits. When the subunits are dissociated the tension is lost
and the isolated polypeptides bind O2 noncooperatively with a high
affinity characteristic of the R state.
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Fig: 5:6: Plot of O2 binding data

for hemoglobin (points) fitted to

Eq. (5.22) for the MWC model

(solid curve) and Eq. (4.7) (the Hill

equation, broken curve). In both

models, n was set to 4 (see Szabo
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Finally, hemoglobin has a number of allosteric effectors. Diphospho-
glycerate binds to a single site at a subunit interface and alters the
affinity. Note that pH also shifts the binding curve in what is known
as the Bohr effect. These results are explained within the MWC
framework by allowing diphosphoglycerate and protons to bind
preferentially to different conformations. They shift the binding
curve without directly interacting with the binding sites by altering
the preference for the T state versus the R state. See Section 5.14 for a
discussion of the regulation of hemoglobin at a finer level of detail.

5.9 Energetics of the MWC model

With the multisubunit MWC model we can expand upon the point
made in Section 5.4 about how the improvement in binding drives
the transition. Consider a diagram of an allosteric transition in a
tetramer with two occupied binding sites (Fig. 5.7). As in Figs. 5.1
and 5.2, the binding site matches the shape of the ligand better in
the R conformation.

When the allosteric transition takes place binding is strength-
ened by

��G o
b ¼ �RT ln ðKR=KTÞ (5:23)

This increase in binding energy reflects the strengthening of the
contacts between the protein and ligand and this is energy that can
drive the allosteric transition. With two ligands bound (as in Fig. 5.7)
the energy is twice that given in Eq. (5.23). If the unliganded recep-
tor has a �Go for the conformational transition of �RT ln Y0, then
each occupied binding site will change the free energy of the transi-
tion by the amount specified in Eq. (5.23). This leads to the following
expression for the free energy change of the allosteric transition as a
function of the number of occupied binding sites

�G o
a ðiÞ ¼ �RT ln Yi ¼ �RT ln Y0 � iRT ln ðKR=KTÞ (5:24)

This amounts to a reformulation of the MWC model. The addi-
tivity assumption could have been used as the starting point of the
theory to derive the equilibrium conditions leading ultimately to

T R

Fig: 5:7: An allosteric transition

in a tetramer with two of four

binding sites occupied. The

improved contacts between

receptor and ligand provide an

energetic drive for the transition.
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Eq. (5.22). Equation (5.24) indicates that there are constant incre-
ments in the energy of the allosteric transition for each binding site
occupied. This is illustrated graphically in Fig. 5.8.

This plot shows linear decreases in the free energy of each con-
formation as more binding sites are occupied. Because the R con-
formation binds more tightly, the decreases are larger for this
conformation than for the T conformation. In the completely unli-
ganded receptor, the R conformation has a much higher free energy,
given by �RTln Y0. As the binding sites are filled, this gap narrows,
until the two lines cross and the R conformation is favored. This
cross-over marks the point where the energy arising from the
improvement in binding overcomes the unfavorable energy of the
allosteric transition.

*5.10 Macroscopic and microscopic additivity

The preceding section made the point that the MWC model depends
on the assumption that the ��Gb

o of binding and the �Go of the
allosteric transition are additive. We can refer to this form of addi-
tivity as macroscopic, because the microscopic details are ignored.
Now we will consider the microscopic details and try to get some
insight into what macroscopic additivity means. In particular, we
will consider how this can be related to additivity of energies for
specific contacts. Examining the assumption of additivity in more
detail helps us understand the relation between the various inter-
actions within the protein and between the protein and ligand.
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more sites are occupied the lines
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Additivity should not be taken for granted. One could imagine
that a ligand interacts with a protein in such a way that internal
contacts within the protein near the binding site are perturbed. If
the protein is ‘‘soft’’ then these perturbations could spread and if the
regions of distortion from different binding sites overlap then the two
binding energies might no longer be additive.

First, we picture the stability of two allosteric states as depend-
ent on two different sets of internal contacts within the protein.
One set, with energies "T, stabilizes the T conformation, and the
other set, with energies "R stabilizes the R conformation. The allos-
teric transition is accompanied by breaking one set of contacts and
forming the other. Thus, we can view the free energy change of the
allosteric transition as the difference in energy of these sets of
contacts

�G o
a ¼

X
"R �

X
"T (5:25)

Ligand binding can also be viewed in terms of contacts. We
define a set of contacts between the protein and ligand with ener-
gies "L. Contact energies are only part of the binding free energy. As
discussed in Chapter 4, there are also translational, rotational,
vibrational, and configurational contributions. The translational
and rotational contributions will be essentially the same for binding
to different allosteric states, and since we are trying to evaluate the
difference, ��Go, we do not have to worry about them. We also do
not have to worry about configurational factors as long as the ligand
assumes the same configuration when bound to T or R. The protein
configurational change is already taken into account in the allos-
teric transition, and we will assume that without the allosteric
transition there is no differential configurational contribution to
the energetics of ligand binding. The vibrational term will depend
on the specific nature of the contacts that stabilize the complex, so
this contribution can be lumped together with the contribution
made by ligand–protein contacts. The change in binding energy
associated with the allosteric transition can then be expressed as a
sum over changes in the energies of contacts between the ligand
and protein

��G o
b ¼

X
d"L (5:26)

If the contacts that stabilize the receptor–ligand complex are
independent of the internal protein contacts that stabilize the two
allosteric states, then Eq. (5.26) can be added to Eq. (5.25) for each
binding site occupied. This gives us the free energy change of the
allosteric transition as a function of the number of binding sites
occupied

�G o
a ðiÞ ¼

X
"R �

X
"T þ i

X
d"L (5:27)

This equation is equivalent to Eq. (5.24) in showing a linear depen-
dence on i.
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Thus, we see that macroscopic additivity follows from a micro-
scopic picture if we assume that all the relevant contacts obey
microscopic additivity. The question of whether the microscopic
forces involved are additive brings up some complicated issues
(Jackson, 1997a). Many of the forces discussed in Chapter 2 are not
additive. But in general, greater distances between binding sites
favor additivity. Thus, if the binding sites are distant from one
another, their energies are more likely to be additive. Some of the
contacts that stabilize the allosteric states could be near a binding
site, and this would lead to nonadditivity between binding energies
and allosteric transition energies. However, as long as this effect is
local the dependence on i in Eq. (5.26) will remain linear.

This analysis indicates that the assumption of macroscopic addi-
tivity embedded in the MWC model is plausible if the binding sites
are far apart. These ideas have not been subjected to rigorous test-
ing, but at this stage we can conjecture that microscopic additivity
implies macroscopic additivity, and that the assumptions under-
lying the MWC model are more likely to be valid when binding
sites are separated by greater distances.

5.11 Phosphofructokinase

The primary motivation for developing the MWC model was to
explain the cooperativity and regulation of allosteric enzymes.
These enzymes have multiple substrate binding sites, as well as
regulatory binding sites where other molecules can control activity.
The enzyme phosphofructokinase is an excellent example. The rate
of catalysis shows a cooperative, sigmoidal dependence on sub-
strate concentration, and various regulatory molecules shift the
concentration dependence in a manner that fits the MWC theory
very well (Blangy et al., 1968).

Phosphofructokinase catalyzes the phosphorylation of fructose-
6-phosphate. ATP is hydrolyzed to yield fructose 1,6-diphosphate
and ADP. This enzyme is at a pivotal step of the glycolytic pathway,
and is thus an important regulatory point in controlling the cellular
energy supply. ADP as a product might be expected to inhibit cata-
lysis by the common mechanism of feedback inhibition. Instead the
opposite occurs. A rise in ADP is a signal that carbohydrate oxida-
tion is not keeping up with energy needs. Phosphofructokinase
meets this need by accelerating its catalytic activity after binding
ADP at a regulatory site. ADP thus acts as an allosteric enhancer of
enzyme activity. The regulatory site is distinct from the site that
binds ATP as a substrate (Schirmer and Evans, 1990). Conversely,
ATP, citrate, and phosphoenolpyruvate all indicate that energy
levels in a cell are high, and when any of these metabolites occupies
the regulatory site catalysis is inhibited.

Phosphofructokinase is a tetramer, so to illustrate the allosteric
mechanism we take a sketch like Fig. 5.7 and add a regulatory site

130 ALLOSTERIC INTERACTIONS



(Fig. 5.9). Substrates bind to the catalytic sites, and the allosteric
transition converts these binding sites to high affinity. If the transi-
tion occurs in an enzyme with less than full occupancy, the empty
sites can now bind substrate more readily and the speed of fructose-
6-phosphate phosphorylation goes up. Monod et al. (1965) called
this kind of allosteric protein a ‘‘K system’’, in which the binding
affinity changes but Vmax, the maximum rate of phosphorylation, is
the same for both conformations (Section 10.5). For a K system,
enhancement of catalysis is brought about by better binding.

The theoretical analysis of the MWC model with a regulatory
site is an extension of the derivation of Eq. (5.22). One arrives at the
same basic equation for the dependence of the fraction of occupied
binding sites on substrate concentration. A ligand x that interacts
with the regulatory site exerts its action in effect by changing Y0.
Thus, Y0 in Eq. (5.22) is replaced by (Blangy et al., 1968)

Y0
0 ¼ Y0

1þ KRx½x�
1þ KTx½x�

� �n

(5:28)

The subscripts indicate binding constants for ligand x at the regu-
latory site in the T or R conformations; x will alter the dependence
of enzyme activity on substrate concentration solely through a
change in the effective equilibrium constant of the allosteric transi-
tion. The direction and magnitude of this effect ultimately depends
on [x] and the relative magnitudes of KRx and KTx.

Equation (5.22) with Y0 gives the concentration dependence of
the velocity in the absence of an allosteric regulator (Fig. 5.10).
The presence of enhancers and inhibitors dictates using Y0

0 in
Eq. (5.22) to generate velocity plots. The enzyme shows a steep coop-
erativity in the absence of a regulatory molecule. As an effector is
added, Y0

0 decreases or increases. The allosteric transition then
becomes easier or harder for ligand binding to induce, and the con-
centration of substrate needed to induce the transition changes accord-
ingly. The enzyme ultimately reaches the limiting behaviors of the
R and T conformations. Pure T behavior reflects a protein in which Y0

0 is
so low that even when all the binding sites are occupied, the R state
is still beyond reach. The absence of the allosteric transition uncou-
ples the binding sites so that the concentration dependence has no

T R

Fig: 5:9: A model of

phosphofructokinase shows a

tetrameric protein with catalytic and

regulatory sites on each subunit. The

regulatory site fits an allosteric

inhibitor (light gray) more tightly

in the T state and an allosteric

enhancer (black) more tightly in the

R state. The two substrates (dark

gray) are bound more tightly by

the active site in the R state.
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sigmoidicity. Pure R behavior emerges when Y0
0> 1, so that the

protein is always in the R state. Again there is no allosteric transition
and no sigmoidicity. In each of these limits, the cooperativity is lost
as the allosteric transition ceases to be a factor (Problem 6).

From the energetic perspective we can interpret these results by
imagining upward and downward relative shifts of the two linear
plots in Fig. 5.8. Making Y0

0 <Y0 makes the gap between R0 and T0

larger and shifts the crossover point to the right. If the gap becomes
so great that the lines never cross, then we have the limiting pure T
behavior. Making Y0

0 >Y0 does the opposite. It shifts the crossover
point in Fig. 5.8 to the left, leading ultimately to pure R behavior.

5.12 Ligand-gated channels

Ligand-gated channels are a class of membrane receptors that form
ion channels in the plasma membrane. The gating of the channel
is an allosteric transition, with the R and T states as open and
closed, respectively. Figure 5.7 could become such a protein if a
channel were added at the central juncture of the subunits. In
the nicotinic acetylcholine receptor, allosteric transitions have been
detected in both liganded and unliganded proteins using single-
channel current recording techniques (Jackson, 1994). Channels
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Fig: 5:10: The dependence of the velocity of enzyme catalysis on fructose-6-phosphate

concentration, generated from Eq. (5.22) with different Y0 values. The thick solid curve in

the middle is for enzyme without an allosteric regulator: Y0¼ 2.5� 10�7, KR¼ 12 mM, and

KT¼ 25 mM. Shifts to the right reflect the action of the inhibitor phosphoenolpyruvate

(Y0
0 ¼ 2.5� 10�10 and 2.5� 10�13). Shifts to the left reflect the action of the enhancer ADP

(Y0
0 ¼ 2.5� 10�4 and 2.5� 10�1). The R and T curves reflect the limiting cases of those

conformations in the absence of an allosteric transition (see Blangy et al., 1968).
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open spontaneously with a very low frequency in the absence of
ligand. In the presence of ligand, channels are mostly open, but briefly
flicker closed without losing the ligand (Fig. 5.11). Furthermore, plots
of the free energy of the open and closed states versus binding site
occupancy are roughly linear, as expected for macroscopic additivity.

Shifts in Kapp have been produced by mutations in many parts of
ligand-gated channel proteins. The residues responsible for ligand
binding have been clearly established in the nicotinic acetylcholine
receptor by affinity labeling, and many of the mutations that shift
Kapp are separated from the binding sites by a considerable distance.
In particular, Kapp is very sensitive to changes in the residues that
form the ion conduction pathway of the channel. The reason for this
is that these are residues that make and break contacts during the
channel gating transition. Hence they exert a strong effect on Y0

(Jackson, 1997a). A large body of experimental data on the nicotinic
acetylcholine receptor supports many of the predictions of the
MWC theory (Jackson, 1998).

Most ligand-gated channels actually have at least three allosteric
states. The closed and open states are obvious, but a third state is
necessary to account for the finding that the continued presence of
ligand causes the channels to close, or desensitize. Desensitization
is an intrinsic braking mechanism that prevents the channel from
being open for an excessive period of time. In some cases desensi-
tization is very fast and limits a postsynaptic response to a few
milliseconds. Desensitization requires a separate allosteric state of
the receptor that binds ligand with an even higher affinity than the
open state but which does not conduct ions. The high affinity of the
desensitized state has been detected in binding measurements.
A small amount of high affinity receptor is present at the beginning
of a binding experiment, indicating that a small amount of receptor
is in the desensitized state in the absence of ligand (Changeux,
1984).

Closed Open

Unliganded

Membrane 
Current

Liganded

Fig: 5:11: In measurements of

single-channel currents, the

allosteric transition of liganded

and unliganded channels can

be observed directly. The

acetylcholine receptor has five

subunits and two binding sites.
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5.13 Subunit–subunit interactions: the
Koshland–Nemethy–Filmer (KNF) model

It is important to know whether all of the subunits of a multisubunit
protein undergo an allosteric transition in a concerted fashion, as
was assumed in the MWC model. A model introduced by Koshland
et al. (1966) is widely viewed as an alternative to the MWC because it
does not postulate a concerted transition. The KNF model allows each
subunit to undergo its transition individually.

Each subunit can assume different conformations with different
binding affinities, but the free energy change during the transition
in a given subunit depends on the state of its neighbors. This
formulation leads to complicated mathematics. To simplify things,
it was assumed that the conformational transition of each subunit is
concomitant with ligand binding. In a trimeric protein we have the
four states depicted in Fig. 5.12. The subunits fit together well if
their neighbors are in the same state; otherwise the fit is poor and
the interaction energy is positive.

In the KNF model we consider three energetic factors, the binding
energy, the intrinsic energy difference between the two conform-
ations of a subunit, and the subunit–subunit interaction energy.
Since binding is assumed to be concomitant with a subunit’s confor-
mational transition, we can lump these two contributions together
and take the energy per binding event as the free energy difference per
subunit between the completely free and completely occupied states
in Fig. 5.12. We denote this as�RT lnKs, where Ks is a binding constant
that includes not only the energies directly relating to protein–ligand
interactions, but also the energy of the obligatory conformational
transition. For subunit–subunit interactions, we note that adjacent
subunits in the same state fit together well (Fig. 5.12). When a liganded
subunit abuts an unliganded subunit, the interaction energy is
�RT ln �. So for a state with i occupied binding sites and j interfaces
between subunits with different states of occupancy, the free energy
relative to the completely unoccupied state is �Go¼� iRT ln Ks� jRT ln�.

A protein with one occupied binding site has i ¼1 and j ¼ 2
(Fig. 5.12). With a ligand concentration of [L], the equilibrium
between a protein with zero and one occupied site can be expressed
in terms of the two basic free energy parameters

0 1 2 3

Fig: 5:12: A trimeric protein

in the KNF model. There are

unfavorable contacts between

liganded and unliganded subunits

that push the system toward the

fully bound or empty states.
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½P1�
½P0�½L�

¼ 3e��Go=RT ¼ 3eln Ks þ 2 ln� ¼ 3Ks�
2 (5:29)

The factor of 3 accounts for the number of ways to achieve single
occupancy. For the step from one to two occupied sites, there is no
change in j (Fig. 5.12), and both P1 and P2 have the same multiplicity, so

½P2�
½P1�½L�

¼ Ks (5:30)

Finally, for the third step there is a removal of two unfavorable
contacts, so j is reduced by two. There are three sites that can lose
ligand so the multiplicity factor is 1/3.

½P3�
½P2�½L�

¼ Ks

3�2
(5:31)

We now write the fraction of binding sites occupied

B ¼ ½occupied sites�
½total sites� ¼ ½P1� þ 2½P2� þ 3½P3�

3ð½P0� þ ½P1� þ ½P2� þ ½P3�Þ
(5:32)

Using Eq s. (5.29)–(5.31) t o express [P1], [P2], and [P3] in terms of [P0],
and making the substitutions in Eq. (5.32), gives

B ¼ 3½P0�½L�Ks�
2 þ 6½P0�ð½L�KsÞ2�2 þ 3½P0�ð½L�KsÞ3

3ð½P0� þ 3½P0�½L�Ks�2 þ 3½P0�ð½L�KsÞ2�2 þ ½P0�ð½L�KsÞ3Þ

¼ ½L�Ks�
2 þ 2ð½L�KsÞ2�2 þ ð½L�KsÞ3

1þ 3½L�Ks�2 þ 3ð½L�KsÞ2�2 þ ð½L�KsÞ3
(5:33)

Since � represents subunit–subunit interactions, we can vary this
parameter to see how these interactions influence the overall binding
behavior. First of all, with zero interaction energy, �¼1. This gives

B ¼ ½L�Ks þ 2ð½L�KsÞ2 þ ð½L�KsÞ3

1þ 3½L�Ks þ 3ð½L�KsÞ2 þ ð½L�KsÞ3

¼ ½L�Ksð1þ ½L�KsÞ2

ð1þ ½L�KsÞ3

¼ ½L�Ks

1þ ½L�Ks
(5:34)

This is what one would expect for completely independent subunits.
On the other hand, if the subunit interaction energy is very large,
� goes to zero, leaving

B ¼ ð½L�KsÞ3

1þ ð½L�KsÞ3
(5:35)

This is the Hill equation for concerted binding (see Section 4.2.1 and
Eq. (4.7)).

Plots of Eq. (5.33) for values of � ranging from 0 to 2 show how
increasing the energy of the interaction between occupied and empty
subunits makes the binding curve more cooperative (Fig. 5.13). When
�<0.02 (corresponding to a subunit–subunit interaction energy of
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2.4 kcal mole�1) the plot becomes hard to distinguish from the limiting
case of �¼ 0 ( Eq . ( 5. 35 )) . O n t he o t he r h a nd, �¼ 2 corresponds to a
negative (favorable) free energy for the contact between subunits with
occupied and empty sites. This leads to negative cooperativity, a fea-
ture that is beyond the capability of the MWC model.

Analysis of the KNF model with four or more subunits is quite a bit
more complicated. Because subunit–subunit interactions depend on
the specific geometry of the protein, more assumptions must be made,
and this makes it harder to see general trends. For example, the
subunits of a tetramer could be arranged as a tetrahedron or a square,
and the properties will vary depending on which of these alternatives
is chosen. The rapid increase in complexity with increasing number of
binding sites has made the KNF model less widely used compared to
the MWC model. As a result, the assumptions regarding interactions
between subunits often remain untested.

It has in fact proven difficult to resolve single subunit transitions
within multisubunit proteins. One exception is voltage-gated channels.
Although the functional switch in these proteins is induced by voltage
rather than ligand binding, the principles embodied by the KNF model
can still be recognized. There is abundant evidence that individual
subunits within these tetrameric (and four-domain monomeric) pro-
teins undergo conformational transitions on their own. The channel
gating transition occurs only after all of the subunits have arrived in the
state favored by positive voltage. Early modeling efforts treated the
transitions in individual subunits as independent. However, the activa-
tion of a single Kþ channel was found to proceed through fractional
increments that could be accounted for by transitions in individual
voltage sensi ng domains ( Chapman et al., 1997). It was later sho wn i n
tetrameric potassium channels that if only one of the subunits within a
tetramer was mutated to shift the voltage dependence of its transition,
the voltage dependence of the neighboring wild-type subunits was
shifted as well (Tytgat and Hess, 1992). This reflects an interac tion
energy between adjacent subunits in different conformations.
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Fig: 5:13: Plots of Eq. (5.33) with

Ks¼ 1 and values of � as indicated.
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*5.14 The Szabo–Karplus (SK) model

X-ray crystallography has produced structures of hemoglobin crys-
tallized in the presence and absence of oxygen (reviewed by Perutz
et al., 1998). This work indicates that the allosteric transition dis-
rupts contacts, mostly salt bridges, between the subunits. Breaking
these contacts allows the subunits to shift their positions and
undergo changes in structure. This rearrangement leads to an
increase in the O2 affinity of the binding sites. This observation
inspired an effort to extend allosteric theory to a more detailed
level (Szabo and Karplus, 1972). The SK theory incorporates contact
energies into a thermodynamic model in an approach conceptu-
ally related to the ideas of microscopic additivity discussed in
Section 5.10. Here we will see how the simplest version of the SK
model gives the same results as the MWC model, but with a differ-
ent underlying physical picture. The SK model has the advantage of
providing a robust framework within which new details are readily
incorporated.

SK theory is built around a few key contacts between and within
subunits. When O2 binds to a site, a transition in the tertiary struc-
ture of that subunit is initiated which breaks the internal contacts
and intersubunit contacts originating from that subunit. A global
transition in quaternary structure is also assumed to occur between
tense and relaxed states. This is essentially an allosteric transition,
and it is closely related to the concerted transition between the T
and R states in MWC theory. Here, the allosteric transition breaks all
of the key intra- and intersubunit contacts. Thus, contacts can be
broken either locally by a binding event or globally by the allosteric
transition. Each contact is assigned the same energy value, ES, for
the sake of simplicity, and there are i contacts per subunit.

The O2 binding energies always include the direct interaction
between O2 and its iron–heme binding site. This binding energy, �EB,
also includes the various statistical mechanical contributions dis-
cussed in Chapter 4. If inter- and intrasubunit contacts coupled to
that binding site are intact, then they break upon binding and these
energies must be counted. The energy for binding to a site with the
protein in the R state is simply EB, because there are no contacts to
include. They were already broken during allosteric transition. The
energy for binding to a site with the protein in the T state must
include the contact breaking energies. It is thus �(EB� iES). This
gives the following values for the binding constants

KT ¼ eðEB � iESÞ=RT (5:36a)

KR ¼ eEB=RT (5:36b)

The energy of the quaternary (allosteric) transition is divided
into an intrinsic part, EQ, and a part reflecting the contacts that
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can be broken. For the unliganded protein all 4i contacts have to be
broken, so the energy is EQþ 4iES. This gives a quantity equivalent to
Y0 of the MWC theory

Y0 ¼ e�ðEQ þ 4 iESÞ=RT (5:37)

As binding sites become occupied, the contacts coupled to that
subunit break, and the allosteric transition becomes easier. When
all the sites are occupied, there are no contacts left to break, so we
are left with simply e�EQ =RT corresponding to Y0.

Based on the crystal structures, Szabo and Karplus counted the
contacts as follows. Four contacts between the two a subunits break
during the transition. One more contact breaks between each a
subunit and its companion b subunit. With this assignment of
contacts we have i ¼2 for both the a and b subunits. Internal con-
tacts within the b subunits break. No contacts were seen between
the two b subunits. The states of occupancy can then be enumerated
(nine in all), and the energies estimated by counting the number of
contacts according to these rules (Fig. 5.14).

For each state represented in Fig. 5.14, the equilibrium constant
relative to a reference state can be calculated by adding the number
of occupied binding sites and the number of intact contacts. For
each binding site occupied, the intrinsic energy contributes a sta-
tistical weight

k ¼ e�EB=RT (5:38)

Each broken contact contributes a statistical weight

s ¼ e�ES=RT (5:39)

The quaternary transition contributes a statistical weight

q ¼ e�EQ =RT (5:40)

For each state shown in Fig. 5.14 one can see which of these
energy contributions is present, and then calculate an equilibrium
constant as a product of the relevant statistical weights. An addi-
tional statistical factor has to be included for the number of dif-
ferent ways a particular state of occupancy can be achieved (its
degeneracy). These multiplicities are 4 for singly liganded states, 6
for doubly liganded states, and 4 for triply liganded states. One can
use all this to calculate the fraction of occupied binding sites as in
Eq. (5.17). Writing out all the equilibrium constants and using them
to express the concentration of each state in terms of [O2] gives

B ¼ 4ks2½O2� þ 12k2s4½O2�2 þ 12k3s6½O2�3 þ 4k4s8½O2�4 þ qs8ð4k½O2� þ 12k2½O2�2 þ 12k3½O2�3 þ 4k4½O2�4Þ
4ð1þ 4ks2½O2� þ 6k2s4½O2�2 þ 4k3s6½O2�3 þ k4s8½O2�4Þ þ qs8ð1þ 4k½O2� þ 6k2½O2�2 þ 4k3½O2�3 þ k4½O2�4Þ

(5:41)

This can be factored with the aid of the binomial expansion
(Eq. (A1.7)) to obtain an equation identic al t o Eq. (5.22), with n ¼ 4.
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B ¼ ½O2� ks2ð1þ ½O2� ks2Þ3 þ ½O2� k qs8ð1þ ½O2�kÞ3

ð1þ ½O2� ks2Þ4 þ qs8ð1þ ½O2�kÞ4
(5:42)

If more detail is added to specify different energies for some of
the contacts, or different numbers of contacts breaking for ligand
binding to different subunits, the result will resemble Eq. (5.41), but
factorization and simplification to Eq. (5.42) is no longer possible.

Both the MWC and SK models use the quaternary transition to
make the binding sites influence one another. Although both
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Fig: 5:14: Deoxy and oxy

hemoglobin each have nine distinct

occupancy states. Circles and

squares denote subunits with and

without O2, respectively. Lines

between subunits indicate the

contacts, which can only form in the

deoxy form. Half circles indicate the

internal contact of the b subunit. As

O2 binds, contacts are broken. The

statistical weights are given in the

text.
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models give the same b inding behavior, t he SK model makes an
important physical d istinctio n. The MWC model d oes not assume
that individual subunits can u ndergo isolated changes in tertiary
structur e. In the MWC model binding is strengthened during the
allosteric transition by directly strengthening t he interact ion
between the ligand and the protein. In t he SK model, lig and binding
causes a t er tiary structur al t ransition w ithin o ne sub unit of suffi -
cient m ag nitu de to alter inter actions with other subunits. T he
enhanced bind ing t o the R state is seen because c ontacts that
oppose binding are gone. S tructural studies of hemoglo bin point
to diffe r en ces in the iron–heme binding sites between the T and
R conformatio ns that indicate a direct effect on the interaction with
O2 , as assumed in the MWC model ( Perutz et al., 1998 ). In the R state
the iron atom li es in the plane o f t he heme, but in the T stat e t he
iron atom is pulled out of the plane so an oxy gen molecu le
approaching fr om the other side cannot b in d as tightly.

The c ontacts of t he SK model are salt bridges formed by ionizable
side chains. They can ther ef ore c hange their state o f protonation
when they break, and this will depend on pH. Hemoglobin is v ery
sensitive to pH. Low pH fav ors the T state and t riggers the dissocia -
tio n of O2 (the Bohr effect, Section 5. 8 ). The SK model provides a
natural way to deal with this pr operty. The or iginal SK model could
describe most of the results av ailable at t hat t ime. Subsequent
studie s indicated that the a and b sub units had somewhat different
affinit ies. Further, as noted above, the intrinsic componen t o f t he
binding affinit y , r efl ectin g t he direct interaction between O2 and
the iron atom, ch an ges during the allosteric transition. The SK
model has been extended to in corporate these and other fea tures
(Lee et al., 1988).

Problems for Chapter 5

1. Derive Eq. (5.12) using just the four equilibrium conditions in Eqs.
(5.2a)–(5.2d ).

2. Find the approximate form for Eq. ( 5.9) when Y1 << 1. See how this
justifies the use of KT in Section 5.6 to describe the binding of the
first of the two ligands.

3. Use energy balance to express Y0/ YAB in terms of the binding
constants for the complete two-ligand model of Section 5.6.

4. In the MWC model, derive the fraction of protein in the R state as a
function of ligand concentration. If biological activity is associated
exclusively with the R state, then this expression is a dose–re-
sponse function of the protein.

5. Show that the result of Problem 4 goes to Eq. ( 5.4) when n¼ 1 (hint:
use Eq. (5.12)).

6. Show that Eq. (5.22) goes to noncooperative behavior of the R or T
state in the limit of low and high Y0.
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7. Derive the equilibrium constant for the allosteric transition of a
multisubunit protein such as phosphofructokinase in the pre-
sence of a regulatory ligand with binding constants KRx and KTx.
The result is Eq. (5.28).

8. Write the concentration dependence of binding (fraction of sites
occupied) for an MWC tetramer in which one subunit has the
ligand tethered to its binding site so that it is permanently
occupied.

9. Derive the KNF binding curve for a dimer. For large � show that
the two effective binding constants are 2�Ks and Ks/2�.

10. Derive the KNF binding curve for two kinds of tetramer, with the
subunits arranged either as a tetrahedron. Write the expression
for the cases �¼ 0 and 1.
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Chapter 6

Diffusion and Brownian motion

In the fluid world of biology, molecules are often free to move at
random. We will now study the nature of this random motion. This
will provide insight into the rates of change in many processes. In this
chapter we take our first look at kinetics. The previous chapters all
dealt with systems at equilibrium. We asked how conditions can alter
an equilibrium, but we rarely worried about how long it would take to
get there. There were no derivatives with respect to time. Now we will
see many. We will develop the related theories of diffusion and
Brownian motion. Because these theories are very general, they can
be applied to many related situations. Subsequent chapters will
explore other ways to study dynamic processes, and the ideas from
this chapter will in many cases provide the starting point.

6.1 Macroscopic diffusion: Fick’s laws

The theory of diffusion can be developed from two simple and basic
assumptions. The first of these is that a substance will move down
its concentration gradient. The steeper the gradient the more move-
ment of material. If the relation between gradient and flux is linear,
then in one dimension we have what is known as Fick’s first law

J ¼ �D
qC

qx
(6:1)

where x is the position, C is the concentration at that position, and D is the
proportionality constant, called the diffusion constant. The variable J is
the flux, and is defined as the amount of material passing across the point
at x (or through a unit area perpendicular to the direction of flow) per unit
time. The minus sign means that the flow is in the direction of decreasing
concentration. The rationale for this equation is a common sense picture
of how material should move from high concentrations to low.

The second assumption needed for the theory of diffusion is
conservation of matter. If in a small element of length dx, the flux
into the element from the left is different from the flux out of the
element to the right, then C(x) within this element will change. The



difference between the two fluxes J(x) and J(xþ�x) determines how
much material will accumulate within the region bounded by x and
xþdx in a time interval �t�

Jðxþ�xÞ � JðxÞ
�
�t ¼ ��C�x (6:2)

This equation ensures that all of the diffusing material is accounted
for, and none is created or lost.

Equation (6.2) can be rearranged and converted to derivatives as
follows

qC

qt
¼ � qJ

qx
(6:3)

The next task is to eliminate J by combining Eqs. (6.1) and (6.3).
Differentiating Eq. (6.1) with respect to x gives an expression for the
flux derivative that can then be equated with that in Eq. (6.3). The
result is Fick’s second law, which is the diffusion equation

qC

qt
¼ D

q2C

qx2
(6:4)

From this derivation we see that any process will obey the diffusion
equation if it obeys the two key assumptions. There must be a linear
relation between the gradient and flux, and the diffusing substance
must by conserved. Heat satisfies these same two conditions, as does
passive spread of voltage in a cable (see Chapter 15). In both cases the
diffusion equation (or something very similar) is obeyed.

Equation (6.4) is one dimensional. In three dimensions the spa-
tial derivative in Eq. (6.1) is replaced by the gradient of the concen-
tration. Fick’s first law is now a vector equation

J ¼ �D�C (6:5)

The spatial derivative of the flux in one dimension (Eq. (6.3)) is
replaced by the sum of the three spatial derivatives along the
three different axes, or the divergence in vector notation

qC

qt
¼ �� � J (6:6)

When J is eliminated in the same way by combining these two
equations, the result is the diffusion equation in three dimensions

qC

qt
¼ Dr2C (6:7)

where r2 is the Laplacian operator (q2/qx2)þ (q2/qy2)þ (q2/qz2).

6.2 Solving the diffusion equation

The diffusion equation is a partial differential equation that tells us
how a spatial distribution of material changes over time. If we are
given an initial distribution C(x, y, z, t0), then the solution to the
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diffusion equation, C(x, y, z, t), will tell us the distribution at any
later time. There are as many different solutions as there are initial
distributions. We can imagine an initial distribution in which C is
very high at x ¼ y ¼ z ¼0, and zero everywhere else. Alternatively,
C could be constant within a particular region, and zero elsewhere.
Any arbitrary function is imaginable as an initial distribution for C,
and it will evolve through time in a specific way dictated by the
diffusion equation.

The initial distribution is not enough to specify the solution to
the diffusion equation. The geometry in which diffusion is taking
place can vary and that will also have an influence. There might be
an infinite volume, or an infinitely long tube, or a closed container
with a complicated shape. These geometric factors constitute
boundary conditions, and are specified as mathematical constraints
on C, or its spatial derivatives, or both, at the boundary of the
container. To define a solution to the diffusion equation, we need
both initial conditions and boundary conditions. If these are speci-
fied, then we can in principle find C(x, y, z, t). If the equation cannot
be solved analytically, then a computer can be used to solve the
equation numerically.

There is a vast mathematical literature on the diffusion equa-
tion, and one can find solutions for many different initial and
boundary conditions in the standard books such as Carslaw and
Jaeger (1959) and Crank (1975). Here, we will consider a few impor-
tant examples to help illuminate the basic principles.

6.2.1 One-dimensional diffusion from a point
Take as the initial condition that C is infinite at x ¼ 0, and 0 every-
where else. In one-dimension this is expressed as the delta function

C ¼Md(x). The integral
R 1
�1 CðxÞdx ¼ M at t ¼ 0, where M specifies the

total amount of diffusing substance. The infinitely high C in an
infinitesimally small region may be artificial, but we can avoid the
details of what this singularity looks like. The diffusion equation
can be solved for this initial condition using the method of Fourier
transforms.1 The result is a Gaussian function

1 Taking the Fourier transform of Eq. (6.4) in the spatial dimension gives (Eq. (A3.15))

qCf ðf ; tÞ
qt

¼ �Df 2 Cf ðf ; tÞ

where f is the frequency variable used in the Fourier transform and Cf is the Fourier

transform of C. This has the solution

Cf ðf ; tÞ ¼ Cf ðf ; 0Þe�Df 2 t

where Cf (f, 0) is the Fourier transform of the initial condition.

Cf ðf ; 0Þ ¼
1ffiffiffiffiffiffi
2p
p

Z1
�1

MdðxÞeifxdx ¼ Mffiffiffiffiffiffi
2p
p

and C is computed from Cf by taking the inverse Fourier transform.
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Cðx; tÞ ¼ Mffiffiffiffiffiffiffiffiffiffiffi
4pDt
p e�x2=ð4DtÞ (6:8)

This can be substituted into Eq. (6.4) to verify that it is a solution.
The integral over C(x,t) will remain M for any value of t, as can be

checked by using
R 1
�1 e��x2

dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðp=�Þ

p
(Eq. (A4.4)). This verifies

that mass is conserved. So as expected for a solution to the diffusion
equation, Eq. (6.8) is consistent with one of the basic assumptions
employed in the original derivation. This property is built into the
diffusion equation, and it is wise to check a solution to be sure that
this condition is satisfied.

Figure 6.1 shows how C(x, t) evolves through time. As expected,
the diffusing material spreads out as time passes. The curves remain
centered at x ¼0 for all time, with C(0, t) going down as diffusion
progresses. The curve at t ¼0.01 illustrates how the function
approaches a delta function as t! 0.

An important hallmark of diffusion is that the rms displacement from
the initial position increases in proportion to the square root of the timeffiffiffiffiffi

x2
p

¼
ffiffiffiffiffiffiffiffi
2Dt
p

(6:9)
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Fig: 6:1: Plots of the solution to

the diffusion equation (Eq. (6.8))

with M¼ 1 and D¼ 1/4 at the

indicated times.

Cðx; tÞ ¼ M

2p

Z1
�1

e�Df 2 teifxdf

and Eq. ( 6.8) is obtained by evalu ating this integral as follows (see Eq. (A4.7))

Cðx; tÞ ¼ M

2p
e�x2=ð4DtÞ

Z1
�1

e�Df 2 tþ ifxþ x2=ð4DtÞdf

¼ M

2p
e
�x2

4Dt

Z1
�1

e
� f

ffiffiffiffi
Dt
p
� ix

2
ffiffiffiffi
Dt
p

� �2

df

¼ M

2p
e
�x2

4Dt

ffiffiffiffiffi
p
Dt

r

¼ Mffiffiffiffiffiffiffiffiffiffiffi
4pDt
p e�x2=ð4DtÞ
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This result comes directly from Eq. (6.8) by evaluating the integralR 1
�1 x2CðxÞdx . One can see by inspection of Eq. (6.8) that 4Dt is the

width of this Gaussian function. One can also show that the value of
x defined in Eq. (6.9) marks a position where the concentration is
constant. At shorter distances the concentration is decreasing and
at longer distances it is increasing (Problem 4).

Equation 6.9 is used very widely for order of magnitude estimates.
It was derived for one special case here, but the initial condition of
starting at one discrete location and spreading out is a useful general
way to envision diffusion. For example, it is common to use this
expression to estimate how long it will take a metabolite to diffuse
through a cell when it is produced at one location. For a typical
diffusion constant of 10�6 cm2 s�1 we find that for t¼ 5 ms,ffiffiffiffiffi

x2
p

¼ 1 mm. For t¼50 ms,
ffiffiffiffiffi
x2

p
¼ 3:2mm. For t¼500 ms,ffiffiffiffiffi

x2
p

¼ 10 mm. Each factor of 10 in time gives a factor of
ffiffiffiffiffiffi
10
p

¼ 3:16
in distance.

6.2.2 Three-dimensional diffusion from a point
A very similar result is obtained for diffusion in three dimensions. To
see this we start with Eq. (6.7) instead of Eq. (6.4). We are interested
only in the radial distance from the starting point so the Laplacian
operator should be converted to spherical coordinates (Eq. (A6.5))

qC

qt
¼ D

1

r2

q
qr

r2 qC

qr

� �
(6:10)

The solution is similar but not identical to the one-dimensional case

Cðr; tÞ ¼ M 4pr2

ð4pDtÞ3=2
e�r2=ð4DtÞ (6:11)

In fact, if we write down Eq. (6.8) for x, y, and z, multiply them
together, and replace x2þ y2þ z2 ¼ r2, the result is Eq. (6.11). (Note
that there is an implicit dx in Eq. (6.8), and so we must also replace
the product dxdydz with 4pr2dr; Eq. (A6.4).) Thus, we still have a
Gaussian distribution about the central starting point. With the aid
of Eq. (6.9) we can obtain a spread

ffiffiffiffiffi
r2

p
¼

ffiffiffiffiffiffiffiffi
6Dt
p

. This is Eq. (6.9) times
the square root of the number of dimensions. The Pythagorian
manner by which the different components add together leads to
this simple dependence of

ffiffiffiffiffi
r2

p
on dimension number.

6.2.3 Diffusion across an interface
When solutions with different concentrations are in contact, mole-
cules will diffuse across the interface. One can imagine a tube or
pipe filled from one side with a solution and from the other side
with just water. We will assume that the pipe is very long so that we
do not need to worry about what is happening at the ends. If the
tube is filled carefully so that there is no mixing, then immediately
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after this delicate operation is complete we have C ¼C0 for x> 0 and
C ¼0 for x<0 (the interface is at x ¼0).

We need to find a solution to the one-dimensional diffusion
equation that satisfies this initial condition. This can be developed
by using the Gaussian solution obtained above for the initial condi-
tion of a point source of diffusing particles. We consider the region
to the right of the interface as an infinite row of infinitesimal point
sources, each spreading according to Eq. (6.8). If these point sources
are close enough together their sum will approach a constant func-
tion (Fig. 6.2).

The solution to this problem is then the superposition of all
these point source solutions (Fig. 6.1). This depends on the assump-
tion that solute starting in one of the point sources diffuses inde-
pendently of the solute from all the other point sources. This turns
out not to be a new physical assumption because if there were
interference between solute molecules starting at different places
then we would not have a simple linear relation between force and
flow, and Eq. (6.1) would no longer hold. Because linear relations
add, superimposability is automatic.

With this view of diffusion across an interface we can sum up the
contributions from each point source. Using x0 as the center of a
point source, and dx0 as the distance between adjacent point
sources, we obtain C(x) as an integral in the limit of small dx0

CðxÞ ¼ C0ffiffiffiffiffiffiffiffiffiffiffi
4pDt
p

Z1
x0 ¼ 0

e�ðx
0� xÞ2=ð4DtÞ dx0 (6:12)

This integral cannot be solved analytically, but it can be con-
verted to a common special function called the complementary
error function, defined as

erfcðxÞ ¼ 2ffiffiffi
p
p
Z1
x

e�y2

dy (6:13)

Now with a change in variable to z ¼ ðx
0 � xÞffiffiffiffiffiffi
4Dt
p , Eq. (6.12) becomes

C =  C0C =  0

C( x)

x =  0

Fig: 6:2: A pipe (above) is filled

from x¼ 0 to the right with a

solution at concentration C0 and to

the left with concentration 0. The

concentration profile (below) of the

diffusing solute (solid curve)

is represented as infinitely many

closely spaced Gaussian functions

(dotted curves).

6.2 SOLVING THE DIFFUSION EQUATION 147



CðxÞ ¼ C0ffiffiffi
p
p

Z1
�x=

ffiffiffiffiffiffi
4Dt
p

e�z2

dz ¼ C0

2
erfcð�x=

ffiffiffiffiffiffiffiffi
4Dt
p

Þ (6:14)

This result is plotted in Fig. 6.3. We see that with time the inter-
face spreads. The sharp gradient at time t ¼0 becomes less and less
steep as time passes. This behavior has much in common with
spread from a point source. If we note that the derivative of Eq.
(6.14) with respect to x gives a Gaussian function, then we realize
that with diffusion at an interface the concentration gradient looks
just like the concentration for diffusion from a point source.

The method used to solve this problem can readily be general-
ized to an arbitrary initial concentration distribution, C0(x). Again,
we treat each point as a spreading Gaussian, and integrate over the
distribution, to give

CðxÞ ¼ 1ffiffiffiffiffiffiffiffi
4Dt
p

Z1
x0 ¼ 0

C0ðx0Þe�ðx
0 � xÞ2=4Dt dx0 (6:15)

Compare this result with Eq. (6.12).

6.2.4 Diffusion with boundary conditions
The problems treated so far were for infinitely large regions in space, so
the boundary conditions did not require any special attention. But in a
finite region of space the shape has to be taken into account by
specifying what happens at the boundaries. To illustrate this, we look
at a pipe that is open at both ends and filled with solution. The pipe is
placed in water so that solute diffuses out the ends into a large sur-
rounding reservoir (Fig. 6.4). There is an enormous excess of water
surrounding the pipe. When a molecule reaches an open end at x¼ 1
or �1 it is immediately diluted and effectively disappears. The bound-
ary is therefore called absorbing, and the mathematical representation
of this condition is C¼0 at x¼ 1 and�1. This means that the solution to
Eq. (6.4) must have a form which obeys this condition for all t�0.
It must also satisfy the initial distribution C¼C0 for�1< x<1 at t¼ 0.

x

C0

0

– 10 –5 0 5 10

t  =  0 t  =  1
t  =  4

t  =  40

Fig: 6:3: Concentration profiles

around an interface between a

solution with C0 and pure water.

Equation (6.14) is plotted for a

sequence of times, starting with

a step function at t¼ 0.
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The Gaussian function obtained for point sources is difficult to
use in this problem because it does not help us satisfy the boundary
conditions. Instead we use the following general solution to the
diffusion equation in one dimension, which can be obtained by
the method of separation of variables.2

Cðx; tÞ ¼ ðA cosð�xÞ þ B sinð�xÞÞe��2Dt (6:16)

This can be checked by substitution back into Eq. (6.4).
Equation (6.16) can readily be adapted to the boundary condi-

tions by finding a set of As and Bs that make these trigonometric
functions in Eq. (6.16) add up to C0. The method of Fourier trans-
forms does exactly that, providing a general method for solving
diffusion problems with boundary conditions.

The condition C ¼ 0 at x ¼ �1 means that as long as � has the
form np/2 (where n is an odd integer) any cosine term will satisfy the
boundary conditions, and any sine term will not. We therefore let
all the Bs in Eq. (6.16) be zero and build the initial distribution with
cosine terms.

Before we put these cosine functions together to make the rec-
tangular initial distribution, it is instructive to look at how one of
these cosine functions behaves. Suppose we had an initial distribu-
tion C0 ¼Mcos(px/2). Equation (6.16) then gives the solution to the
diffusion equation satisfying this particular initial condition

Cðx; tÞ ¼ M cos
px

2

� �
e�ðp=2Þ

2Dt (6:17)

C =  C0C =  0 C  =  0

x

–1 0 1

Fig: 6:4: A pipe filled with a

solution with concentration C0 is

placed into a large container full of

pure water. Solute then diffuses out

the of pipe into the water.

2 We express C(x, t) as the product of one function that depends only on x and another

function that depends only on t

Cðx; tÞ ¼ XðxÞTðtÞ
Substitution into Eq. (6.4) and rearranging gives

1

DT

qT

qt
¼ 1

X

q2X

qx2

Varying t should not alter X or, for that matter, the entire right-hand side of this

equation. The lack of dependence of T on x leads to a similar statement about the

left-hand side. Thus, both sides of the equation should be constant. We can solve

the two equations formed by setting each side equal to this constant, which will be

denoted as ��2

T ¼ e��
2Dt

X ¼ A cosð�xÞ þ B sinð�xÞ

where A and B are any constants. Taking the product of X and T gives Eq. (6.16).
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This function decays uniformly within a pipe, maintaining the basic
cosine shape as the decay progresses. At each point the concentra-
tion decays exponentially at the same rate. If we put together a sum
of such functions, then the concentration at each point will decay as
a sum of as many exponentials. At each point the proportion of the
different exponentials will vary so that the time course seen at each
position will look different.

Returning to our initial condition that C ¼C0 everywhere within
the pipe, the following infinite sum can be obtained by Fourier
transformation of a rectangular function

Cðx; 0Þ ¼ C0
4

p
cos

px

2

� �
� 1

3
cos

3px

2

� �
þ 1

5
cos

5px

2

� �
� 1

7
cos

7px

2

� �
� � �

� �
(6:18)

This sum has the rectangular shape desired. The solution to the
problem is then obtained by using each element of this sum to
create a term like Eq. (6.17) as follows

Cðx; tÞ ¼C0
4

p
cos

px

2

� �
e�

p
2ð Þ

2
Dt � 1

3
cos

3px

2

� �
e�

3p
2

� �2
Dt

�

þ1

5
cos

5px

2

� �
e�

5p
2

� �2
Dt � 1

7
cos

7px

2

� �
e�

7p
2

� �2
Dt � � �

�
(6:19)

Since each term in this sum has the form of Eq. (6.16), it satisfies the
diffusion equation. This sum reverts to Eq. (6.18) at t¼ 0, thus satisfy-
ing the initial condition. At very short times the edges look very much
like the solution for diffusion at an interface (Fig. 6.3). At longer times
the rapidly decaying components are gone so we are left with Eq.
(6.17), a uniformly decaying cosine function. A point worth noting
here is that the terms in Eq. (6.19) that represent higher spatial fre-
quencies decay more rapidly. Thus, diffusion collapses sharp spatial
gradients rapidly and weak spatial gradients slowly. This illustrates a
general property of diffusion. Diffusion makes concentrations change
more rapidly on shorter distance scales.

The above example illustrates absorbing boundary conditions,
in which the solution to the diffusion equation must be zero at the
boundary. If the ends are sealed we have what is called a reflecting
boundary. Because the flux, J, is zero at such a boundary, Eqs. (6.3) or
(6.5) dictate that the spatial concentration derivatives normal to the
boundary are zero. In an enclosure like that of Fig. 6.4, but with
sealed ends, this means that we use the sine terms of a Fourier series
rather than the cosine terms (Problem 5).

6.3 Diffusion at steady state

In the above examples the concentration changed with time.
However, there is an important class of problems in which the
concentration stays the same within a large region. The diffusing
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substance enters in one place and exits from another at the same
rate. The substance thus diffuses from a source to a sink, with a
continuous drop in concentration along the way. There will be a
steady flux of material through the system, as the flow into each
volume element perfectly balances the flow out. Such a system is
said to be in a steady state, as defined by the condition that the time
derivative of the concentration is zero throughout a region of
interest

qC

qt
¼ 0 (6:20)

The diffusion equation, Eq. (6.4), now simplifies to the Laplace
equation

r2C ¼ 0 (6:21)

This equation can be solved to determine the steady-state concen-
tration distribution for a particular geometrical arrangement of
boundaries, sources, and sinks.

6.3.1 A long pipe
To illustrate the basic properties of a steady state, consider a pipe of
length l connecting two vessels, one filled with a solution with
concentration C0, and the other filled with pure water. Taking
Eq. (6.21) in one dimension, and integrating once gives

qC

qx
¼ A (6:22)

where A is a constant of integration. Integrating again gives

C ¼ Axþ B (6:23)

where B is another constant of integration. We take the end of the
pipe at the water filled container to be x ¼ 0, and since C ¼ 0 at that
point, B ¼ 0. At the other end of the pipe C ¼C0, so at x ¼ l we solve
for A ¼C0 / l. With A and B thus determined, Eq. (6.23) gives the
steady-state concentration in the pipe

CðxÞ ¼ C0x

l
(6:24)

Thus, the concentration changes linearly from 0 to C0 as the pipe is
traversed.

The flux, J, at any point can be obtained from Eq. (6.24) by
differentiating Eq. (6.1) to give �C0D / l. This is the flux through a
unit area. With an area, a, then the total flux is �C0Da / l. This
expression is just like that for the electrical current in a resistor.
Recall that the electrical resistance of an object is proportional to
length and inversely proportional to area, so dividing by the resis-
tance gives a current proportional to a / l.
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6.3.2 A small hole
Now instead of a pipe connecting two containers, consider a small
round hole connecting a solution of concentration C0 with pure
water (Fig. 6.5).

Assume that C depends only on the distance from the hole, i.e. it
depends only on r. We envision hemispherical shells around the
hole over which the concentration is uniform. We can then use the
diffusion equation in spherical coordinates (Eq. (6.10)). At steady
state this reduces to

1

r2

q
qr

r2 qC

qr

� �
¼ 0 (6:25)

Integrating once gives

r2 qC

qr
¼ A (6:26)

Integrating again gives

C ¼ �A

r
þ B (6:27)

where A and B once again are constants of integration.
As r!1 on the left C!0, so for the solution on the left side of

the divider, we have B ¼0. At the center of the hole, C should be half
way between 0 and C, i.e. C0/2. We will make the reasonable appro-
ximation that C is C0/2 very close to the pore, within its radius of ra.
Inserting this value in Eq. (6.27) allows us to determine A as raC0 / 2.
So on the left side of the hole the concentration is

C ¼ raC0

2r
(6:28)

Now we can apply Eq. (6.1) to obtain the flux at any value of r

J ¼ �D
qC

qr
¼ D

raC0

2r2
(6:29)

This is the flux per unit area. If we want to know the flux through
any hemispherical shell we multiply by its area, 2pr2. Then the total
rate of transport of solute through any hemispherical shell, T, is the
same, as expected for a steady state

T ¼ praDC0 (6:30)

C =  0 C = C0

Fig: 6:5: Two solutions with

C¼ 0 and C¼C0 are separated

by a divider with a hole.
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Because the surfaces of constant concentration are not exactly
spherical, especially for small r, this result is approximate. The
exact treatment involves solving the diffusion equation in cylindri-
cal coordinates and gives Eq. (6.30), but with p replaced by 2 (Crank,
1975; Berg, 1983).

An important property of Eq. (6.30) is that the rate of transport is
proportional to the radius of the hole rather than its area. This is not
an intuitive result; recall that for the case just examined of a pipe the
rate of transport is proportional to the area. For diffusion through
holes transport is limited by the approach to the hole rather than
passage through the hole. A general result for arbitrarily shaped
holes is that the rate of transport scales with a linear dimension
rather than with the area. A similar dependence arises in diffusion-
limited association processes (Chapter 8). This scaling with size has
important implications for transport through a porous membrane, as
will be seen next.

6.3.3 A porous membrane
Picture a membrane covering the hole in Fig. 6.5. This membrane
has many pores, each a miniature of the hole in the preceding
example. For each pore the rate of transport will be given by
Eq. (6.30), with the pore radius, rp, in place of ra. If there are N
such pores, then we get a rate of transport

T ¼ NprpDC0 (6:31)

However, there is something odd about this expression. When
Nrp¼ ra the rate of transport through this porous membrane will
be the same as in Eq. (6.30), which is what we got when there
was no membrane at all, just a hole. Yet the fraction of the mem-
brane area accounted for by these pores would be N(rp / ra)2. If the
pores are small compared to the entire hole, then because the ratio
of the square of the radii is taken, the pores could cover a very
small fraction of the total area of the membrane and still give
the same flux as the open hole. For example, if the pores have
diameters that are smaller than the hole by a factor of 100, then
100 of them would bring the rate of transport up to that of the
unobstructed hole. But since each pore is a fraction (0.01)2¼0.0001
of the total area, 100 pores would account for only 1% of the
membrane area. Indeed, we could get the impossible result that
with more than 100 pores, transport would be greater than the
unobstructed hole.

The problem arises from the overlap of the shells around each
pore when they are close together. If we imagine two holes in the
membrane, the spherical sections representing the gradients will
overlap when the holes are close together. For a very small number
of pores this would not matter and Eq. (6.31) would be reasonably
accurate. But when more pores are added, the crowding of the shells
makes Eq. (6.31) less accurate. A more complete treatment of this
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problem takes the overlap into account (Berg, 1983) and gives a rate
of transport through a porous membrane as

T

T0
¼ 1

1þ ðpra=NrpÞ
(6:32)

where T0 is the rate of transport for the unobstructed hole from
Eq. (6.30).

The implication of this analysis is that a few pores can have a
large impact on how quickly solute crosses a cell membrane. A cell
membrane can harbor many different types of membrane transpor-
ters and allow the selective passage of many different kinds of
molecules. Since the transporters for each molecule only need to
occupy a small fraction of the membrane surface area, they will not
crowd one another. A cell membrane can thus transport many
different substances efficiently.

6.4 Microscopic diffusion – random walks

In the above macroscopic treatment of diffusion, very little thought
was given to what makes the molecules move (at least not at the
molecular level). We know that molecules move randomly and
collide with one another at a very high frequency. Now we will
focus on this random motion to see what it can tell us about diffu-
sion (Chandrasekhar, 1943).

The molecular approach to diffusion begins with the random-
walk model. A molecule is said to move in discrete steps of fixed
length, �, and to take these steps at fixed intervals of time, � . We will
start with only one dimension, so steps are either plus or minus
(i.e. right or left).

If a random walk has no directional bias, then the probabilities
of steps in either direction will be equal. It is no more difficult to
develop the theory with unequal probabilities of steps in different
directions, so we will do so for the sake of generality. The probabil-
ities of stepping right or left are taken as p and q, respectively, where
pþ q ¼1. If N steps are taken, the probability of having m right steps
(and simultaneously of N �m left steps) is given by the binomial
distribution

PðmÞ ¼ N!pmqN�m

ðN �mÞ!m!
(6:33)

If right is positive and left negative, then m right steps and N �m left
steps give a net displacement of x ¼ (2m �N)�. This means that P(m)
is the probability of a total displacement of this magnitude after
N steps.

We can calculate the mean displacement from the origin as a
function of time. First, we need the mean number of right steps,
which is obtained by averaging over all possible values of m as
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m ¼
XN

m¼ 0

mPðmÞ ¼
XN

m¼ 0

m N!pmqN�m

ðN �mÞ!m!
(6:34)

To evaluate this sum we start with the binomial expansion (Eq. (A1.7))

ðpþ qÞN ¼
XN

m¼ 0

N!pmqN�m

ðN �mÞ!m!
(6:35)

Differentiate this expression with respect to p, and then multiply by
p to give

Npðpþ qÞN�1 ¼
XN

m¼ 0

N! m pmqN�m

ðN �mÞ!m!
(6:36)

Since pþ q ¼1, the left-hand side is Np. The right-hand side is the
sum in Eq. (6.34), so we have

m ¼ Np (6:37)

Since x ¼ (2m �N)�, the mean displacement is

x ¼ ð2m� NÞ� ¼ ð2Np� NÞ� ¼ Nðp� qÞ� (6:38)

If p ¼ q ¼1/2, then �x ¼0, which is expected because on average there
will be the same number of steps in each direction.

The result that the mean displacement is zero for an unbiased
random walk provides us with very little insight into the nature of
the motion. The mean-square displacement provides a better way to
quantify the progress of a random walk

x2 ¼ �2 ð2m� NÞ2 (6:39)

Squaring 2m �N and averaging each of the terms gives

x2 ¼ �2ð4m2 � 4mN þ N2Þ (6:40)

The mean square of m, m2, is calculated as

m2 ¼
XN

m¼0

m2PðmÞ ¼
XN

m¼ 0

m2N!pmqN�m

ðN �mÞ!m!
(6:41)

Differentiating Eq. (6.36) with respect to p and then multiplying by
p gives an expression for this sum. Using the result in Eq. (6.41) gives

m2 ¼ ðNpÞ2 þ Npð1� pÞ ¼ ðNpÞ2 þ Npq (6:42)

Substituting Eqs. (6.37) and (6.42) into Eq. (6.40) gives

x2 ¼ �2ð4N2p2 þ 4Npq� 4 pN2þN2Þ (6:43)

For an unbiased random walk, with p ¼ q ¼ 1/2, this expression
becomes very simple

x2 ¼ �2N ¼ �2 t

�
(6:44)

where t ¼N� was used for the total time to get the final answer.
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Taking the square root of Eq. (6.44), we see that the rms displace-
ment goes as the square root of the time, just as was found above
from the solution of the diffusion equation (Eq. (6.9)). Furthermore,
we can obtain an expression for D in terms of the basic parameters
of the random-walk model by comparing the square root of Eq.
(6.44) with Eq. (6.9)

D ¼ �2=2� (6:45)

With this expression for D we can estimate the effective step size
and frequency for the motion of a diffusing particle during colli-
sions with other molecules. Kinetic theory gives the rms velocity of
a molecule as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3kT=mÞ

p
. For a 14 000 Da protein in solution (e.g. the

enzyme lysozyme) this is 1.3 �103 cm s�1. At this velocity a mole-
cule of protein would bounce around in a beaker dozens of times
per second. It does not diffuse nearly that fast because it changes its
direction so frequently.

Let’s see how frequently. The diffusion constant of lysozyme is
�10�6 cm2 s�1. Taking the rms velocity as � / � and D as �2 / 2� , we can
solve these two equations for the two unknowns to obtain �¼10�9 cm
and � ¼ 10�12 s. This means that the molecule changes direction every
picosecond and moves just 0.1 ¯ between collisions. These time and
distance scales are well worth remembering. They reflect the funda-
mental nature of molecular motions in aqueous solutions.

The above use of the binomial distribution was for a one-
dimensional random walk, but it is easy to extend this to two or
three dimensions. We can consider motion in each dimension to
be an independent random walk. Then by the Pythagorean theorem
we have r2 ¼ x2 þ y2 þ z2. With x2; y2, and z2 each equal to �2t / �
(Eq. (6.44)), we have

ffiffiffiffiffi
r2

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3t=�Þ

p
.

The random walk has the property that the mean-square displace-
ment increases linearly with the number of steps. This relation
between a mean-square quantity and the number of items in a sum
appears often in statistical problems. Recall from Chapter 3 that a
polymer with monomers rotating in an uncorrelated fashion has an
rms end-to-end distance that goes as the square root of the monomer
number. These kinds of results are generalized in the central-limit
theorem, an important basic result of mathematical probability.

*6.5 Random walks and the Gaussian distribution

We saw that the random-walk model gives the same basic result as
the diffusion equation for the mean-square displacement (Eq. (6.44)
and square root of Eq. (6.9)). The parallel between the random walk
and diffusion can be extended by showing that as N becomes large
the probability distribution for the random walk goes to the
Gaussian function obtained by solving the diffusion equation
(Chandrasekhar, 1943). This is the appropriate solution of the
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diffusion equation to compare with the random walk because the
initial condition C(x, 0) ¼ �(x) corresponds to the random walk start-
ing at x ¼0.

First, we compare the two results graphically. If we take p ¼ 1/2,
then the most likely value of m is N/2. We can now introduce a new
variable k to express the displacement in terms of the deviation
from N/2, so that m is then N/2þ k. (The displacement x is 2k� in
terms of k; it was (2m �N)� in terms of m.) Equation (6.33) then
becomes

PðkÞ ¼ N!ð1=2ÞN
N
2 � k
� �

! N
2 þ k
� �

!
(6:46)

A plot of this equation with N ¼10 and x ¼2k� (Fig. 6.6) is almost
exactly the same as the corresponding Gaussian.

This similarity between the Gaussian function and the binomial
distribution can be demonstrated mathematically by taking the
limit of Eq. (6.46) when N is large. We use Stirling’s approximation
for the factorial3 N! � N

e

� �N ffiffiffiffiffiffiffiffiffi
2pN
p

.
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Fig: 6:6: The plotted points are

probabilities for displacements

according to a random walk of ten

steps (Eq. (6.46) with N¼ 10). The

Gaussian function obtained by

solving the diffusion equation

(Eq. (6.8)) is drawn as a solid

curve for comparison. Note that

�¼ 0.5 to give x¼ 1 at k¼ 1.

3 The logarithm of N! is the sum

ln N! ¼
XN

m¼1

ln m

Approximating the sum as an integral gives

ln N! �
ZN

x¼ 1

ln x dx � N ln N � N

where the term evaluated at x¼ 1 is discarded as it is negligibly small.

This expression is sufficient for most applications and would yield the desired

Gaussian function here, but with a significant discrepancy. To achieve quantitative

agreement with the solution to the diffusion equation we improve this formula by

taking (Nþ 1/2) ln N�N. This extra 1/2 can be understood if the sum is viewed as the

area of many rectangles and the integral only goes to the midpoint of the last

rectangle. Then the sum differs from the integral by an extra half of the rectangle
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PðxÞ �
N
e

� �N ffiffiffiffiffiffiffiffiffi
2pN
p

1
2

� �N

N
2� k

e

� �N
2� k ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p N
2 � k
� �q

N
2þ k

e

� �N
2þ k ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p N
2 þ k
� �q

¼
ffiffiffiffiffiffiffiffiffi
2pN
p

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
2

� �2 � k2
� �r N

e

� �N 1
2

� �N

N
2� k

e

� �N
2� k N

2þ k
e

� �N
2þ k

(6:47)

Since the square root varies much less than the exponentials, the k2

in the square root can be neglected. Furthermore, the factors of eN

cancel leaving

PðxÞ ¼
ffiffiffiffiffiffi
2

pN

r
N
2

� �N

N
2 � k
� �N

2� k N
2 þ k
� �N

2þ k

¼
ffiffiffiffiffiffi
2

pN

r
N
2

� �N

N
2

� �N
2� k

1� 2k
N

� �N
2� k N

2

� �N
2þ k

1þ 2k
N

� �N
2þ k

¼
ffiffiffiffiffiffi
2

pN

r
1� 2k

N

� ��N=2

1� 2k

N

� �k

1þ 2k

N

� ��N=2

1þ 2k

N

� ��k

¼
ffiffiffiffiffiffi
2

pN

r
1� 4k2

N2

 !�N=2

1� 2k

N

� �k

1þ 2k

N

� ��k

ð6:48Þ

Each factor containing a term of the form 1 � a can be approximated
as e � a because k <<N (expansion to first term in Eq. (A1.4)).

PðxÞ ¼
ffiffiffiffiffiffi
2

pN

r
e2k2=Ne�2k2=Ne�2k2=N

¼
ffiffiffiffiffiffi
2

pN

r
e�2k2=N (6:49)

Thus, we have obtained the limiting Gaussian for the binomial
distribution and can see how Eq. (6.8) is beginning to emerge. To
complete the picture we must convert numbers of steps to units of
distance and time. Using k ¼ x/2� and N ¼ t/� gives

PðxÞ ¼
ffiffiffiffiffiffi
2�

pt

r
e��x2=2t�2

(6:50)

at the upper limit of N. An additional factor of 1/2 ln (2p) does a good job of correcting

for the accumulated error between the area of the continuous function and the

rectangles. Incorporating these corrections to the above expression and taking the

exponential gives

N! � N

e

� �N ffiffiffiffiffiffiffiffiffi
2pN
p
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Using Eq. (6.45) to replace � and �with the diffusion coefficient gives

PðxÞ ¼
ffiffiffiffiffiffiffiffi
�2

pDt

r
e�x2=4Dt

¼
ffiffiffiffiffiffiffiffiffiffiffi

1

4pDt

r
e�x2=4Dt 2� (6:51)

We can interpret 2� as dx because x ¼2k�. That makes the result
identical to Eq. (6.8).

As shown above in Fig. 6.6, N does not have to be very large for
this limit to work extremely well. One region where the Gaussian
limit clearly cannot be correct is for x>N�. The largest possible
displacement occurs with all N steps in the same direction. The
Gaussian function gives extremely low probabilities for larger dis-
placements, but their probability is zero in the random walk. These
errors rarely create problems and the Gaussian function provides a
very useful representation for the random-walk model.

6.6 The diffusion equation from microscopic theory

It was noted above that assuming each step is independent leads to
the result that the rms distance is proportional to

ffiffi
t
p

. The assump-
tion of independent steps is at the heart of diffusion, and Einstein
used it as the basis for a derivation of the diffusion equation. (See
Einstein (1956) for a collection of Einstein’s seminal papers on
Brownian motion.)

The probability of arriving at position r at time tþdt is denoted
as p(r, tþdt). It can be written as the integral over all products of two
probabilities. The first is the probability of arriving at rþ � after
time t, denoted as p(rþ �, t). The second is the probability of jumping
from rþ � to r in the time dt, denoted as  (�). We therefore write

pðr; tþ dtÞ ¼
Z1
�1

pðr þ �; tÞ ð�Þ d� (6:52)

Note that dt and � are both small, so the range for � in the integral is
irrelevant. Using Taylor expansions (see Appendix 1) for p(rþ �, t)
and p(r, tþdt) gives

pðr; tþ dtÞ ¼ pðr; tÞ þ dt
qpðr; tÞ

qt
(6:53)

and

pðr þ �; tÞ ¼ pðr; tÞ þ � qpðr; tÞ
qr

þ 1

2
�2 q

2pðr; tÞ
qr2

(6:54)

We now replace the left-hand side of Eq. (6.52) with Eq. (6.53) and
use Eq. (6.54) for p(rþ �, t) on the right-hand side.
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pðr; tÞ þ dt
qpðr; tÞ

qt
¼
Z1
�1

pðr; tÞ þ � qpðr; tÞ
qr

þ 1

2
�2 q

2pðr; tÞ
qr2

� �
 ð�Þ d�

(6:55)

The first term of the integral on the right-hand side is simply p(r, t),
because the integral over all possible steps � must be one. It then
cancels with p(r, t) on the left-hand side. The second term is zero
because the probability of a plus step equals the probability of a
minus step. The last term does not reduce to a simple expression,
but Einstein assumed that this integral divided by dt has a definite
value, and equated it with the diffusion coefficient

1

dt

Z1
�1

1
2�

2 ð�Þ d� ¼ D (6:56)

Note the similarity with the expression from the random walk
model D ¼ �2/2� (from Eq. (6.45)). Equation (6.55) then becomes the
diffusion equation

qpðr; tÞ
qt

¼ D
q2pðr; tÞ

qr2
(6:57)

The last step of this derivation (Eq. (6.56)), in which it is assumed
that the mean square displacement divided by dt remains constant,
is equivalent to assuming that rms displacement increases with the
square root of time. Thus, the logic is circular because this step
actually assumes one of the pivotal results of diffusion theory.

Perhaps the most important assumption that goes into this
derivation of the diffusion equation is embodied by Eq. (6.52),
which expresses the independence of the two probabilities p and  .
That is why they can be multiplied together to obtain a joint
probability. No matter where in space the particle is, the probability
of making a jump � is given by  (�), a function that does not depend
on r. The jumping behavior is thus independent of past history. When
such an assumption can be made we say that we are dealing with a
Markov process. This is an important assumption that appears in
many mathematical treatments of dynamic processes, and it will be
seen again in Chapters 7 and 9.

6.7 Friction

Friction and diffusion are closely related. The molecular collisions
that generate Brownian motion will also retard sustained motion in
any direction. We will now examine this relation and see how to
express the diffusion constant in terms of the coefficient of friction.

Let’s take a molecule in solution under the influence of an
external force Fe. This could be a charged molecule in an electric
field, or we could consider a gravitational or centrifugal field. As a
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molecule is accelerated by the field its movement is opposed by
friction. This force, Ff, is taken as proportional to the molecule’s
velocity

Ff ¼ �fv (6:58)

where f denotes the coefficient of friction, and the minus sign
indicates that friction opposes the motion. As the molecule speeds
up, Ff increases until it equals Fe. At that point the net force, Ffþ Fe is
zero, and the balance between the Fe and Ff leads to a motion with a
constant velocity. So Fe � fv ¼ 0, and we have v ¼ Fe/ f. With this
average velocity, the flux of molecules will be J¼C(x)v ¼C(x)Fe/ f.

The external force creates a concentration gradient, which makes
molecules diffuse in the opposite direction. If an equilibrium is reached,
then C(x) will be stable, reflecting a balance between these two oppos-
ing forces. This balance is expressed by adding the flux produced by the
external force, C(x)Fe/ f, to the flux produced by diffusion down the
concentration gradient (Eq. (6.1)), and setting this sum equal to zero

CðxÞFe

f
� D

qCðxÞ
qx
¼ 0 (6:59)

The next step is to realize that in this equilibrium state where
the external force is balanced by diffusion, C(x) will obey the
Boltzmann distribution. For a constant force independent of posi-
tion, the potential energy is simply Fex. The Boltzmann distribution
for this potential energy function is then

CðxÞ ¼ Cð0Þ e�Fex=kT (6:60)

where C(0) is the concentration of some reference position.
Differentiating with respect to x and comparing with the original
expression leads to

CðxÞ Fe

kT
� qCðxÞ

qx
¼ 0 (6:61)

Finally, comparing Eqs. (6.59) and (6.61) leads to the relation

D ¼ kT

f
(6:62)

This equation was derived by Einstein, and bears his name. It
tells us how diffusion and friction are related. Friction slows diffu-
sion down, regardless of the shape of the molecule or the viscosity
of the fluid. Recall that the random walk model gave us an expres-
sion for D in terms of the size and duration of steps underlying the
random thermal motion of molecules. Equation (6.62) tells us that
these fluctuations that give rise to diffusion also give rise to friction.
Diffusion theory thus gives us a special physical picture of friction.
It is a consequence of the randomness of the motion of many
individual molecules colliding with an object and changing its
direction of motion. This will be explored further in Section 12.14.
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The summation of an external force with the force of friction
gives us a general way to study diffusion in a force field. We take
Eq. (6.59), but allow for an imbalance between Ff and Fe. The
observed flux is then the sum of these two terms

J ¼ CðxÞFe

f
� D

qCðxÞ
qx

(6:63)

And with the Einstein relation, we have

J ¼ D
C(x)Fe

kT
� qC(x)

qx

� �
(6:64)

This equation is an important starting point in the development of
theories for a variety of rate processes in later chapters. When the
external force is electrical, Eq. (6.64) is known as the Nernst–Planck
equation.

6.8 Stokes’ law

The preceding section provided a strong incentive for understand-
ing the friction on a small diffusing particle as it moves through a
fluid. If the frictional coefficient can be measured, or a theory used
to derive it, then Eq. (6.62) tells us that we will also know the
diffusion constant. So we will now briefly comment on the fric-
tional coefficient of a spherical particle.

The calculation of a frictional coefficient requires solving the
equations for viscous fluid flow, and this can be quite complex. In
the case of a spherical molecule, the fluid streams around as
depicted in Fig. 6.7. A complete description of the fluid flow can
be obtained, and from this the force exerted by the fluid on the
particle can be calculated (Berg, 1983). From the expression for
force, the coefficient of friction can be derived, and the result is
known as Stokes’ law

f ¼ 6p�r (6:65)

where r is the radius and � is the viscosity.
For irregularly shaped objects the calculation of f can be much

more complicated, so Eq. (6.65) is used a great deal to make rough
order of magnitude estimates of f in terms of molecular size. For
example, it is common to assume that a protein is a sphere with a

r

Fig: 6:7: A sphere moving

through a viscous fluid experiences

friction as the fluid moves around it.
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radius proportional to the cube root of the molecular weight, and
estimate f in this way. For a number of different geometries, math-
ematical analysis has demonstrated that f is proportional to, or
nearly proportional to, a linear dimension of the molecule. This
means that we can expect f to scale as the cube root of the molecular
weight for a series of molecules with the same overall shape. The
following section explores this relationship.

6.9 Diffusion constants of macromolecules

We can use Stokes’ law and the Einstein relation to make useful
estimates of the diffusion constants of proteins. Combining
Eqs. (6.62) and (6.65) gives an expression for the diffusion constant
in terms of the size of the molecule

D ¼ kT

6p�r
(6:66)

This expression is referred to as the Stokes–Einstein relation. If we
consider a globular protein as being approximately spherical, then
the weight of a single molecule will be (4/3)(pr3�), where � is the
density. The density of globular proteins does not vary much, and is
generally around 0.7 g ml�1. Equation (6.66) suggests that D will be
inversely proportional to the cube root of the molecular weight.

Diffusion coefficients of many proteins have been measured,
generally by setting up an interface like that in Figs. 6.2 and 6.3,
recording the change in concentration with time, and fitting to
Eq. (6.14) (Tanford, 1961). Some values are plotted versus molecular
weight in Fig. 6.8, and the trend is very clear. The points are close to
a line representing M�1/3, indicating the appropriate proportional-
ity. But in reality all the diffusion constants are slightly lower than
that expected from the Stokes–Einstein relation. There are two
reasons for this: (1) proteins are hydrated and this makes their
size a bit bigger than that expected from their molecular weight;
(2) globular proteins are usually not perfect spheres, and the irre-
gular shape increases the frictional coefficient, thus reducing D.

Frictional coefficients have been calculated for other geometries
such as ellipsoids. The results are fairly complex but a generaliza-
tion emerges that for a given volume, a spherical shape has the
lowest frictional coefficient. Deviations from spherical shape
always increase f and decrease D. This effect is clearly illustrated
by the triangles plotted in Fig. 6.8. These points are the diffusion
coefficients of fibrous proteins. Stokes’ law does not come close to
describing their coefficients of friction, so they fall well below the
values for globular proteins. Globular proteins with similar mole-
cular weights have much higher diffusion constants.

Randomly coiled molecules also behave differently from globu-
lar proteins. In Chapter 3 we saw that many macromolecules behave
like random coils, and have a mean-square end-to-end distance that
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scales as the number of segments. With
ffiffiffiffiffi
r2

p
/

ffiffiffiffi
N
p

the frictional
coefficient would then be proportional to M1/2 rather than M1/3.
Combining Eqs. (6.62) and (6.65) then gives D inversely proportional
to the square root of the molecular weight, and for random coils this
has been confirmed experimentally (Tanford, 1961; Cantor and
Schimmel, 1980). For charged molecules in an ionic solution the
surrounding ions move in the opposite direction, pulling the water
and slowing the motion of the charged molecule. This is studied in
Section 11.8.

6.10 Lateral diffusion in membranes

The emergence of the concept of membrane fluidity around 1970
sparked a great deal of interest in the two-dimensional diffusion of
molecular components in biological membranes. Both lipid and
protein molecules undergo random walks within the plane of a
lipid bilayer membrane. This was demonstrated by using fluores-
cent labels to track movement over the surface of a cell. When a
labeled cell fuses with an unlabeled cell, the fluorescence is initially
confined to one side, but within a few minutes the fluorescence
becomes uniform. When a laser photobleaches label in a small spot
of cell surface, fluorescence recovery at that site reveals the diffu-
sion of unbleached label into the bleached region. The technique of
fluorescence recovery after photobleaching, commonly known as
FRAP, was developed as a powerful quantitative tool in the study of
lateral diffusion in membranes (Jacobson et al., 1987). The technique
of fluorescence correlation spectroscopy (Section 12.13) has also
been widely used.

Two-dimensional diffusion coefficients of both lipids and pro-
teins are generally at least two orders of magnitude lower than
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Fig: 6:8: The diffusion constants

of a number of globular proteins are

plotted versus molecular weight. In

this log–log plot the slope is very

close to �1/3, as illustrated by the

line drawn through the filled circles

(/ M�1/3). The globular proteins

plotted here are (in order of

increasing size) ribonuclease,

lysozyme, chymotrypsinogen,

b-lactoglobulin, ovalbumin, serum

albumin, hemoglobin, catalase, and

urease. The triangles are for fibrous

proteins, tropomyosin, fibrinogen,

collagen, and myosin. (Data from

Table 21–1 of Tanford, 1961.)
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those of typical globular proteins discussed in the preceding sec-
tion. Relating the diffusion coefficient to the size of the molecule
and the viscosity of the lipid membrane is a harder problem in two
dimensions than in three. The basic result in three dimensions,
Stokes’ law (Eq. (6.65)), depends on the existence of a steady state
for the flow of the fluid around a sphere (Fig. 6.7). It turns out that in
two dimensions there is no steady-state solution to the relevant
equations for fluid flow, and that makes the mathematics much
more challenging. An analysis of this problem by three more sophis-
ticated alternative methods converged on the following expression
for the lateral diffusion constant for a cylinder of radius a embedded
in a membrane of thickness h (Saffman and Delbrück, 1975)

DL ¼
kT

4p�mh
ln
�mh

�wa
� 0:5772

� �
(6:67)

The membrane viscosity is �m and the viscosity of the surrounding
aqueous medium is �w. This result depends on the reasonable
assumption that the former is the larger of the two.

Equation (6.67), known as the Saffman–Delbrück equation, dif-
fers in some important ways from Stokes’ law. The logarithmic
dependence on inverse radius is much weaker than the dependence
on inverse radius in Stokes’ law. So molecules of very different sizes
have very similar lateral diffusion coefficients. In fact, proteins and
lipids with diameters differing by a factor of �10 have diffusion
coefficients that differ by less than a factor of 2 (Peters and Cherry,
1982). Equation (6.67) indicates that DL is also insensitive to the
viscosity of the aqueous phase. Experiments in which �w was varied
over a 12-fold range changed DL by only 50%. By contrast, increasing
the membrane viscosity, for example by reducing the temperature
below the gel-point at which the lipids become ordered, reduced DL

of both proteins and lipids by more than an order of magnitude.
The value of DL for proteins in cell membranes is usually much

lower than in artificial lipid bilayers (Jacobson et al., 1987). One reason
is that membrane proteins are often attached to cytoplasmic struc-
tures and cytoskeletal elements. Another important effect is molecular
crowding. Cell membranes often have proteins occupying more than
half of their surface area. Membrane proteins tend to get in each
other’s way, obstructing their random walks and reducing DL.

It is often vital to the function of a receptor, channel, or transporter
to be localized to a specific region of a cell surface. FRAP often reveals
fractions of protein with different mobilities, indicating that some are
anchored in some way and others are relatively free to diffuse. Recent
studies in which single molecules were tracked as they moved in the
cell membrane revealed surprising new forms of motion, indicating a
high degree of organization in the way membranes direct protein traffic
(Saxton and Jacobson, 1997). For membrane proteins, the freedom to
wander makes it possible for them to form complexes, signal one
another, regulate their function, and turn over through endocytosis.
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Problems for Chapter 6

1. Verify that Eq. (6.11) satisfies conservation of mass.
2. Show by direct substitution into Eq. (6.4) that Eq. (6.14) is a solu-

tion to the diffusion equation.
3. Use Eq. (6.11) to derive the rms radial displacement from a point

source in three dimensions, i.e. determine
ffiffiffiffiffi
r2

p
as a function of t.

4. For one-dimensional diffusion from a point source (Eq. (6.8)) deter-
mine where c is increasing, where it is decreasing, and where it is
momentarily constant.

5. Solve the problem in Section 6.2.4, but with sealed ends (reflecting
boundary conditions) and an initial condition of C(x, 0)¼ �(x).

6. Solve the problem of diffusion in one dimension in a semi-infinite
pipe with (a) a sealed end and (b) an open end at x¼�1, and with
an initial condition C(x, 0)¼ �(x). (Hint: place another Gaussian at
the image position, x¼�2 to satisfy the boundary condition at
x¼�1.)

7. Write the Gaussian function plotted in Fig. 6.6.
8. During synaptic transmission, the transmitter released from a

single vesicle (50 000 molecules) starts off at a highly concentrated
point that can be approximated as a delta function. Diffusion then
proceeds in two dimensions through the synaptic cleft (thickness
50 nm). Calculate the mean concentration as a function of time
within a 2 mm disc centered at the release site (Khanin et al., 1994).

166 DIFFUSION AND BROWNIAN MOTION



Chapter 7

Fundamental rate processes

This chapter will continue the treatment of dynamic processes started
in Chapter 6. In that chapter the dynamic process of diffusion was
treated as transitions within a continuum of states. Here we will take
the opposite extreme. We will look at interconversions between just
two states, and model these interconversions as a one-step process.
The same model was used for the global transitions of Chapter 1.

The kinetics of interconversion when a molecule simply flips
back and forth between two states is mathematically straight-
forward. The two-state model thus serves as an elementary building
block for more complicated multi-state kinetic models (Chapter 9).
Multi-state models represent a middle ground between two-state
models and continuum models.

In Chapter 1 it was emphasized that two-state models are widely
used in molecular biology. There, the point was to use thermo-
dynamics to understand how experimental conditions influence the
equilibrium between these two states. Now we want to understand
how quickly such a system reaches that equilibrium. This chapter will
start off with a phenomenological treatment of two-state transitions,
and then explore some of the fundamental theories that give the
transition rate physical meaning.

7.1 Exponential relaxations

When we first analyzed the energetics of the global transition we
simply assigned a free energy change to the process. Now we will
assign rate constants to the forward and reverse transitions so that
we can study the kinetics

A
� ��!
�

B (7A)

The rate constants in Scheme (7A), � and �, have units of s�1. If the
system is not at equilibrium, then the concentrations of A and B will
change. Transitions from A to B will decrease the concentration
of A, and the reverse transitions from B to A will increase the



concentration of A. The rate of each process is equal to the rate
constant times the concentration of the relevant species. This rea-
soning leads directly to a pair of differential equations, where the
rates of change of A and B reflect the net effect of the forward and
reverse transitions.

d½A�
dt
¼ ��½A� þ �½B� (7:1a)

d½B�
dt
¼ �½A� � �½B� (7:1b)

The two coupled differential equations in the two variables [A]
and [B] will be reduced to one differential equation in one variable
in order to find a solution. Since the total protein, T ¼ [A]þ [B], must
be constant, we can eliminate [B] by replacing it with T � [A].
Equation (7.1a) then becomes a differential equation in one vari-
able, [A]

d½A�
dt
¼ � T� ð�þ �Þ½A� (7:2)

To simplify further we divide through by T and let x be [A]/T, the
fraction of protein in the form of A. This gives

dx

dt
¼ � � ð�þ �Þx (7:3)

The general solution has an exponential with a decay constant equal
to �þ�. The specific solution is determined for the initial condition
that at t ¼0, x equals its initial value, x0

x ¼ x0 �
�

�þ �

� �
e�ð�þ�Þt þ �

�þ � (7:4)

Note that x goes to �=ð�þ �Þ after a long time. This is the fraction of
protein present in the form of A when an equilibrium has been
attained. Thus, any initial value of x different from the equilibrium
value relaxes to the equilibrium value exponentially with a decay
constant of �þ�. It is common to discuss the progress of this kind
of process in terms of its time constant � ¼ 1=ð�þ �Þ:Note that � is the
time it takes for x to close the gap with equilibrium by a factor of e.

Many kinetic theories lead to mathematical expressions that are
exponentials or sums of exponentials. If a protein undergoes a
thermal or voltage-induced transition, then � and � depend on
temperature or voltage, and a sudden change of the appropriate
variable will change the rate constants to new values. This will
make the protein relax with a characteristic rate to the new equili-
brium. The behavior is illustrated in Fig. 7.1

In Fig. 7.1 we see how the system goes to equilibrium from
the two starting points in the same amount of time. If we start out
with x5�=ð�þ �Þ then x will increase, and if we start out with
x > �=ð�þ �Þ then x will decrease. Either way the difference between
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x and �=ð�þ �Þ decreases e-fold as time increases by an increment of
� ¼ 1=ð�þ �Þ: Note that the velocity, dx=dt, is not very informative.
The initial slope of x can be either positive or negative, and vary in
steepness, depending on whether x starts out near to or far from
�=ð�þ �Þ. Note that � and � are the fundamental quantities, and to
learn something about them one needs the time constant.

7.2 Activation energies

In the two-state model, there is a tacit assumption that the actual
transitions are instantaneous. An insignificant amount of time is
spent in transit, and the intermediate states have no bearing on the
thermodynamic properties of the system. However, there must be a
reaction pathway. Actually, there could be many but we will assume
that only one carries the bulk of the traffic. As the molecule tra-
verses this pathway its structure is neither A nor B. Because the
molecule spends very little time on this pathway, the intermediate
state must have a very high energy. This leads to the picture of an
energy barrier of height Ey separating A from B. This transition state is
the position along the reaction pathway with the highest energy.
This is one of the most basic ideas in relating the rate constants
� and � to the structure and energetics of a molecule as it undergoes
a reaction. The rate of going over this barrier is then related to the
probability of a molecule having that high energy, and this can be
estimated from the Boltzmann distribution

� ¼ Ce�Ey=RT (7:5)

This is the Arrhenius equation. It states that, everything else
being equal, the rate will be slower if the energy of the barrier is
higher. It also states that rates increase with temperature. The
variable C is called the preexponential factor, and it can vary drast-
ically depending on the nature of the reaction. More will be said
about preexponential factors later. To estimate Ey from kinetic data
one plots the log of the rate versus 1/T in what is commonly referred

x0 =  0.9

x
xfinal =  β /(α + β )

x0 =  0.1

τ = 1 /(α + β )
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Fig: 7:1: Exponential relaxation

for a two-state process. Equation 7.4

is plotted for two different starting

values of x0, the system relaxes to

equilibrium with the same time

constant in each case. In this

example, � ¼ 2 and xfinal¼ 0.4.
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to as an Arrhenius plot. Arrhenius plots are often linear, and this
supports the basic notion of barrier crossing as a good picture of a
kinetic process. Barrier heights, Ey, are generally referred to as
activation energies. For protein conformational changes and enzy-
matic processes they are often in the range 10–20 kcal mole�1.

There are a number of ways to think about C, the preexponential
factor. If one imagines an activation free energy, Gy, it would reflect
both the potential energy of the barrier and the density of states in
the vicinity of the barrier peak. With Gy ¼Hy � TSy we then get

� ¼ C0e�Gy=RT ¼ C0e�Sy=Re�Hy=RT (7:6)

where the preexponential factor C of Eq. (7.5) becomes C0eSy=R. This
evokes a geometric picture of the transition state not just as a
barrier but also as a saddle point, or as a low pass through a high
mountain range. The molecule moves through the pass, and the
activation entropy, Sy, can be thought of as related to the width of
the pass. Note that e�Sy=R does not depend on temperature. This
makes it hard to distinguish from the preexponential factor.

The temperature dependence of a rate is often characterized by
the Q10, which is the factor by which the rate changes for a 10 degree
change in temperature. Starting with Eq. (7.5), the Q 10 can be related
to the activation energy by the following approximate expression

Ey ¼ RT2lnðQ 10Þ
10

(7:7)

At typical physiological temperatures, a Q 10 of 2 gives Ey ¼�12 kcal
mole�1.

The energy barrier is one of the most important concepts in
kinetics. The structure of the transition state provides a visual
picture of how a molecule gets from one state to another. As import-
ant as this transition state is for the study of rate processes, we often
know very little about it. We can almost never isolate it or purify it
to study it closely. In the vast majority of studies, the energy is all we
know about the transition state. But the transition state energy is
estimated from rate data, so it is easy to fall into a trap of circular
reasoning.

7.3 The reaction coordinate and detailed balance

The activation energy is taken as the height of a barrier in the plot
of energy versus position along the reaction coordinate (Fig. 7.2).
A diagram like this helps visualize an important relation between
the relevant energies. For a molecule to cross from the left it needs
an energy of E�y, giving a rate constant

� ¼ Ce�E�y=RT (7:8)
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And crossing from the right gives

� ¼ Ce�E�y=RT (7:9)

At equilibrium the rate of conversion from A to B is balanced exactly
by the reverse conversion from B to A. With zero time derivatives,
either Eq. (7.1a) or (7.1b) then gives the following expression

�½A� ¼ �½B� (7:10)

So we can express the equilibrium constant in terms of the rate
constants

½B�
½A� ¼

�

�
(7:11)

This is an example of a very general relationship between kinetic
and equilibrium theories. Any kinetic description of a system
should also describe the equilibrium if you let the relevant time
derivatives go to zero. From a practical perspective, this is a good
way to check a kinetic theory. This kinetic constraint on the equili-
brium leads to the condition of detailed balance (see Section 5.4).

With the condition of detailed balance the expressions for the
rate constants, Eqs. (7.8) and (7.9), lead to the following

½A�
½B� ¼ eð�E�yþE�yÞ=RT ¼ e��G=RT (7:12)

wherethepreexponentialfactorcancelledoutoftheratio.Equation(7.12)
is the equilibrium constant expressed in terms of the free energy
difference between the two states. Thus, the energies are related,1 as
follows

E�
y � E�y ¼ �G (7:13)

This relation can be readily visualized by examining Fig. 7.2. This
demonstrates a basic relation between kinetics and energetics.

T ransiti
on state

E 

βE 

α

A

B

∆G

Fig: 7:2: The change in energy

along the reaction coordinate. The

wells at A and B are for the two

reactants, and the peak occurs

in the transition state.

1 The mixing of free energy and energy detracts from the rigor of this expression.

Nevertheless a useful point is made about the relation between the various energy

terms and the condition of detailed balance.
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When both forward and reverse rates can be studied well enough to
get these energies, one can construct a rough picture of the reaction
coordinate.

Figure 7.2 depicts the reaction coordinate for an isomerization.
For an association, the reaction coordinate might look like Fig. 7.3a,
reflecting the relative position of two molecules. When they collide
with enough energy to cross the barrier, they subsequently find
themselves in a restricted bound state represented by the potential
energy well on the right. Another variation on the barrier-crossing
idea is a molecule passing through a membrane. To get from one
side to the other it must surmount an energy barrier. But it is free to
move on either side of the barrier, and this is depicted by flat
regions in the potential energy function (Fig. 7.3b).

If we tried to use Eqs. (7.8) and (7.9) for the situations in Fig. 7.3
we would run into trouble with the preexponential factor, C. This is
because C has to take into account the frequency with which the
barrier is encountered. Clearly, two associating molecules will
encounter the barrier with a frequency proportional to the fre-
quency of intermolecular collisions. Two bound molecules will
spend their time in the energy well, and thus encounter the barrier
much more often as the binary complex vibrates within these con-
fines. In this case, a detailed balance relation like Eq. (7.13) can still
be found relating the forward and reverse rates to the equilibrium
constant. But since the equilibrium constant for an association
includes translational and rotational entropies (Chapter 4) a rela-
tion between the energies of free and bound states must include
these factors. On the other hand, for passage through a membrane
the frequency of encounters is proportional to the concentrations
on either side (Fig. 7.3b).

7.4 Linear free energy relations

When molecular structure is altered, the typical result is that both
the equilibrium constant and the rate constants change. Often these
changes are well correlated, and this is the basis for linear free
energy relations. The concept was developed as an approach to
the study of reaction mechanisms in organic chemistry, and has
found a number of applications in biophysics.

The reaction coordinate can be used to visualize how something
influences the change in free energy of a process together with the
rate constants. We might imagine that a structural change stabilizes
state B relative to state A. Looking at Fig. 7.2, the right side of the
reaction coordinate, corresponding to state B, will then be lowered.
Now if the effect of this perturbation varies linearly with the reac-
tion coordinate, then the energy profile along the barrier between
the two states will be altered accordingly, and we can obtain the
new reaction coordinate from the old one by subtracting a line.

(b)

(a)

Fig: 7:3: Variations on Fig. 7.2

show a reaction coordinate for an

association process (a) and for

passage across a membrane (b).
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Figure 7.4 shows a linear addition to the energy function. If we
equate the energy difference between the two minima at A and B
with the free energy change, �G, then the changes in �G and Eywill
be proportional.

If the position of the peak does not change, then there will be a
linear relation between the activation energy and the free energy
change of the transition

Ey ¼ Ey0 � ��G (7:14)

Equation (7.14) takes into account the possibility that the top of the
barrier is some arbitrary fraction of the way between the two sides
of the barrier. This fraction is denoted by �, which varies between
zero and one. For the drawing in Fig. 7.4 the top of the barrier is
right in the middle, so � ¼1/2.

Different barrier positions are shown in Fig. 7.5. If the top of the
barrier is close to A, then � will be small and the barrier for crossing
from A to B will be only weakly sensitive to the free energy change.
On the other hand, if the top of the barrier is closer to B, � will be
large and the barrier for crossing will be more sensitive to �G.

Linear free energy relations can be applied to studies of a series
of mutations, where one can measure both the equilibrium con-
stant and rate constant for the same process. In order to make use of
these kinds of measurements it is convenient to convert Eq. (7.14)
into an expression in terms of these quantities. Combining Eq. (7.14)

B

∆G

A

∆G1
2

∆E  =     ∆G1
2

Fig: 7:4: An energy barrier is

modified by the addition of a

descending linear function. Since

the top of the barrier is at the

midpoint between the two sides,

the change in Ey is half the change

in �G.
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peak in energy occurs.
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with Eq. (7.5), replacing �G by RT ln K, and taking the natural
logarithm leads to

ln� ¼ ln C� Ey0=RT þ � ln K (7:15)

Equation (7.15) expresses the linear dependence of the log-
arithm of the rate constant on the logarithm of the equilibrium
constant. This relation has been applied to a wide range of kinetic
phenomena. Equation (7.15) is especially well known in the context
of chemical catalysis by acids and bases, where it is known as the
Brønsted equation. In enzyme catalysis the Brønsted equation has
been used to investigate how catalytic side chains in enzymes react
with substrates (Sections 10.12 and 10.13).

Hemoglobin provides an excellent example of the analysis of a
linear free energy relation (Eaton et al., 1991). This allosteric protein
undergoes a transition between the T state, with a low affinity for
oxygen, and the R state, with a high affinity for oxygen (Section 5.8).
This transition can be studied under a variety of conditions including
variations in number of binding sites occupied, variations in choice of
ligand (O2, CO, N3

�), and pH. For each condition both the equilibrium
constant between the two allosteric states and the rate of the transi-
tion can be measured. A plot of ln � versus ln K shows that they follow
a linear free energy relation fairly closely (Fig. 7.6). From the fit to
Eq. (7.15) we obtain �¼0.17. This is interpreted as meaning that the
peak of the energy barrier is closer to the R state. It therefore resembles
the left-most plot in Fig. 7.5. Taking the reasoning one step further,
we might suspect that the structure of hemoglobin near the top of the
barrier is closer to that of the R state than the T state.

Linear free energy plots are particularly attractive given the ease of
using mutagenesis to produce large numbers of molecular variants for
kinetic analysis. However, a word of caution is in order. Very little is
known about actual reaction coordinates and the shape of the poten-
tial energy function. Indeed, one should question whether a single
reaction coordinate exists in a large molecule with a very large number
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Fig: 7:6: Linear free energy plot

for the allosteric transition of

hemoglobin. Each point
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condition under which both K and

� were measured (see Fig. 3

from Eaton et al., 1991).
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of internal degrees of freedom (see Section 7.10). Furthermore, the
notion that a structural change produces a linear perturbation of a
reaction coordinate is quite naı̈ve. Figure 7.7 is a variation on Fig. 7.4 in
which the perturbations are not linear. This could result from a modi-
fication that relieves some steric repulsion in B. Since steric repulsions
are short range (Section 2.11), this perturbation will not reach very far.
The energy at the top of the barrier will not change very much. The
value of � will therefore be small (0.2 in Fig. 7.7). We would then
conclude erroneously that the top of the barrier is closer to A. Our
present state of understanding of the structure and energetics of
molecules along transition pathways is inadequate for dealing with
these sorts of questions.

7.5 Voltage-dependent rate constants

The linear free energy concept can be applied to the kinetics of a
voltage-induced transition in a membrane protein (Section 1.8).
Recall that the quintessential process is the transition of an
ion channel between the open and closed states, as shown in
Scheme (7B)

C
� ��!
�

O (7B)

If the voltage drop across the membrane is linear, and if it is added
to the energy barrier separating the two states, we can draw a
diagram that looks like Fig. 7.8.

The fraction of voltage drop between the two minima is d, so the
voltage dependent part of the energy difference is dV. If the barrier
is exactly half way between the two states (i.e. � ¼1/2), then the
barriers change by adding or subtracting half this energy difference.
This specifies the two rate constants

� ¼ Ce�ðE
y� 1

2 �VÞ=RT (7:16a)

� ¼ Ce�ðE
yþ 1

2 �VÞ=RT (7:16b)

∆E   =  0.2 ∆G

0.2 ∆G ∆G

A B

Fig: 7:7: Nonlinear perturbations

will produce alterations in �G and

Ey such that � does not reflect the

position of the barrier.
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Earlier in this chapter it was shown that a two-state model shows
exponential kinetics with a time constant � ¼1/(�þ�). Substituting
the above expressions for � and � gives the time constant for the
voltage-induced transition

� ¼ eEy

Cðe�V=2RT þ e��V=2RTÞ

¼ eEy

2C
sech

�V

2RT

� �
(7:17)

where sech(x) ¼ 1/cosh(x) (see Appendix 5).
This function peaks at V¼ 0 (Fig. 7.9). In the thermodynamic ana-

lysis of this model (Section 1.8), the voltage midpoint of the transition
reflected the intrinsic energy difference between the two states. The
steepness reflected the amount of gating charge. When these para-
meters are incorporated into the kinetic analysis there are parallel
effects on � . The maximum in � occurs at the voltage of the midpoint of
the transition, and the peak is sharper if the transition is steeper.

When the time constants for voltage-induced transitions are
measured experimentally, they often vary in this way. This behavior
has been found in classical studies of the ion channels of neurons
(Fig. 16.6b) as well as channels in artificial membranes (Ehrenstein
et al., 1974). Similar behavior has been seen for the flipping motions
of hydrophobic ions within lipid membranes (Oberhauser and
Fernandez, 1995).

E

∆E =  δV

δ

E  – – δ V1
2 E  + – δ V1

2

V ( x )

Fig: 7:8: Voltage influences the

energy difference between two

states of a membrane protein. The

barriers for the transition in each

direction are changed in proportion

with the change in the energy

difference (see Fig 1.4), and �

represents the fraction of the

voltage drop between the two

minima.
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7.6 The Marcus free energy relation

How a reaction rate varies with its driving force depends on the detailed
shape of the reaction coordinate. The models above produce linear
relationships, but there is an important theory that yields a quadratic
relationship. This theory was initially developed to investigate reac-
tions involving electron transfer (Marcus, 1964), and subsequently in a
modified form for proton transfer (Marcus, 1968). Marcus’ theory has
been successfully applied to a wide range of processes involving
charge transfer, and will be applied later in this book to understand
the activity of the enzyme carbonic anhydrase (see Section 10.15).

The potential energy function is represented in Fig. 7.10. There
are two parabolic potential energy minima, one at x ¼ �1 for
the reactant and one at x ¼ 1 for the product. The cusp at the
intersection of the two parabolas is the transition state, and as
the reaction coordinate passes through this point the potential
energy function abruptly switches from one parabola to the other.
It is reasonable to use a parabolic function in the vicinity of a
potential energy minimum (Section 2.12). However, the original
use of the quadratic function in Marcus’ theory was actually based
on Coulombic interactions, which vary as the square of the charge.
Self-energy terms for charging a sphere in a dielectric medium were
also included (see Section 2.2 and Eq. (2.4)). We then obtain a quadratic
expression for the energy by taking the reaction coordinate as the
amount of charge transferred, or the amount of solvent polarization
that has to occur in order to equalize the electrostatic energy of
charge jumping from one center to another.

The quadratic dependence of potential energy in each of the two
wells is written for the displacement from each minimum

G�1 ¼ G yo ðxþ 1Þ2 (7:18a)

G1 ¼ G yo ðx� 1Þ2 þ�Go (7:18b)

0.8

0.6

0.4τ

0.2

0.0
– 4 – 2 0

Voltage

2 4

Fig: 7:9 : Plot of Eq. (7.17) with

�/(2RT)¼ 1.
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The letter G is used to denote the energy, and it is taken as a free
energy of the same form as the driving force of the reaction, �Go.
The force constants in Eqs. (7.18a) and (7.18b) are taken as Go

y to
produce the very convenient result that when the two potential
energy minima are the same (�Go ¼ 0), the energy at the inter-
section is the activation energy Go

y. When �Go is not zero, the position
of the intersection can be found by setting the two functions
(Eqs. (7.18a) and (7.18b)) equal to one another.

G yo ðxþ 1Þ2 ¼ G yo ðx� 1Þ2 þ�Go (7:19)

Solving for x gives the position of the transition state.

xy ¼ �Go

4G yo
(7:20)

The energy of the transition state is then determined by evaluating
G�1(xy) or G1(xy)

Gy ¼ G yo 1þ�Go

4G yo

 !2

(7:21)

Thus, we have a quadratic dependence of energy barrier height on
driving force.

The situation depicted in Fig. 7.10 lacks an important feature
needed for a quantitative description of charge transfer experi-
ments. An additional term must be added to account for the work
done to bring the two reacting groups into the correct position and
orientation. These work terms, denoted as wr for the reactants and
wp for the products, are independent of the driving force. The
complete free energy relation is thus obtained by adding wr to
Eq. (7.21).

–1 1 x

G o

G

∆G 

o

Fig: 7:10: Parabolas at x¼�1

define the potential energy as a

function of reaction coordinate for

the reactant and product. The

intersection defines the transition

state with an energy Gy. Raising

the energy on the product side

changes the driving force and

alters the position and energy

of the transition state.
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7.7 Eyring theory

Now we will look at the barrier crossing problem in more depth.
Statistical mechanics lets us develop this idea into a quantitative
expression for the transition rate. The result is the absolute reaction
rate theory of Eyring. It is typically derived for the case of two
reacting molecules that collide, but the derivation given here will
be for the two-state model. We start by looking at a reaction coordi-
nate diagram such as Fig. 7.2 and asking what is the probability of a
molecule being at the top of the barrier, relative to the probability of
being somewhere in the well on the left side. Denoting the reaction
coordinate with the variable �, then the probability of being within
an element d� is given by the Boltzmann distribution

pð�Þd� ¼ e�Uð�Þ=kTd�=� (7:22)

where U(�) is the potential energy plotted in Fig. 7.2, and

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2=ð2pmkTÞ

q
is the thermal De Broglie wavelength introduced

in Section 4.6 to deal with the statistical mechanics of translational
freedom. Recall that it is the length of one edge of a cubicle of space
defined by quantum mechanics. Thus, the form of the Boltzmann
distribution in Eq. (7.22) normalizes the length element d� to this
basic quantum of length. It is necessary to do it this way to obtain an
absolute probability relative to the probability of being in the
potential energy well on the left side.

Now consider a position just to the left of the top of the barrier,
so close that the potential energy is almost flat. We define an
element of length, d�, such that molecules in this element moving
to the right with velocity v will cross the actual midpoint of the
barrier in a time interval dt. These molecules will then undergo the
reaction. For the velocity we take the rms velocity

ffiffiffiffiffi
v2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkT=mÞ

p
.

The length element containing these molecules destined to cross
the barrier is then the distance traveled in dt, or vdt

d� ¼ dt

ffiffiffiffiffi
kT

m

r
(7:23)

Substitution into Eq. (7.22) then gives half the number of molecules
that undergo the transition in a time dt (the other half are going the
wrong way). We call this number dN

dN ¼ dt

2�

ffiffiffiffiffi
kT

m

r
e�Ey=kT (7:24)

Substitution of the explicit form of � given above simplifies the
result to give

dN ¼ dt

ffiffiffiffiffiffiffiffi
p=2

p
kT

h
e�Ey=kT (7:25)
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Since the rate constant is the number of molecules per unit time
that cross the barrier, we obtain the reaction rate

� ¼ � kT

h
e�Ey=kT (7:26)

The factor � replaces
ffiffiffiffiffiffiffiffi
p=2

p
. It is a general fudge factor called the

transmission coefficient that takes into account a number of poorly
understood aspects of the process. A more rigorous derivation,
which uses the distribution of velocities rather than the rms used
here can be performed, but it still does not give an exact value for �
(see Hill, 1960, Chapter 11).

Equation (7.26) is an important result in the theory of reaction
kinetics. It has been extensively tested in reactions in the gas phase,
giving excellent agreement with experiment (see Moore, 1972,
Chapter 9). However, it is much more difficult to apply this theory
to rate processes in liquids. The key is whether the motion along the
� coordinate changes direction rapidly near the top of the barrier.
For gas phase reactions, motion in � does not reverse very often.
In liquids collisions and thermal agitation reverse the direction
frequently. The velocity, here taken as

ffiffiffiffiffi
v2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkTÞ=m

p
, will there-

fore not be useful in predicting how many molecules cross the
barrier. Recall from Section 6.4 that an analysis of the random
walk indicated that on average a molecule will change directions
after moving only 0.1 ¯. This randomness in the motion along the
reaction coordinate must be taken into account. One way to do this
is to develop a theory in which the reaction coordinate is coupled to
an infinite number of other coordinates representing the positions
of the surrounding solvent molecules. This approach converges
with the result of a simpler theory based on diffusion (Hänggi
et al., 1990).

The diffusion theory of chemical reactions will be developed in
the next section. But before leaving the subject of Eyring theory, it is
important to emphasize that the preexponential factor of Eq. (7.26),
ð� kTÞ=h, is of no value whatsoever in dealing with reactions in the
liquid milieu commonly encountered in biology. This must be sta-
ted emphatically because the literature contains a large number of
inappropriate uses of Eyring theory.

7.8 Diffusion over a barrier – Kramers’ theory

The mathematics of diffusion provides a very powerful approach to
kinetic processes involving a jump over a barrier (Kramers, 1940;
Hänggi et al., 1990). Recall from Chapter 6 how an external force F
produces a flux of FC(�)/f, where f is the coefficient of friction.
Here we will take F as the force from the steepness of the function
drawn in Fig. 7.2. This can be replaced by minus the derivative of
the potential energy, �dUð�Þ=d�. A concentration gradient also
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produces a flux, and it is equal to �DðdCð�Þ=d�Þ, where D is the
diffusion constant. The concentration gradient in this case is actu-
ally the gradient in probability of a molecule being at a particular
position along the reaction coordinate. For this reason we should
switch variables from C(�) to P(�). We can now use Eq. (6.64) to
express the flux of probability

J ¼ D � P

kT

dU

d�
� dP

d�

� �
(7:27)

This equation describes how P(�) flows under the influence of the
potential energy function as well as the random collisions with solvent
molecules and other parts of the reacting molecule. The two deriva-
tives can be combined into a single derivative of a product

J ¼ �De�U=kT d

d�
ðPeU=kTÞ (7:28)

This can be verified by using the product rule to differentiate PeU/kT.
We now assume that there is a steady flux across the barrier
(a steady state). In this steady state J is constant along the entire
energy barrier, and is thus independent of �; and P will not change
with time because flux into any point is balanced by flux out.

We will now derive an expression for J subject to the assumption
of a steady state. First, we multiply Eq. (7.28) through by eU/kT and
integrate from one side of the barrier to the other. Since J is constant
it can be factored out of the integral on the left

J

Zb

a

eU=kTd� ¼ DðPðaÞeUa=kT � PðbÞeUb=kTÞ (7:29)

With reference to Fig. 7.2, � ¼ a is the midpoint of the well centered
at A and � ¼ b is the midpoint of the well centered at B. At t ¼ 0 none
of the molecules has made the transition, so all of the molecules are
on the left somewhere in the well at A. This means that P(b) ¼0. If we
set our zero energy point at � ¼ a, Eq. (7.29) simplifies to the follow-
ing expression for the flux across the barrier

J ¼ DPðaÞRb
a

eU=kTd�

(7:30)

If we had a mathematical function for the barrier we could inte-
grate it to get a complete solution. We will use a reasonable mathe-
matical representation of the reaction coordinate at the top of the
barrier, Uð�Þ ¼ Ey � �yð� � �yÞ2; where Ey is the height of the barrier
and ��yð� � �yÞ2 makes the function fall off quadratically on either
side. Factoring out e�Ey=kT, leaves the integral of a Gaussian function,

which can be integrated to give
R1
�1 e��

yð���yÞ2=kTd� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkT=�y

p
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(Eq. (A4.4), the limits of �1 do not matter because the function is
very small away from the peak). The steady-state flux is now

J ¼ DPðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkT=�y

p e�Ey=kT (7:31)

The final task is to evaluate P(a). This is the probability of
being at the very center of the potential energy well on the left
side of the barrier. At the start of the reaction the probability
equals one that the molecule is somewhere in the well on the left
side of the barrier. We assume that the molecules are distributed
within the well according to the Boltzmann distribution. This is
not exactly correct because there is a steady flux to the right, but
transitions across the barrier are infrequent, so the Boltzmann
distribution is a reasonable approximation. We take the potential
energy as an upward facing quadratic function centered at � ¼ a,
U(�) ¼�a(� � a)2. So in this region P(�) ¼ e��a(�–a)2/kT; P(a) is then

1=
R1
�1 e��að��aÞ2=kTd� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkT=�a

p
. This can be substituted into

Eq. (7.31) to give the rate constant predicted for diffusion over a
barrier

� ¼ D
ffiffiffiffiffiffiffiffiffiffi
�a�y

p
pkT

e�Ey=kT (7:32)

The comparison with the expression from Eyring theory
(Eq. (7.26)) makes some important points. We still have the expo-
nential dependence on barrier height, so the basic idea of the
Boltzmann probability of being at the top of an energy barrier is
preserved. However, the preexponential term is very different. The
dependence of � on D in Eq. (7.32) provides the intuitively reason-
able result that the ease of diffusion along the reaction coordinate
will make a difference. In fact, if we replaced D with kT/(6p�r)
(Eq. (6.66)), we find that � is inversely proportional to the viscosity.
Thus, the friction experienced by the molecule for motion along the
reaction coordinate has a direct effect on the reaction rate. The
dependence on �y and �a are also of interest. These parameters
reflect the inverse width of the barrier and of the left potential
energy well, respectively. So making the barrier narrower increases
the rate, as does making the potential energy well narrower.

Equation (7.32) gives the rate of barrier crossing activated by
thermal motions. This is the definitive theory for elementary rate
processes in liquids where random molecular motions cause
changes in the direction of motion on a rapid time scale. From a
more general physical perspective, this situation is referred to as
the high-viscosity or over-damped limit. In the low-viscosity limit
the situation is very different. A molecule oscillates back and forth
within a potential energy well many times without crossing the
barrier. Collisions with other molecules increase or decrease the
energy of the oscillation, and by this random process a molecule
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rises to an energy level where barrier crossing is possible. Thus, in
this case more collisions make the reaction faster. In the high-viscosity
case collisions increase the coefficient of friction and reduce the
coefficient of diffusion. Thus, collisions slow the reaction down.
A good understanding of the relation between the rate of a reaction
and thermal fluctuations depends on a grasp of these concepts, which
are accessible in the original paper of Kramers (1940), and thoroughly
expounded on by Hänggi et al. (1990).

7.9 Single-channel kinetics

When the current through a small patch of membrane is measured,
the opening and closing of single channels is readily visible as
upward and downward steps (Fig. 7.11). These steps represent con-
formational transitions of the channel protein between its open and
closed states. Such transitions occur haphazardly in time because of
the inherent randomness of molecular motion. To apply kinetics to
these single-molecule transitions requires a stochastic version of
kinetic theory.

This analysis resembles the analysis of the two-state model pre-
sented above, but with some interesting twists. The different form
of single-channel data forces us to ask fundamentally different
questions. In a single-channel experiment one must think in
terms of probabilities, rather than concentrations. What is the
probability that a channel will remain open or closed for a certain
time? or remain open or closed longer than a certain time? We
define the probability density function, p(t), which gives the prob-
ability as p(t)dt that an event has a duration in the interval [t, tþdt].
The distribution function, P(t), gives the probability that the event
will have a duration longer than t.2 The two are related as follows

Z1
t

pðsÞds ¼ PðtÞ (7:33)

Once again we start with the basic two-state model

C
��! �
�

O (7C)

2 The use of this form for the distribution is especially convenient for single-channel

kinetics. In other applications this quantity is often referred to as a ‘‘survivor’’

function, and the term distribution is used to denote one minus the quantity in

Eq. (7.33), or the integral of p(s) from 0 to t.

1 pA
1 s

Fig: 7:11: Single-channel

currents of a GABA-activated Cl�

channel in an outside-out patch held

at a voltage of –80 mV (from Zhang

and Jackson, 1995).
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In Scheme (7C), C represents the closed state and O represents the
open state. We will now derive an equation for Po(t), the open time
distribution, by asking what is the relationship between Po(t) and
Po(tþdt). Obviously, if a channel stays open until tþdt, it must also
have stayed open until t. A closure can occur in the time between
t and tþdt, so Po(tþdt) should be smaller than Po(t). The probability
of closing in this interval is �dt. The only other possibility is not
closing, so the probability is 1 � �dt that the channel will not close
in the interval [t, tþdt]. The probability of an opening lasting until
tþdt is then taken as the product of the probability of it lasting until
t, times the probability of it not closing in the ensuing short interval

Poðtþ dtÞ ¼ ð1� �dtÞPoðtÞ (7:34)

Before continuing a few key assumptions must be noted. First of
all, the interval dt must be small enough so that the probability of
more transitions during dt is negligibly small. Second, this deriva-
tion depends on the assumption that this is a Markov process
(Section 6.6). It does not matter how long the channel has been
open, the probability that a closing transition will take place
depends only on the intrinsic rate, �, and the duration of the
small interval, dt.

A simple rearrangement of Eq. (7.34) leads to a first order differ-
ential equation

dPo

dt
¼ ��Po (7:35)

The solution is an exponential plus a constant, but the constant
is found to be zero by imposing the starting condition P(0) ¼1.
So we have

PoðtÞ ¼ e��t (7:36)

where Po(t) starts off at one when t ¼0, and decays to zero after a
sufficiently long time. This reflects the fact that any open channel
must stay open at least an infinitesimally short time, and all open
channels must close eventually. This differential equation
(Eq. (7.35)) is simpler than the pair used to describe the kinetics of
a macroscopic two-state system (Eqs. (7.1a) and 7.1b)). This is because
once a channel closes, it is out of the picture. This is analogous to
absorbing boundary conditions as discussed in the context of diffu-
sion (Section 6.2.4).

The macroscopic analog of the single-channel probability can be
visualized by imagining a large number of single-channel open-state
intervals lined up at a common starting time (Fig. 7.12). If N such
channels open at once, the initial current will be Ni, where i is the
single-channel current. The total current will decay exponentially as
iNP(t)¼ iNe��t (Eq (7.36)). In fact, this situation is well approximated at
many synapses. Neurotransmitter is released into the synaptic cleft
and causes the simultaneous opening of many channels. Unbound
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neurotransmitter is removed very rapidly so that there is no chance of
rebinding a receptor and making the channel open a second time. The
synaptic current thus follows the single-channel open probability,
decaying exponentially with a decay constant of �.

Equation (7.36) should be compared with Eq. (7.4), which is the
analogous expression for a macroscopic measurement. The initial
and final conditions are simpler for single channels, so the expo-
nential function does not have the additive constant. Another inter-
esting difference between Eq. (7.36) and Eq. (7.4) is that the decay
constant is � rather than the sum �þ�.

By the same logic used to derive the open time distribution, the
closed-time distribution is

PcðtÞ ¼ e��t (7:37)

Thus, one can determine � and � separately from the closed- and
open-time distributions, respectively. Note that the probability den-
sity functions are obtained by differentiating and changing the sign
(see Eq. (7.33)).

Open Time Distribution

Synaptic Current

Po =  e−α t

I =  I 0  e −β t

Fig: 7:12: The open-time

distribution can be pictured as the

sum of an assortment of single-

channel currents aligned at the same

start time. At a synapse the channels

are opened almost simultaneously

and close at random to replicate

the single-channel open-time

distribution.
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poðtÞ ¼ �e�� t (7:38a)

pcðtÞ ¼ �e��t (7 :38b)

This simple model for the time course of a synaptic current
determined by the rate of channel closing was developed in early
analyses of the channel properties at the neuromuscular junction
(Anderson and Stevens, 1973). This view was modified by later
investigators to take into account the fact that the channel can
close and reopen repeatedly while the binding sites are occupied.
Thus, the decay of a synaptic current is determined by the lifetime
of a burst of openings. This type of model requires more kinetic
states and can be treated with the methods developed in
Sections 9.7–9.9.

It is important to appreciate that single-channel analysis provides a
way of measuring the rate constants, � and �, without applying some
stimulus to initiate the kinetic process. There is no t¼ 0 marking the
start. Instead, one simply follows the time course of a rather long
record of current as it fluctuates in a stepwise fashion around an
equilibrium state. The open and closed times are then tallied and
distributions constructed. When the steps are too small to see, the
collective fluctuations of many channels may still give rise to channel
noise. This noise can also be studied to learn something about the
properties of channels (Section 12.8 and 12.11).

7.10 The reaction coordinate for a global transition

The rate theories considered so far focused on a single reaction
coordinate. But for a transition in a protein this is a gross over-
simplification. There is a vast number of internal coordinates as
thousands of atoms change their interatomic distances. We have to
wonder whether the theories based on a single reaction coordinate
have any applicability to proteins.

For a global transition we have a problem involving motion in a
space with a very large number of dimensions. Within this multi-
dimensional framework a global state was viewed as a collection of
microstates residing in the neighborhood of a minimum in a multi-
dimensional potential energy surface (Section 1.1). There might be
many pathways through this space between the two energy minima
of different global states. The energy must rise to escape from one
energy minimum and then come back down to land in another.
Along any particular pathway, there must be an energy maximum,
and the pathway most often traveled should be that pathway
with the lowest maximum. As noted in Section 7.2, this pathway
with the lowest maximum can be viewed as a pass through a moun-
tain range. A surface shaped like this is said to have a saddle point
(Fig. 7.13).
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The theory for passage over a barrier in one dimension can be
extended to many dimensions by adding in some structural inform-
ation about the energy surface in the vicinity of the saddle point,
along with information about the energy well escaped from (Hänggi
et al., 1990). We now take Ey as the energy at the center of the saddle
point. This makes a plausible case for using barrier-crossing the-
ories to understand global transitions in proteins, and puts the
structure of the transition state in a multidimensional perspective.

The structure of the transition state will now be examined for
the global transition between the native state of a protein and its
unfolded denatured state. This transition can be induced either with
elevated temperature (Section 1.3) or with denaturants (Section 1.7).
A denaturant, D, alters the free energy difference between the
folded and unfolded states according to Eq. (1.22)

�Gu ¼ �G o
u �mu½D� (7:39)

where �Gu
o is the free energy of unfolding in the absence of dena-

turant; and �Gu is the free energy for a denaturant concentration of
[D]. The parameter mu gauges the denaturing action of D and can be
interpreted as the interaction energy between D and the protein
interior. Viewing unfolding as a two-state global transition, we can
write down the equilibrium constant for the folded and unfolded
proteins, Pf and Pu, in terms of �Gu. The manipulations used in
Chapter 1 lead to an expression for the extent of unfolding

½Pu�
½Pf � þ ½Pu�

¼ 1

1þ e�G o
u �mu ½D�

(7:40)

This has the same basic form as Eqs. (1.13) and (1.27). Measurements
of [Pu] versus [D] can be fitted to this equation to determine �Gu

o

and mu.

Fig: 7:13: In a multidimensional

potential energy function, the

pathway for a global transition

traverses a saddle point. The

potential energy function has a

minimum with respect to all of

the internal coordinates except for

one, the reaction coordinate. The

progress of the reaction is indicated

by the arrow. The reaction

coordinate goes through a

maximum at the saddle point.
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The rate of unfolding is taken as an exponential function of the
free energy of the transition state

ku ¼ Ce��G yu =RT (7:41)

If we assume that the denaturant acts only on �Gu
y, with no effect

on the preexponential factor C, then we assess the effect of dena-
turant on the rate of unfolding using the relation

�G yu ¼ �G you �m y
u ½D� (7:42)

Taking the logarithm of Eq. (7.41) and using Eq. (7.42) for �Gu
y

leads to

ln ku ¼ ln k o
u þm y

u ½D� (7:43)

where ku
o is the rate at [D]¼ 0. With the aid of this equation, measure-

ments of the unfolding rate versus [D] provide an estimate of mu
y. Since

mu and mu
y both reflect the amount of protein that is buried in the

interior, the ratio mu
y/mu, known as the Tanford�T value. This quantity

is very much like � of Eq. (7.15), and tells us what fraction of the
interior is buried at the unfolding transition state (Fersht, 1998).
The value of �T ranges from 0.28 to 0.88, indicating that proteins
vary quite a bit in terms of the amount of their interior that remains
inaccessible to solvent in the transition state (Tanford, 1970).

Using solvent denaturation in combination with protein engin-
eering provides a structural map of the unfolding transition state.
A mutation that incorporates a side chain into the protein interior
that is attracted to D will increase mu, allowing lower concentra-
tions of D to unfold the protein. Thus, we measure the specific effect
of a mutation on the energy balance between the native and
unfolded states.

For ku measurements from wild type and mutant proteins, we
can divide the rates in Eq. (7.41) and take the logarithm to obtain the
effect of the mutation on the transition state free energy

��G yu ¼ �RT ln ðku=k0uÞ (7:44)

Likewise, the effect of the mutation on �Gu
o in Eq. (7.40) can be

measured to give ��Gu
o. Looking at Fig. 7.5, we can expect the

perturbation of the transition state free energy, ��Gu
y, to be a fraction

of the perturbation of the unfolding free energy ��Gu
o as follows

��G yu ¼ ���G o
u (7:45)

So we can determine � from measurements of ��Gu
o and ��Gu

y.
The quantity � takes on a different meaning in the context of a

multidimensional kinetic process. Most importantly, it has differ-
ent values for different mutants. The transition state in different
parts of the protein may be unfolded to different degrees. One part
of the protein may be completely folded in the transition state. In
that case a mutation at that site will give � ¼0. This mutation will

188 FUNDAMENTAL RATE PROCESSES



change the equilibrium constant without changing the rate of
unfolding. Another part of the protein may be completely unfolded
in the transition state. That would give � ¼1, so the rate of unfold-
ing will be changed by the same factor as the equilibrium constant.
The value of � for a mutation thus tells us something about the
structure of that part of the protein in the transition state.

The values of � are presented for the enzyme barnase, a bacterial
ribonuclease (Fig. (7.14b)). There are some clear trends. Values of � are
near one in the second and third a-helical elements and the first and
second strands of b-sheet. This indicates that these parts of the protein
are folded in the transition state. Thus, when an unfolded protein
folds, these elements fold first. This part of the protein acts as a
nucleus for the folding of the rest of the protein. Looking at the
structure (Fig. 7.14a), the segments a2, a3, b1, and b2 are in contact.
These contacts bury a number of hydrophobic residues so that
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Fig: 7:14: (a) A ribbon diagram of

barnase shows the principal

elements of secondary structure.

(b) Values of � show which part of

barnase is folded in the transition

state (data from Serrano et al., 1992).
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secondary structure formation is cooperative with the formation of
this hydrophobic complex. The beginning of a1 is also part of this
cluster and its � values are also near one. This analysis shows that the
reaction coordinate for the folding of barnase proceeds through a state
in which a few key elements fold first, and the rest of the protein then
folds up around this core. Molecular dynamics simulations of the
unfolding of barnase reveal a transition state that agrees well with
this experimental analysis of � values (Daggett and Fersht, 2003).

Not all the � values are zero or one. Figure 7.14b shows that a
number of residues have fractional � values. Another protein, chy-
motrypsin inhibitor 2, has almost no � values near zero or one. � is
scattered over a wide range of fractional values, averaging a bit
below 0.5 over the entire length of the protein (Fig. 7.15b). There
is a hint of higher values in the helical stretch, and in fact, one
residue, alanine 16 has � ¼1.

In contrast to � values of zero and one, which reflect fully folded
or fully unfolded regions of a protein in the transition state, frac-
tional values of � are ambiguous. They could mean that the relevant
part of a protein is in a twilight zone of partial folding in the
transition state. Alternatively, a fractional � value could reflect an
average over multiple transition states seen along different folding
pathways. This can be sorted out by examining a series of mutants
concentrated in one site (Fersht et al., 1994). Consider two distinct
folding pathways in which different domains of the protein, A and
B, fold up in alternating sequences. The pathway that goes A-then-B
has a rate ka and the pathway that goes B-then-A has a rate kb. The
observed rate will be the sum over both pathways, ku ¼ kaþ kb. If
mutations are concentrated in a region that influences A, then only
the rate ka will change. For this group of mutants we would have

ku ¼ kae���Gu=RT þ kb (7:46)

If kb starts off being faster than ka in the wild type protein, then
mutants with small ��Gu effects will not produce a noticeable
change. But as ��Gu gets larger the ka pathway will start to take
over and dominate. Thus, a plot of ku versus ��Gu will start flat and
then turn into a line with a slope of one. On the other hand, a single
pathway of unfolding predicts a linear plot of ku versus ��Gu over
an entire set of mutants in this region.

This analysis was performed for chymotrypsin inhibitor 2 and
barnase, and the results exhibited two different patterns (Fig. 7.16b).
Chymotrypsin inhibitor 2 was mutated repeatedly in a cluster of
three residues that form the minicore (space filling residues in
Fig. 7.15a). Progressive destabilization of the folded state by reducing
the hydrophobic contacts among these residues produces a linear
increase in the rate of unfolding (Fig. 7.16b). This argues for a single
unfolding pathway for chymotrypsin inhibitor 2.

The situation is quite different for barnase (Fig. 7.16b). Here
the plot was gently sloped for small perturbations but became

190 FUNDAMENTAL RATE PROCESSES



steeper for larger perturbations. The result is more like Eq. (7.46), so
multiple pathways are indicated. A quantitative analysis of this plot
did not fit a simple two-pathway model, but it does indicate that not
every mutant unfolds along the same pathway. It is reasonable that
the larger size of barnase (110 amino acids) provides more options
for unfolding than a small protein like chymotrypsin inhibitor 2 (64
amino acids). In fact, barnase can be envisioned as having modules
that unfold with some degree of autonomy. Each of these modules
unfolds through a transition state like that of chymotrypsin
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inhibitor 2, in which there is partially formed secondary structure
distributed over a wide region.

Protein engineering and linear-free-energy analysis have also
been combined to map the reaction pathway in the gating transi-
tion of ion channels. The equilibrium and rate constants for open-
ing and closing of the acetylcholine receptor channel were studied
for a series of mutants using single-channel current recording. For
transitions initiated by acetylcholine binding, residues near the
binding site gave � values near one and residues near the channel
gave � values near zero. This suggests a transition pathway in which
the binding site first moves to its high affinity configuration while
the channel has barely opened. The channel opening is thus com-
pleted after the binding site has accommodated the binding of
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acetylcholine (Grosman et al., 2000). By contrast, when the channel
openings occurred spontaneously, the � values showed a very dif-
ferent pattern (Grosman, 2003). Values of � throughout the protein
are then all near one. This indicates that the reaction pathway
differs substantially for unliganded channel openings. Here, the
transition state is very close to the open conformation. The shift
in the reaction pathway may be a key element in the �107-fold
acceleration of channel opening resulting from acetylcholine
binding.

Problems for Chapter 7

1. Solve for � and � using the values of � and xfinal in Fig. 7.1.
2. Derive a Marcus-like free-energy relation by assuming that the top

of the energy barrier has the form Ey ��(x�x0)2, and that a linear
potential connects the left and right sides as in Fig. 7.4.

3. Write voltage-dependent rates (Eqs. (7.16a), (7.16b) and (7.17)) for
the case that the transition midpoint is not zero.

4. Write down the equilibrium constant for a two-state process in
terms of the forward and reverse rates from Kramers’ theory.
Interpret the result with the aid of the partition function for a
harmonic potential (Section 2.12).

5. In a membrane with a single channel, consider the case where a
recording starts at an arbitrary time when the channel is closed.
Derive the waiting time distribution until the channel opens.
Compare this with the closed time distribution (Jackson, 1985).

6. Derive the open time distribution for a channel for which
openings can end either by closing, with a rate �, or by being
chemically destroyed, with a rate �.

7. For the channel in Problem 6, derive the open time probability
density function for openings that end by closing and compare
with the open time probability density for openings that end in
destruction.

8. The mean lifetime of a channel state can be obtained from

the probability density function as �t ¼
R 1

0 tpðtÞdt: Show that the

distribution gives the mean lifetime as �t ¼
R 1

0 PðtÞdt:
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Chapter 8

Association kinetics

Chapter 4 introduced the subject of molecular associations, point-
ing out their role in the initiation of a host of important biological
signaling processes. That chapter focused on thermodynamic
aspects of associations, and the factors that influence their
strength. This chapter will focus on their kinetics, and the factors
that influence their speed. As in Chapter 7, we start by assuming the
rate constant has a particular value and develop phenomenological
equations. We then turn to the question of how fundamental phy-
sical processes determine what the value of an association rate
constant will be. Since associations depend on two reactants finding
each other through random motion in solution, the kinetics of this
process is a problem of random walks and diffusion.

8.1 Bimolecular association

Consider two molecules, A and B, colliding and sticking together in
a bimolecular reaction that produces a complex C (see Scheme (8A)).
For starters we will ignore the reverse process to keep it simple.
That leaves only the second order rate constant for association,
� (with units of M

�1s�1)

A þ B ��! C (8A)

Define the extent of the reaction, x, as the amount of A that has
combined with B. Then x will increase with a velocity equal to
�[A][B]. If the starting concentrations are [A]0 and [B]0, then
[A] ¼ [A]0 � x. As [B] will decrease stoichiometrically, [B] ¼ [B]0 � x.
This leads to a differential equation for the rate of change of x

dx

dt
¼ �½A�½B� ¼ �ð½A�0 � xÞð½B�0 � xÞ (8:1)

which can be rearranged to give

dx

ð½A�0 � xÞð½B�0 � xÞ ¼ �dt (8:2)



A particularly simple result is obtained if we specify that
[A]0 ¼ [B]0

dx

ð½A�0 � xÞ2
¼ �dt (8:3)

This is easily integrated as follows

1

½A�0 � x
¼ �tþ C (8:4)

where C is the constant of integration. At t¼0, x¼ 0, giving C¼1/[A]0.
After making this substitution, we solve for x

x ¼ �½A�02t

1þ �½A�0t
(8:5)

This expression provides an intuitively reasonable picture of the
time course of association. The value of x starts out at zero and
approaches [A]0 after a sufficiently long time. When t ¼ 1/(�[A]0)
we see that x ¼ [A]0/2, so 1/(�[A]0) is the half-time of the process.
This number can often be compared with the time constant of
exponential kinetics found for an isomerization (Section 7.1).
However, Eq. (8.5) shows that the time course of an association
process has a fundamentally different mathematical form. It is
hyperbolic rather than exponential.

Not setting [A]0 ¼ [B]0 makes Eq. (8.2) more difficult to integrate,
but it can still be carried out using the method of partial fractions.
After determining a constant of integration in the same way as
above, and solving for x, we obtain

x ¼ ½A�0½B�0
e��ð½A�0�½B�0Þt � 1

½B�0e��ð½A�0�½B�0Þt � ½A�0
(8:6)

In this expression we see exponentials, as in the solution for an
isomerization, but the form is clearly more complicated. Regardless
of whether we use Eq. (8.5) or Eq. (8.6), the time course for an
association process is qualitatively different from the exponential
seen for isomerization. In general, for higher order kinetic pro-
cesses the time course is not exponential. However, when the reac-
tants are near equilibrium, the kinetics become approximately
exponential, as will be seen next.

8.2 Small perturbations

Often a kinetic process is studied near its equilibrium. A small
perturbation is applied to move the system away from equilibrium.
An equilibrium can be perturbed with a small jump in tempera-
ture, pressure, concentration, voltage, etc. A small quick step in
an experimental variable will shift the equilibrium constant.
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The concentrations will change in response, and the time course of
this adjustment will depend on the rate constants.

Here we must consider both the forward and reverse processes,
because it is stipulated that the reaction is near equilibrium

A þ B
��! �
�

C (8B)

In Scheme (8B), [A], [B], and [C] are assumed to be near their equili-
brium concentrations, [A]eq, [B]eq, and [C]eq. The deviation from
equilibrium is denoted with the variable x. We then have
[A] ¼ [A]eqþ x, [B] ¼ [B]eqþ x, and [C] ¼ [C]eq � x. We now write an
expression for the rate of change of [A]

d½A�
dt
¼ ��½A�½B� þ �½C� (8:7)

Expressing all the concentrations in terms of x gives

dð½A�eq þ xÞ
dt

¼ dx

dt
¼ ��ð½A�eq þ xÞð½B�eq þ xÞ þ �ð½C�eq � xÞ

¼ ��½A�eq½B�eq þ �½C�eq � ð�ð½A�eq þ ½B�eqÞ þ �Þx� �x2
(8:8)

Since x is small compared to everything else, we can ignore x2. The
differential equation then assumes the same form as Eq. (7.3). This
means that the solution will be an exponential with a decay con-
stant equal to �([A]eqþ [B]eq)þ� (the factor multiplying x). The con-
stant of integration can be determined by noting that x will go to
zero for long times because that is its equilibrium value. If the initial
value of x is x0, then the solution to Eq. (8.8) is

x ¼ x0e�ð�ð½A�eqþ½B�eqÞþ�Þt (8:9)

So we see that a higher order kinetic process will have an exponen-
tial time course near equilibrium.

Perhaps the most common application of Eq. (8.9) is in tempera-
ture-jump experiments. Equilibrium constants are usually tempera-
ture dependent, and a jump in temperature of a degree or so will
cause a small change, which is made to order for this kind of
analysis. It is common to study the kinetics for different values of
the concentration of one of the reactants. The decay constant in
Eq. (8.9) will show a linear dependence on concentration if Scheme
(8B) is correct. This is illustrated in Fig. 8.1 for the binding of Ca2þ to
the Ca2þ-sensitive fluorescent dye fura-2. The slope gives � and the
zero [Ca2þ] intercept gives �þ� [fura-2]. So an analysis of such a plot
yields both the forward and reverse rate constants.

The decision to use Eq. (8.9), Eq. (8.5), or Eq. (8.6) to study the
kinetics of an association process will depend on the conditions at
the start of the reaction, and on how far the process is from
equilibrium.
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8.3 Diffusion-limited association

The rate of association of two molecules depends on how frequently
they collide as they move about randomly in solution. In fact, we can
envision two molecules with especially strong affinities for one
another, so that they associate into a complex whenever they collide.
This would define an upper limit to the rate of association. A reaction
could be slower when not every collision succeeds, but a reaction
cannot be faster. This concept of diffusion-limited association is very
useful in evaluating the kinetics of bimolecular reactions.

Diffusion theory can be used to calculate the frequency of colli-
sions, and thus provide an estimate of the diffusion-limited rate
of association (Hammes, 1978). Consider two spherical molecules
A and B (Fig. 8.2). Focus on A, and fix its center at the origin of a
spherical coordinate system. As molecules of B diffuse, they will
undergo collisions with A. We would like to know how frequently
diffusion brings molecules of B into contact with molecules of A.

Immediately after the reactants are mixed, the molecule of A is
surrounded by a solution of the other molecule, B, with a uniform
concentration, Cb. As the reaction gets underway, the molecules of B
that are near the molecule of A will be more likely to have reacted,
so the concentration of B will no longer be uniform, but will depend
on the distance from the center of A. We thus have Cb varying as a
function of this distance, r. A description of the frequency of colli-
sions then depends on knowing the function, Cb(r).

Although Cb(r) changes rapidly at the start of the reaction, a
steady state quickly forms in which Cb(r) no longer depends on
time. That means we can set the time derivative equal to zero in
the diffusion equation (Section 6.3). In spherical coordinates
(Appendix 6), this equation is (Eq. (6.25))
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1

r2

q
qr

r2 qCbðrÞ
qr

� �
¼ 0 (8:10)

In fact, the analysis is almost identical to that for the problem of
diffusion through a small hole (Section 6.3.2). So we can jump to the
solution we obtained prior to the imposition of boundary condi-
tions (Eq. (6.27))

CbðrÞ ¼
�A

r
þ B (8:11)

The boundary conditions are different from those used in
Section 6.3.2. In the present situation, once a molecule of B has
collided with the molecule of A it has associated and disappeared
from the system. This makes the concentration of B zero at the
surface, so Cb(aþ b) ¼0. (Recall the absorbing boundary conditions
of Section 6.2.4.) Far from A, with r!1, we have the bulk value
Cb(1). These two boundary conditions determine the values for the
constants of integration in Eq. (8.11) as A ¼ (aþ b)Cb(1) and
B ¼Cb(1). So we have the solution

CbðrÞ ¼
�ðaþ bÞCbð1Þ

r
þ Cbð1Þ (8:12)

The frequency of collisions is proportional to the flux of mole-
cules of B at r ¼ aþ b. This is determined by taking the derivative
with respect to r (Eq. (6.1)).

J ¼ �Db
qCb

qr
¼ �Db

ðaþ bÞCbð1Þ
r2

¼ �DbCbð1Þ
aþ b

(8:13)

This flux is the rate at which molecules pass through a unit area at
r ¼ aþ b. To obtain the total flux over the entire surface, we must
multiply Eq. (8.13) by the surface area 4p(aþ b)2. This total flux is the
collision frequency, given by

collision frequency ¼ 4pðaþ bÞDbCbð1Þ (8:14)

So the frequency is proportional to the bulk concentration, Cb(1),
as expected, and the association rate constant is the factor

� ¼ 4pðaþ bÞDb (8:15)
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collisions between two spherical
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This was calculated for a single molecule of A, so with Db in units
of cm2 s�1, and a and b in units of cm, the units of � are
cm3 molecule�1 s�1. The conversion to the more familiar units
of M

�1 s�1 will be performed shortly.
This derivation overlooked the fact that molecules of A diffuse as

well as molecules of B. This will increase the frequency of collisions.
This problem is resolved by replacing the diffusion coefficient of B
with the sum of the two diffusion coefficients

� ¼ 4pðaþ bÞðDa þ DbÞ (8:16)

Equations (8.15) and (8.16) are important results in the theory of
bimolecular reaction kinetics. The ideas originated with
Smoluchowski in 1917 and provide an accurate estimate of rate
constants for chemical reactions that are limited by the frequency
of collisions. The theory has many ramifications for problems in
chemical kinetics (Keizer, 1987).

These results are also important for understanding association
problems in biophysics, but the collisions are almost always
restricted in some way. For example, the dependence of an associa-
tion rate on the size of the molecules is artificial because binding
was assumed to occur anywhere on the surface. In reality, binding
in most chemical and biochemical interactions occurs at specific
sites. There are additional constraints on binding imposed by the
orientation of the two molecules relative to one another. These
issues will be taken up below, but for now it can be seen that all
of these neglected complications can only reduce the rate to a value
below that specified in Eq. (8.16), so it is a good upper limit.

To get an idea of how fast association rates can be, take a typical
diffusion constant for a small molecule, Da ¼Db ¼5�10�6 cm2 s�1,
and let a ¼ b ¼ 2.5�10�8 cm (2.5¯). Equation (8.16) then gives
� ¼6�10�12 cm3 molecule�1 s�1 or 6�10�15 liter molecule�1 s�1.
Multiplying by Avogadro’s number converts this to 4�109

M
�1 s�1.

A more general diffusion-limited association rate can be deri-
ved by eliminating the diffusion constant and molecular size in
Eq. (8.15) with the Stokes–Einstein relation D ¼RT/6pr� (Eq. (6.66))
and letting r ¼ a ¼ b

� ¼ 8RT=3� (8:17)

Evaluating this expression for the viscosity of water and room
temperature gives about 1010

M
�1 s�1. The lack of dependence on

molecular parameters (size and diffusion coefficient) reflects a fortu-
itous cancellation. The fastest measured association rates are gene-
rally in the range of these theoretical limits, i.e. 109–1010

M
�1 s�1

(Section 8.6; but see Section 8.7 on protonation). This range defines
the fastest possible rates of association.

The derivations above assumed that the molecules are hard
spheres with no interactive forces other than the repulsion at
their surfaces. Attractions can increase the rate of association, and
this can be incorporated into the rate equation by using a flux
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equation that includes the effect of a force (Eq. (6.64), with
F ¼ qU(r) / qr; see also Eq. (7.27)). The collision frequency is the flux
( J from Eq. (6.64)) times the area of the sphere, 4pr2. So we evaluate
the total flux through an entire spherical shell as 4pr2J

total flux ¼ �4pr2Db
CbðrÞ

kT

qUðrÞ
qr
þ qCbðrÞ

qr

� �
(8:18)

The potential energy function, U(r), can assume any form, and need
not be a barrier as it was in Section 7.8. It could be attractive,
repulsive, or flat.

Assume that a steady state has been reached, so the total flux is
constant. Following the same logic that led from Eq. (7.27) to
Eq. (7.30), we obtain

total flux ¼ 4pDbðCbð1ÞeUð1Þ=kT � Cbðaþ bÞeUða þ bÞ=kTÞR1
a þ b

1
r2 eUðrÞ=kTdr

(8:19)

The limits of integration are from the distance of closest approach
(r ¼ aþ b) to infinitely far away (r ¼1).

As before in determining the constants of integration in
Eq. (8.11), collisions remove molecules of B so Cb(aþ b) ¼ 0. At
r ¼1 we use the bulk concentration, Cb(1) and take U(1) ¼0.
Equation (8.19) then gives the collision frequency as

collision frequency ¼ 4pDbCbð1ÞR1
a þ b

1
r2 eUðrÞ=kTdr

(8:20)

We can return to the hard-sphere case by setting U(r) ¼ 0. Then
the integral in the numerator of Eq. (8.20) is easily evaluated as
1/(aþ b). Equation (8.20) then reduces to Eq. (8.15).

8.4 Diffusion-limited dissociation

The same theory that was used above to obtain a diffusion-
controlled association rate can be used to derive a dissociation
rate. Start with Eq. (8.11), which was a general steady-state result
for spherical geometry. Recall that for association we set
Cb(aþ b) ¼ 0, and Cb(1) ¼ the bulk concentration. For dissociation
we turn the problem around, and take Cb(1) ¼0 and C(aþ b) ¼ (one
molecule) / (volume around A). The volume around A is (4/3)p(aþ b)3

to give Cb(aþ b) ¼ 1/((4/3)p(aþ b)3). With these boundary condi-
tions the constants of integration in Eq. (8.11) are B ¼0 and
A ¼ �3 / (4p(aþ b)2), so we have the steady-state distribution

CbðrÞ ¼
3

4pðaþ bÞ2r
(8:21)
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Now the flux is evaluated at r ¼ aþ b as follows

J ¼ �Db
qCb

qr
¼ Db

3

4pðaþ bÞ2r2
¼ 3Db

4pðaþ bÞ4
(8:22)

The sign is opposite to that in Eq. (8.13) because with dissociation
the flux is in the opposite direction. The frequency is obtained by
multiplying by the surface area

frequency ¼ 3Db

ðaþ bÞ2
(8:23)

This is the first order rate constant for dissociation in units of
molecules per unit time. As in Eq. (8.15), we can replace Db with the
sum DaþDb to take into account the diffusion of both molecules.

This is the rate constant for dissociation in the complete absence
of binding forces that stabilize the complex. To include these we
perform the analogous operation on the equation for diffusive flux
in a force field (Eq. (8.19)). The steady-state solution with the bound-
ary conditions just specified is

frequency ¼ 4pDbeUða þ bÞ=kT

4
3pðaþ bÞ3

R1
a þ b

eUðrÞ=kTdr=r2

¼ 3DbeUða þ bÞ=kT

ðaþ bÞ3
R1

a þ b

eUðrÞ=kTdr=r2 (8:24)

If the potential energy function U(r) is zero, then the integral is
easily performed to recover Eq. (8.23).

Equation (8.23) is not widely used in biophysics because the
diffusion limit applies only for dissociation when the attractive
forces are very weak, and in that case no complex will form in the
first place. However, the derivation here is useful for the sake of
logical completeness. It shows that the dissociation rate also
depends on the diffusion constants. This is conceptually important
because equilibrium constants generally do not depend on trans-
port coefficients such as the diffusion constant. The equilibrium
constant equals the ratio of the forward and reverse rate constants.
Since both are proportional to the diffusion constant, it cancels
when the ratio is taken (Problem 2).

8.5 Site binding

The derivation of the diffusion-limited association rate was based on
the assumption that a collision between any two parts of the reacting
molecules will produce a complex. That might be true for the combi-
nation of some small molecules (e.g. iodine with CCl4; see Keizer, 1987),
or for two droplets of liquid, but for most molecules of biological
interest it matters which parts of the molecules meet during a collision.
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To improve on the model pictured in Fig. 8.2 we can stipulate that the
collision must be between reactive sites on the two molecules. Clearly,
this will reduce our estimate of the rate of association.

To address this problem consider a small molecule with a reac-
tive surface colliding with a reactive site on the surface of a protein
(Fig. 8.3 a). We w ould like to know t he rate of colli sions between
these two sites. An intuitive approach would be to start with
Eq. (8.16), make the calculation using the radii of the protein and
small molecule, and scale this result by the fraction of the surface
area covered by each binding site. If s is the radius of a site on the
protein (as  shown in Fig. 8.3a), then we take the ratio of the areas, s2/ a2,
as our scaling factor, and use a similar factor for the ligand. However,
intuition is misleading in this case; the rate is actually proportional to
the linear dimension of the binding site and not its area, just as the
rate of association in Eq. (8.16) is proportional to linear dimensions of
the reacting molecules.

We can make a reasonable estimate of the frequency with which
ligands collid e with a site by u sing the m odel depict ed in Fig. 8.3 b.
Forget about the reactive site on the smaller molecule, b, because
the small size of the protein’s binding site has a much greater
impact. Then replace the circular site on the surface of a sphere
(Fig. 8.3a) with a hemispherical bump on the surface of a p lane
(Fig. 8.3 b ). This p roblem can be solved by a slight modification of
the derivation used in Section 8.3. Equation (8.10) was based on the
steady-state flux at the surface of a spherical shell. The steady-state
flux through a hemispherical shell is simply half of this.1 The
analysis is then the same as that used to derive Eq. (8.15). Ignoring
the relatively small diffusion coefficient of the protein, the rate
constant fo r encounters in t he problem p ictured in Fig. 8.3b is

� ¼ 2pðsþ bÞDb (8:25)

1 The presence of the unreactive surface around the bump turns out not to be a

problem, although, more generally, adding a boundary can complicate solving the

diffusion equation. The surrounding flat surface has zero flux, and that imposes the

boundary condition that the concentration gradient normal to the surface is zero

(Section 6.2.4). In the steady-state solution to the spherical problem the gradients are

purely radial, and the concentration is constant within hemispherical shells centered

arou nd the bump. The gradients normal to the flat surface in Fig. 8.3b are there fore

zero, so there is no flux in that direction. That means that Eq. (8.10) scaled down by a

factor of 2 gives the correct solution to this problem.

(a) (b)

s

a

b
b

s

Fig: 8:3: (a) Association depends

on collisions between the correct

surface of the small molecule and

the binding site on the protein

surface. (b) This situation is

approximated by a hemispherical

bump on a planar surface.

202 ASSOCIATION KINETICS



This problem can also be solved for a circular site on a plane
rather than the hemispherical bump used here. The mathematics
for solving this problem is a bit above the level used in this book.
The result is 4sDb (Shoup et al., 1981), changing Eq. (8.25) by a factor
of p/2 ¼ 1.57. A similar correction was noted for the problem of
diffusion through a small hole (Section 6.3.2).

A common modification of this result is to assume that the
ligand must fit entirely into the binding site. This reduces the
effective radius of the binding site by the radius of the ligand.
The result is then (Shoup et al., 1981)

� ¼ 4ðs� bÞDb (8:26)

At this point it should be recognized that assumptions about the
size match between the ligand and binding site are rather arbitrary.
Thus, it is just as reasonable to take the binding site and ligand as
similar in size in Eq. (8.25). This reduces to 8bDb (with the replace-
ment of 2p by 4 based on the result for a circular site just men-
tioned). Now using the Stokes–Einstein relation, just as we did to
obtain Eq. (8.17), gives

� ¼ 4RT=3p� (8:27)

which is a factor of 2p less than Eq. (8.17), the expression for colli-
sions between equal-sized spheres. For the viscosity of water and
room temperature this gives a useful general diffusion limit of
1.6 � 109

M
�1 s�1 for ligand binding to a protein.

Restric t ion of the reactive surface of the ligand ( Fig. 8.3a) will
further reduce the frequency of successful collisions. The above
analysis suggests that we use the size of the ligand’s binding site
in place of the ligand’s size. However, if the ligand rotates rapidly,
an unfavorable collision can turn into a favorable collision.
Rotational diffusion thus increases the reaction rate, and if rota-
tional diffusion is much faster than translational diffusion, it can
eliminate the effect of a ligand’s small interaction site. This brings
us back to using the size of the whole ligand in the calculation of
the diffusion-limited association rate. However, rotation is gener-
ally not that fast, leaving an intermediate situation where the
limited size of the ligand’s binding site and ligand’s rotation
combine to produce a rate that falls between the two extremes
(Shoup et al., 1981).

8.6 Protein–ligand association rates

The theories for diffusion-limited association are approximate, and
there is no exact value for how fast a diffusion limited association
really can be. The numbers calculated above can provide a rough
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estimate. Many proteins bind their preferred ligands very rapidly.
Examples are given in Table 8.1. The association rates often
approach the diffusion limits estimated above in Section 8.3. In
fact, the measurement of a rate in excess of �108

M
�1 s�1 often

prompts a speculation that the association process goes as fast as
diffusion will allow. However, additional criteria can be used to test
this hypothesis more rigorously.

Because of the uncertainties in the theoretical upper bounds to
association rates, experimental tests of the diffusion limit are very
important. The viscosity appears in Eqs. (8.17) and (8.27), and diffu-
sion constants generally are inversely proportional to solution vis-
cosity (Eq. (6.66)). However, using the viscosity dependence of a
reaction rate to determine whether it is diffusion limited has a
pitfall. As we saw in Section 7.8, the diffusion constant along the
reaction coordinate enters into the rate equation for a barrier cross-
ing mechanism. If the motions within the protein are coupled to the
molecular motions of the solvent, then the rate of barrier crossing
will show a viscosity dependence (see Berg and von Hippel (1985)
for a discussion of different forms of viscosity dependence; see
Section 10.11 for a discussion of this issue in enzyme catalysis). To
address this problem, one can compare the viscosity dependence of
two related ligands with different association rates. If a more slowly
binding ligand has a weak viscosity dependence, then the barrier to

Table 8.1. Rapid protein–ligand association rates

Protein Ligand
Association rate
constant (M�1 s�1)

acety lcholines terase a N -methya cridinium 1.1� 10 10
hor seradish perox idase b p-nitrobenzoic acid 1.3� 108

sup eroxide dismut ase c superoxide ion 2.4� 109

triose phosphate

isom erase d
glyceraldhyde

phosphate 2.4� 108

b -lactama se e benzylpenic illin 7.6� 10 7
chym otrypsi n f p-nitrophen yl este r 9� 10 7
calm odulin g, N-dom ain

C-domain

Ca2þ 5� 108

1� 10 8
acety lcholine recept or h , acetylch oline

1st site 6� 107

2nd site 1� 10 8

aNolte et al. (1980).
bNakatani and Dunford (1979).
c Fielder et al. (1974).
d Putnam et al. (1972).
eHardy and Kirsch (1984).
fBrouwer and Kirsch (1982).
g Falke et al. (1994).
h Sine et al. (1990).
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this association is weakly coupled to the solution motions. The
viscosity dependence of the association of the more rapidly binding
ligand thus cannot be attributed to crossing the same barrier. So for
this ligand association is diffusion limited.

The temperature dependence is also informative. If the tempera-
ture dependence is weak, or follows that of the solvent viscosity,
then the association does not depend on crossing an energy barrier.
A weak temperature dependence thus can also indicate that the
association is diffusion limited.

8.6.1 Evolution of speed
Evolutionary pressure will optimize the speed of many ligand bind-
ing processes. For almost any enzyme, speed is a clear advantage. An
organism will economize energy in protein synthesis if a smaller
number of faster enzymes can get the same job done. If an enzyme
were able to catalyze its reaction instantaneously, then its velocity
would be limited by diffusion. So the rate of diffusional encounters
represents the absolute maximum rate of catalysis for any enzyme.
In fact, nearly all enzymes investigated exhibit catalytic efficiencies
that fall within two orders of magnitude of the diffusion limit
(Miller and Wolfenden, 2002). This probably reflects a nearly uni-
versal advantage of speed in enzymes.

For an enzyme that works near its diffusion limit, there is little
incentive for further improvement of its catalytic action on a bound
substrate. This idea has been developed for the enzyme triose phos-
phate isomerase, which binds its substrate very rapidly (Table 8.1).
Substrate binding is slowed by increasing the solution viscosity,
thus satisfying a basic condition of the diffusion limit (Blacklow
et al., 1988). The velocities of the subsequent catalytic steps are in
the same range as that of the substrate binding step seen with
physiological concentrations of substrate. Making these steps faster
offers little improvement in overall speed. Triose phosphate isomer-
ase has therefore been described as a ‘‘perfect’’ enzyme from an
evolutionary perspective (Albery and Knowles, 1976).

8.6.2 Acetylcholinesterase
Acetylcholinesterase hydrolyzes the neurotransmitter acetylcholine
to terminate the synaptic response at the neuromuscular junction.
This enzyme is incredibly fast, and the viscosity dependence indicates
that the rate of substrate binding is diffusion limited. In fact, the rate of
1.1�1010

M
�1 s�1 (Table 8.1), is quite a bit faster than the relevant

diffusion limit of 1.6�109
M
�1 s�1 derived from Eq. (8.27).

The crystal structure of acetylcholinesterase provided a reason-
able explanation for this extraordinary binding rate (Fig. 8.4). The
active catalytic site is located deep in a long narrow gorge. About
40% of the surface of this gorge is lined with the aromatic side
chains of phenylalanine, tyrosine, and tryptophan. These groups
strongly attract cations (Section 2.6), and acetylcholine has a posi-
tively charged quaternary amine. This effectively extends the reach
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of the binding site. The gorge acts like an electrostatic vacuum
cleaner. So acetylcholine molecules colliding with the extended
length of this gorge stick to this site and are drawn in toward the
catalytic residues in the active site. This attraction is aided by some
negatively charged glutamate and aspartate side chains strategic-
ally located around the gorge.

If we allow that the gorge of acetylcholinesterase gives us a
linear extent for the binding site that is �5 times as large as the
ligand, then Eq. (8.25) gives about a 3-fold increase over Eq. (8.27).
Even with this enhancement, the rate is still a factor of �2 less than
what can be accounted for by diffusion. It is likely that the long-
range Coulombic attraction of the acidic residues reaches out and
pulls the substrate into the gorge. This is supported by a high
sensitivity of the binding rate to salt (Nolte et al., 1980), which
neutralizes and weakens electrostatic interactions (Chapter 11).

Superoxide dismutase also does somewhat better than the diffu-
sion limit (Table 8.1). In this enzyme an array of positively charged
side chains extend the length of the binding site for the negatively
charged substrate, O2

� (Tainer et al. 1983).

8.6.3 Horseradish peroxidase
Horseradish peroxidase is another very fast enzyme, as indicated
by the binding rate in Table 8.1. A critical comparison was
made between the binding rate of 1.3 �108

M
�1 s�1 and various

Fig: 8:4: Structure of

acetylcholinesterase with aromatic

residues in dark gray and acidic

residues in light gray. The white

circle encloses the catalytic site

(Sussman et al., 1991).
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theoretical estimates of the diffusion-limited collision rate. An
equation closely related to Eq. (8.16) gave 1.7 � 1010

M
�1 s�1 for

the rate of encounters with the entire protein molecule. Using the
size of a potential substrate that fails to undergo catalysis because it
is too large, a size of the binding site was estimated as 4 ¯. Scaling
the association rate linearly with this length (according to Eq. (8.25))
gave a rate that was in very reasonable agreement with experiment
(Nakatani and Dunford, 1979).

8.7 Proton transfer

Biological molecules exchange protons with their aqueous environ-
ment, and these proton transfers can be extraordinarily fast (Eigen and
Hammes, 1963; Gutman and Nachliel, 1997). The rates for proton
association with various acceptors often exceed the diffusion limit
discussed above (Table 8.2). The primary reason is the exceptionally
high mobility of the proton in liquid water. Conductivity measure-
ments indicate that the mobility of a proton is >5 times greater than
that of other monovalent cations (Moore, 1972).

It is actually not the proton itself that diffuses so rapidly, but rather
its charge. Proton movement entails hopping between charged species
of the form H3Oþ, H5O2

þ, and H9O4
þ. When a water molecule accepts a

proton, it can pass off one of its other H atoms as a proton to a
neighboring water molecule on the other side. The charge thus gets
a free ride. The charge is translocated in one step that is about as long
as the size of a water molecule. This mechanism shuttles protons
around and delivers them to their acceptors with unusual speed.

The high intrinsic speed of proton transfer can be thought of as
a sort of compensation for the generally low abundance of protons
in water. At a physiological pH of 7, the concentration is 10�7

M.
Thus, the lifetime of a free base proton acceptor will typically be
slightly less than 1 ms for most of the rate constants in Table 8.2.

Table 8.2. Rates of protonation

Proton acceptor

Association rate

constant (M�1 s�1)

OH�a 1.3� 1011

CH3CO2
�a 4.5� 1010

imidazo le a 1.5� 10 10
bacterio rhodopsi n b

cytoplas mic site 5.8� 10 10
extracellu lar site 1� 10 9

calcium channe l c 4.1� 10 11

a Eigen and Hammes, 1963.
bChecover et al. (1997).
c Prod’hom et al. (1987).
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The protonation of sites on proteins, especially membrane pro-
teins, can be enhanced by clustering of negative charges to increase
the electrostatic attraction. In the light-driven proton pump bacterio-
rhodopsin, a cluster of three negatively charged carboxyl groups helps
speed up proton uptake at the cytoplasmic side of the protein (Gutman
and Nachliel, 1997). This is the first step in the active pumping of
protons out of a cell following the absorption of a photon.

The rate of protonation of a Ca2þ channel was measured using
single-channel kinetics (Table 8.2). This is the highest known asso-
ciation rate constant. The speed of this transfer process has yet to be
explained in terms of the structure of the protein.

8.8 Binding to membrane receptors

The binding of a ligand to a site on a protein was examined in terms
of the frequency of collisions with a single reactive spot (Section
8.5). Receptors for hormones often reside on the cell surface, and
the speed with which these binding sites fill up would appear to be
closely related to the site-binding problem. The first idea that comes
to mind is to take Eqs. (8.25)–(8.27) and scale them by the number o f
receptors on the cell. But this ignores an important effect. If a
molecule collides with any part of the cell surface, the cell restricts
subsequent diffusion so that the molecule has a high probability of
bumping into the cell surface again. With many binding sites scat-
tered over the surface, subsequent bumps can easily produce a hit
with a receptor, even if the first does not. This tends to make the
whole cell the effective target, even though the true target is the
receptors scattered over the surface.

We can evaluate the effect of these repeated encounters by using a
model of Berg and Purcell (1977). The first step is to look at a molecule
found at a distance y from the center of a cell, depicted as a spherical
target of radius a. We consider two outcomes: (1) the molecule diffuses
off to infinity without ever touching the surface of the target; or (2) the
molecule encounters the target. Since the encounter with the target is
the defining event for outcome (2), the surface of the target is treated
as an absorbing boundary.

The random walk version of this problem is difficult, but fortu-
nately there is an equivalent problem in steady-state diffusion that
is straightforward. If the molecules are produced at a constant rate
in a spherical shell at a distance y from the center of the target, then
there will be fluxes in toward the center and out to infinity (Fig. 8.5).
The ratio of these two steady-state fluxes is equal to the ratio of the
probabilities of the two outcomes specified above. The reason for
this is that the steady-state diffusion problem reflects the average
result of all possible random walks starting at y.

We now write out the total flux through a shell at a distance r.
Denoting these quantities as Gi or Go for the regions indicated
in Fig. 8.5, they are equal to the surface area times the flux per
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unit area (denoted as J in the above analysis). Here J equals the diffusion
constant, D, times the concentration gradient, qCi / qr. This gives

Gi ¼ 4pr2Ji ¼ �4pr2D
qCi

qr
(8:28a)

Go ¼ 4pr2Jo ¼ �4pr2D
qCo

qr
(8:28b)

where Ci and Co indicate the respective concentrations in the
regions inside and outside the shell. Note that Gi and Go are constant
within these regions, because molecules are not being produced
there. That makes it easy to integrate the equations and obtain the
general solution C ¼G/4pDþA. The boundary conditions are Ci ¼ 0
at r ¼ a, and Co ¼0 at r ¼1. With A determined from these condi-
tions we have

Ci ¼
Gi

4prD
� Gi

4paD
(8:29a)

Co ¼
Go

4prD
(8:29b)

Although Gi and Go have not been determined, we know they
are constant. We also know that they are opposite in sign, with
Gi negative to make Ci positive. The two concentrations must be
equal at r ¼ y, so we equate Eqs. (8.29a) and (8.29b) to give

Gi

4pyD
� Gi

4paD
¼ Go

4pyD
(8:30)

Rearranging gives

Gi

Gi � Go
¼ a

y
(8:31)

Since Gi is negative, the quantity on the left is |Gi|/(|Gi|þ |Go|). This is the
fraction of molecules produced at y that move in toward the target.

a

yG i

Go

Fig: 8:5: Molecules are produced

at a constant rate in a spherical shell

at a distance y from the center of a

spherical target of radius a. The

total inward flux is Gi and the

total outward flux is Go.
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This simple result is thus the probability that a molecule starting at
distance y will hit the target rather than diffuse away to infinity.

We will now use Eq. (8.31) to estimate the probability that a
molecule bumping along the cell surface will hit a receptor before
diffusing away (Fig. 8.6). Consider a random walk bouncing along
the cell surface. For an excursion from the cell surface to be far
enough away for a return to sample a new area of the cell, the
molecule must diffuse a distance away from the surface comparable
to the size of the binding site, s. If a molecule has wandered to a
distance s, then according to Eq. (8.31), the probability of the mole-
cule having another collision with the cell surface is

Ps ¼
a

aþ s
(8:32)

The probability of not having another collision is s/(aþ s) so that the
ratio of the two is s/a (Eq. (8.31)).

With each collision we can take the probability of not hitting a
receptor as one minus the fraction of the cell surface covered by
receptors, or � ¼1 � (Ns2/4a2), where N is the number of receptors
on the cell. The probability of an encounter occurring without
binding to a receptor is then the product �Ps. The probability of n
such encounters followed by an escape is then Ps

n�n(1 � Ps). The
probability of a molecule escaping (Pesc) without ever binding a
receptor is then the sum

Pesc ¼
X1
n ¼ 0

P n
s �

nð1� PsÞ

¼ s

aþ s

X1
n ¼ 0

a�

aþ s

� �n

¼ s

aþ s

1

ð1� ða�=ða þ sÞÞÞ
¼ s

aþ s� a�

¼ 4a

4aþ Ns (8:33)

where the sum was evaluated as a geometric series with Eq. (A1.11).
Equation (8.33) expresses the fraction of molecules that encoun-

ter the cell and escape without binding a receptor. The frequency of

s

Fig: 8:6: Two molecules

undergoing random walks approach

a cell from the left. After repeated

encounters with the cell surface,

one lands on a binding site and is

bound. The other bumps along the

surface and escapes without

colliding with a binding site.
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collisions with the cell can be taken from Eq. (8.15) as 4paDC (we
neglect b because a>> b; the cell is much larger than the ligand).
The probability of not escaping is 1 � Pesc. Calculating this from
Eq. (8.33), and multiplying it by the frequency of collisions with
the cell gives the frequency with which ligands bind receptors as

frequency ¼ 4paDC
Ns

4aþ Ns
(8:34)

This equation has important implications for the rate with which
receptor binding sites are filled by ligands (Abbott and Nelsestuen,
1988; Nelsestuen and Martinez, 1997). There are two important limit-
ing cases: low receptor density and high receptor density. When the
density is low, Ns<< 4a, so Eq. (8.34) goes to the limit

frequency � pNsDC (8:35)

In this limit the cell size is irrelevant; the receptor is the target. It is
as though the receptors are free in solution. When the density is
high, Ns>>4a, so we have

frequency � 4paDC (8:36)

Now we have the diffusion limit for collisions with the cell. The cell
is the target.

This analysis shows how the behavior varies between two extremes
for cells with high versus low receptor densities. This has been studied
in detail for the enzyme alkaline phosphatase, which is confined to the
periplasmic space between the inner and outer membranes of E. coli
(Martinez et al., 1996). At higher substrate concentrations there are
very few available binding sites so molecules that wander into the
periplasmic space encounter fewer free enzymes. The activity of the
enzyme is then determined by Eq. (8.35). At lower substrate concentra-
tions there are many vacant enzyme binding sites, so it is likely that
any molecule colliding with the cell and entering the periplasmic
space will be captured. Equation (8.36) then applies.

It is important to appreciate how this kind of association process
can alter the kinetics from that described in Section 8.1. The rate of
decrease of available cell surface receptors will be given by Eq. (8.34) as

dN

dt
¼ �4paDC

Ns

4aþ Ns
(8:37)

This integrates to

4a ln ðN=N0Þ þ N � N0 ¼ �4paDCt (8:38)

where N0 is the initial number of receptors. Although this transcen-
dental equation cannot be solved for N, it is clear that the time
course of receptor occupation will deviate from the forms derived
in Sections 8.1 and 8.2. The non-exponential and non-hyperbolic
behavior in this situation does not reflect a complex association
mechanism, but reflects the transition between these two regimens
of high and low receptor density.
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8.9 Reduction in dimensionality

We have seen how placing receptors on a surface enhances a
ligand’s search for its binding site. One can view this enhancement
as a reduction in the number of dimensions of the space in which
the search is occurring. Three-dimensional diffusion is made easier
by increasing the size of a preliminary target and breaking the
process up into two steps. The first step is a collision with a very
large preliminary target. The second is a search in two dimensions
along the surface of the cell for the final small target. The reduction
in the dimensions in which diffusion occurs is an important general
kinetic principle for diffusion-limited recognition events in biology
(Berg and Purcell, 1977; Adam and Delbrück, 1968).

To explore this effect of dimensionality, we would like to repeat
the analysis of Section 8.3 in one and two dimensions. This would
tell us how fast diffusing in a plane produces encounters with a
circular target, and how fast diffusing along a line produces encoun-
ters with a point target. However, the kinetic equations in one and
two dimensions do not have a steady-state solution. Another strat-
egy is needed, so we turn to the method of mean capture times. We
try to calculate the mean time a molecule takes to find its target by
random motion. We will solve the problem in one dimension and
state the results for two and three (Berg, 1983).

The random walk in one dimension is as laid out in Chapter 6.
Hops of length � to the right or left occur at regular intervals of
time, � . We define the quantity W(x) as the mean capture time, the
average time it takes for the molecule starting at position x to reach
some specified location for the first time. Every trajectory from x to
the target must proceed through either xþ � or at x � � (with equal
probability) at the very next time step. This means that W(x) can be
expressed in terms of W(xþ �) and W(x � �) as

WðxÞ ¼ � þ ðWðxþ �Þ þWðx� �ÞÞ=2 (8:39)

This states that starting from x is like starting from xþ � or x � � at a
time � later. Multiplying by 2/�, Eq. (8.39) can be rearranged as

ðWðxþ �Þ �WðxÞÞ=� � ðWðxÞ �Wðx� �ÞÞ=� þ 2�=� ¼ 0 (8:40)

Now we recognize the two derivatives with respect to x

dW

dx

����
xþ �=2

�dW

dx

����
x� �=2

þ 2�

�
¼ 0 (8:41)

Dividing through by � allows us to combine the derivatives into a
second derivative. Furthermore, we can make use of Eq. (6.45) to
replace 2� /�2 by 1/D as follows

d2W

dx2 þ
1

D
¼ 0 (8:42)
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Solving Eq. (8.42) then gives us W, the mean capture time.
Boundary conditions have to be used, and they are very similar to
those used in solving the diffusion equation (Section 6.2.4). If the
target is at x ¼ a, then we have an absorbing boundary, with
W(a) ¼0. On the other hand, if there is a barrier at x ¼ a, then we
have a reflecting boundary, with dW/dx ¼ 0.

We can now derive the mean capture time for a one-dimensional
diffusion-controlled association. Place a molecule in a region of
length b, with the target at x ¼ 0. The general solution of Eq. (8.42) is

WðxÞ ¼ � x2

2D
þ Axþ B (8:43)

where A and B are constants of integration. Since W(0) ¼0 (absorb-
ing boundary), B ¼ 0. With dW/dx ¼ 0 (reflecting boundary) at b,
A ¼ b/D. The specific solution is then

WðxÞ ¼ 1

D
ðxb� x2=2Þ (8:44)

Now averaging over all starting positions of the molecule between
0 and b gives the desired result

t ¼ 1

bD

Zb

0

ðxb� x2=2Þdx

¼ 1

bD
ðb3=2� b3=6Þ

¼ b2

3D (8:45)

Extending this analysis to two and three dimensions is straight-
forward, although the size of the target, a, now matters (Adam and
Delbrück, 1968; Berg and Purcell, 1977; Berg and von Hippel, 1985).
In two dimensions we have

t ¼ b2

2D
ln

b

a
(8:46)

and in three dimensions we have

t ¼ b2

3D

b

a
(8:47)

Note that in each of these equations for t, D is for diffusion in the
relevant number of dimensions.

These three equations illustrate how the number of dimensions
qualitatively alters the timescale for a process involving diffusion
and collisions. The factors b/a (three dimensions) and ln (b/a) (two
dimensions) can greatly lengthen the time for an association to
occur. The fact that binding of ligands to receptors on a cell surface
can be described by the rate of collisions with the cell is thus a
manifestation of the reduction in the dimensionality of the search
from three to two after the cell has been encountered. A related
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example of this principle can be found in the binding of a protein to
a specific site on a long strand of DNA.

8.10 Binding to DNA

Some DNA-binding proteins can find a specific site on a long DNA
molecule far more rapidly than can be accounted for by diffusion-
limited encounters with the small region of DNA harboring the actual
site (Berg and von Hippel, 1985). It turns out that the protein finds its
binding site in a two-stage process. First, the protein binds nonspeci-
fically to any part of the DNA. Then the protein diffuses in one
dimension along the DNA molecule in search of the site containing
the specific recognition sequence. If the protein were just searching
randomly in three dimensions, the maximum, diffusion-limited
rate constant would be given by Eq. (8.15). We can ignore the diffu-
sion coefficient of the DNA molecule because it is much smaller than
that of the protein.

According to the two-stage model, if the protein binds nonspeci-
fically to a random part of the DNA, it will then diffuse in one
dimension along the DNA chain. The protein will either find the
recognition sequence or fall off the DNA. The mean time until fall-
ing off is the inverse of the dissociation rate, 1/kdiss. During this time
the protein will diffuse a distance, d, along the chain specified by a
one-dimensional random walk (Eq. (6.9))

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D1=kdiss

p
(8:48)

where D1 is the one-dimensional diffusion coefficient. Nonspecific
binding to a site that is less than a distance d from the recognition
site thus has a good chance of leading to a stable association. This
effectively increases the target size to d, from the size of the actual
DNA recognition sequence. If D1 is large and kdiss is small, d can be
quite a bit larger than the binding site, b. This increases the effective
target size so the association will be correspondingly large. Thus,
the weak nonspecific binding reduces the number of dimensions
from three to one, and this assists the association, much as reducing
the dimensionality makes it easier for a ligand to find the receptors
on the surface of a cell.

An important requirement of this mechanism is that the protein
can move easily along the DNA while bound. In fact, the high
density of negative charge of the phosphates on DNA makes cations
bind in a nonspecific manner referred to as counterion condensa-
tion (Section 11.10). This form of binding is quite strong, so kdiss will
be low. But since all sequences of DNA are equivalent in terms of
charge density, a trapped protein will be free to move in either
direction. This two-stage model has been very helpful in explaining
the speed with which proteins such as the lac repressor find the
operator region of DNA (Berg and von Hippel, 1985).
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Problems for Chapter 8

1. Use Fig. 8.1 to estimate the association and dissociation rate con-
stants for Ca2þ and fura-2 ([fura-2]¼ 5.33 mM in these experiments).

2. Use Eqs. (8.15) and (8.23) to derive the binding equilibrium
constant.

3. Incorporate a simple electrostatic attraction or repulsion into the
diffusion-limited association rate by taking U(r) in Eq. (8.19) as the
Coulomb potential (Hammes, 1978).

4. For a dissociation equilibrium constant of 10�6
M, and diffusion-

limited association with a rate constant of 1010
M
�1 s�1 (calculated

from Eq. (8.17)), what is the rate constant of dissociation?
5. Derive Eq. (8.46). Assume a small circular target of radius a in

the center of a circular area of radius b, and approximate based
on b� a.

6. Use Eq. (8.20) to derive the association rate constant when
U(r)¼�U0 for r< c and U(r)¼0 for r> c (where c> aþ b). What
happens when U0!1? Interpret this result.
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Chapter 9

Multi-state kinetics

The two-state model of Chapter 7 can be used as a basic building
block for more complicated processes. When a system has more
than two states, conversions between different pairs can occur, and
then the kinetics reflects the aggregate behavior of those various
transitions. The time course is no longer a simple exponential
function, and in this chapter we will see how multi-state models
lead to multi-exponential kinetics.

Much of Chapter 7 probed the fundamental physical processes
that govern the speed of a transition. Now we will accept the basic
phenomenon of a transition with a given rate, put some of these
transitions together, and work out the dynamic behavior of these
more complicated systems. The mathematical method for handling
multi-state kinetics is very robust and powerful. With them one can
develop quantitative descriptions for a general class of models.
Aside from kinetic problems in biophysics, the mathematics intro-
duced in this chapter has been applied to an extraordinarily wide
range of fields from stochastic processes in physics to population
dynamics in ecology.

Multi-state kinetics has considerable practical value, because most
models for molecular mechanisms involve interconversions between
a few distinct states. Kinetic behavior often provides the most direct
experimental tool for testing the predictions of such a model.

9.1 The three-state model

Many important features of multi-state kinetics can be illustrated
with this example. We take the two-state model and add one more
state (Scheme (9A))

A
��! �
�

B
�
 ��!
�

C (9A)

As in the analysis of the two-state model, we write down differential
equations for the rates of change of concentrations of the different
species, A, B, and C. Each rate constant represents a process that



increases one species at the expense of another. Thus, [A] decreases
as ��[A] and increases as �[B]. Likewise, [B] increases as �[A]þ �[C]
and decreases as �(�þ �)[B]. This reasoning leads to three differen-
tial equations

d½A�
dt
¼ ��½A� þ �½B� (9:1a)

d½B�
dt
¼ �½A� � ð� þ �Þ½B� þ �½C� (9:1b)

d½C�
dt
¼ �½B� � �½C� (9:1c)

These differential equations can be solved to obtain [A], [B], and
[C] as functions of time. We will see that the general solution is a
sum of exponentials. Exponentials decaying at different rates are
combined in different proportions depending on the initial condi-
tions. The mathematical approaches to these kinds of kinetics pro-
blems proceed through two broad steps. First, the decay constants
of the exponentials are determined. Then initial conditions are used
to determine the coefficients multiplying the exponentials.

The general method for solving these systems of equations will
be presented shortly, but working through this example by a more
direct approach will provide a useful orientation for how the gen-
eral method works. The strategy is to eliminate two of the variables
by substitution and thereby obtain a differential equation in one
variable. First, note that because the total amount of interconvert-
ing material is conserved, we have [A]þ [B]þ [C] ¼ T, where T is
constant. This can be used to eliminate [C] from Eq. (9.1b) as follows

d½B�
dt
¼ �½A� � �½B� � �½B� þ �ðT � ½A� � ½B�Þ (9:2)

Now we rearrange Eq. (9.1a) to obtain [B] ¼ (1/�) ((d[A]/dt)þ� [A]).
This can be differentiated to obtain d[B]/dt. Substituting these two
expressions eliminates [B] from Eq. (9.2) to yield a differential equa-
tion with [A] as the only remaining dependent variable

d2½A�
dt2 þ ð�þ � þ � þ �Þ

d½A�
dt
þ ð�� þ �� þ ��Þ½A� � ��T ¼ 0 (9:3)

The last term, ��T, can be removed by replacing [A] with a new
variable ½A�0 ¼ ½A� � ��T=ð�� þ �� þ ��Þ

d2½A�0

dt2
þ ð�þ � þ � þ �Þd½A�

0

dt
þ ð�� þ �� þ ��Þ½A�0 ¼ 0 (9:4)

An exponential function satisfies this differential equation, so
we insert elt for [A]0. All the exponential factors then cancel to give a
quadratic equation in l

l2 þ ð�þ � þ � þ �Þlþ �� þ �� þ �� ¼ 0 (9:5)
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If l satisfies this equation then elt satisfies Eq. (9.4). Equation (9.5)
has two solutions

l1 ¼
�ð�þ � þ � þ �Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ � þ � þ �Þ2 � 4ð�� þ �� þ ��Þ

q
2

(9:6a)

l2 ¼
�ð�þ � þ � þ �Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ � þ � þ �Þ2 � 4ð�� þ �� þ ��Þ

q
2

(9:6b)

The expression for [A]0 which satisfies Eq. (9.4) thus has the
following general form

½A�0 ¼ a1el1t þ a2el2t (9:7)

where a1 and a2 are constants that will be determined in the follow-
ing section. For now we observe that [A]0 changes with time as a sum
of two exponentials. The two exponential decay constants are l1 and
l2 given by Eqs. (9.6a) and (9.6b); l1 and l2 are always negative and
real for positive values of the rate constants, so [A]0will always decay
to zero.

Recall that [A]0 ¼ [A]���T/(��þ��þ��). Thus, when [A]0 has
decayed to zero, [A]¼��T/(��þ��þ��). In fact, this is the equilibrium
value of [A] that can be obtained from Scheme (9A) by expressing the
equilibrium constants in terms of the ratios of the rate constants and
solving for [A]. Defining this as [A]eq gives the solution as

½A� ¼ a1el1t þ a2el2t þ ½A�eq (9:8)

Thus, whatever [A] starts out as, after a sufficiently long time it ends
up being [A]eq.

We could have chosen to eliminate [A] and [C] to obtain a differ-
ential equation for [B], or eliminate [A] and [B] to obtain a differen-
tial equation for [C] (Problem 1). Either way, we obtain a double
exponential with the same two decay constants specified in Eqs.
(9.6a) and (9.6b). The time-dependent expressions for each species
will be distinguished from one another by the factors a1 and a2.

This analysis makes the point that adding a third state to the
kinetic scheme adds a second exponential term to the solution.
What if the scheme had four states? The system of differential equa-
tions would increase in number to four. The same elimination process
could be performed, but when we finally arrived at a differential
equation in one variable, it would be third order, with a third deriva-
tive. Using elt as a test function would give a cubic polynomial instead
of the quadratic polynomial seen in Eq. (9.5). A cubic polynomial has
three roots, so the general solution to the set of differential equations
is a sum of three exponentials. By extension, adding another state
would give us a fourth exponential, and so on. Thus, each time we add
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a state to a kinetic model, we add another exponential to the time
course. This is a very general and important property of multi-state
kinetic systems, which will be examined further below.

9.2 Initial conditions

So far, we have seen how double exponential kinetics arises, but we
still have to complete the solution by determining the coefficients a1

and a2 in Eq. (9.8). Equation (9.8) is a general solution, and it becomes a
specific solution once this is done. The specific solution depends on
the initial state of the system, or the initial conditions. We have to
know the values for [A], [B], and [C] at t¼0. Here we will take the case of
[A]0¼ T and [B]0¼ [C]0¼0. Thus, at t¼0, Eq. (9.8) reduces to

T ¼ a1 þ a2 þ ½A�eq (9:9)

We need one more equation with a1 and a2 to solve for these two
unknowns. Using Eq. (9.1a), we can write [B] in terms of [A] as

�½B� ¼ �½A� þ d½A�
dt
¼ �ða1el1t þ a2el2t þ ½A�eqÞ þ ða1l1el1t þ a2l2el2tÞ

(9:10)

Setting t ¼0 and [B] ¼0 for the initial condition gives another
expression with a1 and a2

0 ¼ �a1 þ �a2 þ �½A�eq þ a1l1 þ a2l2 (9:11)

Equations (9.9) and (9.11) are then solved for the two unknowns

a1 ¼
��T � l2ðT � ½A�eqÞ

l1 � l2
(9:12a)

a2 ¼
�T þ l1ðT � ½A�eqÞ

l1 � l2
(9:12b)

Using these expressions in Eq. (9.9) gives the specific solution for
this initial condition

½A� ¼
��T � l2ðT � ½A�eqÞ

l1 � l2
el1t þ

�T þ l1ðT � ½A�eqÞ
l1 � l2

el2t þ ½A�eq

(9:13)

This provides an essentially complete description of the system.
With the aid of Eq. (9.1a), an expression for [B] is easily obtained
from Eq. (9.13). An expression for [C] follows by using either
Eq. (9.1b), or (9.1c), or the conservation relation, [A]þ [B]þ [C] ¼ T.

The behavior of the three-state model can be illustrated by giving
the rate constants specific values. With � ¼ � ¼ 4 and � ¼ � ¼ T ¼1,
we obtain the following expressions
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½A� ¼ 0:667e�3t þ 0:286e�7t þ 0:048 (9:14a)

½B� ¼ 0:667e�3t � 0:857e�7t þ 0:19 (9:14b)

½C� ¼ �1:333e�3t þ 0:571e�7t þ 0:762 (9:14c)

These are plotted to illustrate how all three species vary with time as
sums of the same two exponentials (Fig. 9.1).

Equations (9.14a–c) and Fig. 9.1 show the expected behavior. With
[A] initially at 1 there is a steady double-exponential decay to the
equilibrium level of 0.048. We see that [B] starts out at zero, goes
through a maximum, and then decays to its equilibrium value. The
maximum is possible because of the negative coefficient of the more
rapidly decaying exponential in Eq. (9.14b). Similarly [C] starts off at
zero and initially shows no increase. The lag is caused by the need for
[B] to rise first. Thus, initially the derivative of [C] is zero (Problem 2).

The equations derived here allow one to predict the time course
of a kinetic process when the rate constants are known. However,
experimenters usually want to do the opposite, i.e. determine the
rate constants from a kinetic experiment. In fact, a single kinetic
experiment that gives a time course of the form in Eq. (9.13) pro-
vides sufficient information to solve for �, �, �, and � (Problem 4).

9.3 Separation of timescales

It is easy to envision how a three-state kinetic model can give rise to
double exponential kinetics. For example, if transitions between A and
B are fast and transitions between B and C are slow, a system that starts
out in A will show an initial rapid conversion of A to B. However, the
reverse process will lead to a quasi-stable situation. Now if B inter-
converts slowly with C, then as this process progresses there will be a
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Fig: 9:1: Plots of [A], [B], and [C]

from Eqs. (9.14a)–(9.14c).

220 MULTI -STATE KINETICS



further slow decay in [A]. Intuitively, we might think that the first
decay constant will reflect the transitions between A and B, so we
would expect one decay constant to be�� (�þ�). Likewise the second
exponential should reflect the rates between B and C, so we might
guess that the other decay constant will be �� (�þ �).

We can check our intuition by looking at the exact expression
for the decay constants (Eqs. (9.6a) and (9.6b)). In general, if
4(��þ ��þ��) is relatively small, then (�þ �þ �þ �)2 will dominate
the square root term. Equation (9.6a) then gives l1 � 0 and Eq. (9.6b)
gives l2 � � (�þ�þ �þ �). Thus, the timescales separate. If � and
� >>� and �, this gives one of expected decay constants.

l2 � �ð�þ �Þ (9:15)

To obtain an approximate expression for l1 in this limit, we
factor �þ�þ �þ � out of the radical in Eq. (9.6a) as follows

l1 ¼ �
�þ � þ � þ �

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ð�� þ �� þ ��Þ
ð�þ � þ � þ �Þ2

s !
(9:16)

Now the Taylor expansion
ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

� 1þ x=2 (Eq. (A1.6)) reduces l1 to

l1 � �
�� þ �� þ ��
�þ � þ � þ � (9:17)

If � is much larger than all the other rate constants, then we get
l1 � ��. If � is larger, we have l1 � � (�þ �). So depending on the
specifics, the approximate form for the slower decay constant can
vary. Thus, the simplistic approximation of a three-state system as
two separate two-state processes does not work out exactly as
expected. Nevertheless, separation of timescales is a common fea-
ture of complex multi-state kinetic models. Simple approximate
expressions for some of the decay constants often exist, but they
must be employed with caution, and verified by careful analysis.

It is also worth noting the conditions where the timescales do
not separate. When the square root term in Eqs. (9.6a) and (9.6b) is
small ((�þ�þ �þ �)2 � 4��þ4��þ 4��), then l1 and l2 will be
similar, and the decay constants will not be easily approximated
in terms of one transition or the other. Clearly, when the term in the
radical of Eqs. (9.6a) and (9.6b) is zero, then l1 ¼ l2. When this
happens the three-state system will exhibit single-exponential
kinetics. In this case, the decay constants are said to be degenerate.
We must therefore qualify the general rule about state number. The
number of exponentials is actually the minimum number of states.

9.4 General solution to multi-state systems

The method used to solve the three-state model could in principle
be extended to models with more states, but the elimination
method used to solve the problem in Section 9.1 becomes too
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complicated to be practical. Multi-state systems become very man-
ageable with the aid of matrices and vectors (Cox and Miller, 1965).
This approach actually systematizes the elimination method used
above to solve the three-state model. The analysis of this section
may seem abstract, but the subsequent section provides a bridge to
practical applications by repeating the analysis of the three-state
model in these terms.

There are n species, and we define the concentration of the ith
species as [Ai]. A column vector composed of the concentrations of
all these species can then represent the state of a system.

A ¼

½A1�
½A2�

:
:
½An�

0
BBBB@

1
CCCCA (9:18)

The derivative of this vector is another column vector dA/dt with
elements d[Ai]/dt.

Interconversion rates will still be given by a rate constant multi-
plied by the concentration of the species undergoing the transition,
e.g. �[A] or �[B]. A differential equation can be written down for
the time derivative of each species as a sum of such terms.
Eqs. (9.1a)–(9.1c) illustrate this, and we can extend this set of equations
to accommodate additional species and transitions. Each transition
makes a contribution to the time derivatives of the two participating
states. A transition from Ai to Aj produces a loss of Ai and a gain of Aj;
the reverse transition does the opposite. If we take all the transitions to
and from state Ai into account, the concentration derivative of [Ai] will
be a sum of the form �i1[A1]þ�i2[A2]þ � � � þ�in[An], where the �s are
obtained from the rate constants. This allows us to define a matrix Q,
and write the entire system of n differential equations as a single
matrix-vector equation

dA
dt
¼ QA (9:19)

The elements of Q are determined by the following general rule.
The diagonal elements Q ii are minus the sum of the exit transitions
from Ai to all the other states. Each off-diagonal element Q ji is the
rate of the transition from state Aj to Ai.

This compact expression for a system of kinetic differential
equations is referred to as the master equation in the theory of
stochastic processes (Van Kampen, 1981). It represents the total
effect of all the transitions relevant to a given system, summing
up all the gains and losses for each participating species.

To solve Eq. (9.19) we do what we did in solving Eq. (9.4): we try
out an exponential function. Take A ¼Uelt, where U is an unknown
vector of the same dimension as A, and substitute it into Eq. (9.19)

lUelt ¼ QUelt (9:20)

222 MULTI-STATE KINETICS



Thus; lU ¼ QU (9:21)

This is rearranged to obtain

ðQ � lIÞU ¼ 0 (9:22)

where I is the identity matrix, with ones along the diagonal and
zeros everywhere else. Setting all the elements of U equal to zero is
one way to solve the equation, but this trivial solution is worthless
because our state vector A must have nonzero elements. To find
vectors for which U 6¼ 0, note that Eq. (9.22) places an important
restriction on the matrix Q � lI. A nonzero vector U that solves the
equation gives a way to combine the columns of Q � lI to obtain an
all-zero vector. The columns are then not linearly independent, so
the determinant is zero (Appendix 2)

jQ � lIj ¼ 0 (9:23)

This is the characteristic equation (Eq. (A2.17)) of Q. Writing out
the determinant of Q � lI produces a polynomial in l of order n (the
number of states). The roots of this equation are the characteristic
values or eigenvalues of Q. Since the number of roots of a polynomial
is equal to its order, this tells us that there are as many values for l as
there are states in the kinetic system. With n states, Eq. (9.23)
defines a set of n exponential decay constants, l1, l2 . . . ln. There
will then be n exponential components. This constitutes a formal
proof of the assertion made above. Each time a state is added to a
system, there will be another exponential component added to the
solution of the kinetics problem.

One might think that there is a discrepancy because the three-
state system in Section 9.1 gave only two exponentials. With three
states, Eq. (9.23) should give a cubic polynomial, and that means
three exponentials. The issue is resolved by realizing that one of the
values is l ¼0. This corresponds to the constant term, [A]eq, in
Eq. (9.13).

With this analysis we see that the kinetics of any species in an
n-state kinetic system will be described by a general version of Eq. (9.8)

½Ai� ¼
Xn

k ¼ 1

aikelkt (9:24)

where k is used to index the eigenvalues and it is distinct from i, the
index used for the species. Each [Ai] has its own set, aik, of coeffi-
cients that are used to combine the same set of exponentials in
different proportions. As with the three-state model, these coeffi-
cients are determined by the initial conditions. In an n-state model,
the initial condition takes the form A(0) ¼ A0, where A0 specifies
the initial concentrations of all the species.

To calculate the aik in Eq. (9.24) from A0 we return to Eq. (9.22).
For each eigenvalue, Eq. (9.22) is solved for the vector, U, using one
of the lks. These vectors are the characteristic vectors or eigenvectors
of Q. Each of the n eigenvalues has its own eigenvector, so there are
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also n eigenvectors. The kth eigenvector is paired with the kth
eigenvalue to give QUk ¼ lkUk (Eq. (9.21)).

Solving for U in Eq. (9.22) involves solving a system of n linear
equations for n unknowns. Since Eq. (9.22) was obtained by testing
the trial solution A ¼Uelt in Eq. (9.19), Uke

lkt is a solution. If our
initial condition happened to be one of the eigenvectors (A0 ¼Uk),
we would have a special case where every species (every component
of A) changes as a single exponential. This is a special property of
eigenvectors. For the particular set of concentrations in an eigenvec-
tor, interconversions all balance out to give a single exponential. In
practice this almost never happens. It is extremely unlikely that all
concentrations will coincidentally have the values of one of the eigen-
vectors, and eigenvectors often have negative values making such a
state physically impossible. Real solutions are sums of all n fundamen-
tal solutions,

Pn
k¼ 1 Ukelkt. Thus, each species has n exponential terms.

To obtain the aik in Eq. (9.24), the eigenvectors must be combined
in the right proportion to get the desired initial state vector, A0. This
can be done because linear algebra tells us the eigenvectors form an
orthogonal set that can be combined to represent any n-dimensional
vector. There must therefore be a set of coefficients, bk, that com-
bine the eigenvectors to give

Xn

k ¼ 1

bkUk ¼ A0 (9:25)

The left-hand side can be written as the product of a matrix and
vector

UB ¼ A0 (9:26)

The eigenvectors have been used to create the matrix U, in which
the kth column is Uk, and where B is a column vector with ele-
ments, bk. We can solve Eq. (9.26) to obtain the set of coefficients
in B as follows

B ¼ U�1A0 (9:27)

Now we combine the n functions, Ukelkt, to obtain a specific
solution to Eq. (9.19)

A ¼
Xn

k ¼ 1

bkUkelkt (9:28)

where bk is a component of the vector B. So each species is
½Ai� ¼

Pn
k ¼ 1 bkUikelkt and each coefficient in Eq. (9.24) is

aik¼ bkUik¼ (U�1A0)kUik. Note that at t ¼ 0, we recover the initial condi-
tion Eq. (9.25).

Computers make this approach easy to use. For small matrices,
the eigenvalues and eigenvectors are computed rapidly. The matrix
of eigenvectors can be inverted to implement Eq. (9.27) and obtain
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the coefficients. It should be noted that U can be used to convert
Q to a diagonal form

U�1QU ¼ L (9:29)

where L is a diagonal matrix with �kk ¼ lk (Eq. (A2.20)).

9.5 The three-state model in matrix notation

To see how the matrix formalism works we will now re-solve
the three-state model introduced at the start of the chapter. The sys-
tem of three equations for the rates of change of the three states
(Eqs. ((9.1a)–(9.1c)) is written in matrix format as

d½A�
dt

d½B�
dt

d½A�
dt

0
BBB@

1
CCCA ¼

�� � 0
� �� � � �
0 � ��

0
@

1
A A

B
C

0
@

1
A (9:30)

The characteristic equation then follows from Eq. (9.23)

��� l � 0
� �� � � � l �
0 � �� � l

������
������ ¼ 0 (9:31)

Expanding this determinant leads to a cubic polynomial

l3 þ ð�þ � þ � þ �Þl2 þ ð�� þ �� þ ��Þl ¼ 0 (9:32)

Note that l ¼0 is a solution, and factoring it out yields Eq. (9.5). So
Eqs. (9.6a) and (9.6b) give the other roots.

To obtain expressions for the eigenvectors we write out Eq. (9.21)

lU ¼
�� � 0
� �� � � �
0 � ��

0
@

1
AU (9:33)

With the test solution
Uk1

Uk2

Uk3

0
@

1
Aelkt we obtain the following three

equations.

� �Uk1 þ �Uk2 ¼ lkUk1 (9:34a)

�Uk1 � ð� þ �ÞUk2 þ �Uk3 ¼ lkUk2 (9:34b)

�Uk2 � �Uk3 ¼ lkUk3 (9:34c)

At first glance one might try to use these three equations to solve for the
three unknowns, Uk1, Uk2, and Uk3, and thus determine the elements of
the eigenvector. This does not work because the rows of the matrix are
not linearly independent (Eq. (9.34b) is just minus the sum of (9.34a) and
(9.34c)). Determination of the elements ofU requires an additional piece
of information. We specify that the eigenvectors have a unit length

Uk1
2 þ Uk2

2 þ Uk3
2 ¼ 1 (9:35)
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Combining this with two of the three equations (Eq. (9.34)) allows us
to solve for the elements of Uk

U1k ¼

�

lk þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

lk þ �

� �2

þ �

lk þ �

� �2
s (9:36a)

U2k ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �

lk þ �

� �2

þ �

lk þ �

� �2
s (9:36b)

U3k ¼

�

lk þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

lk þ �

� �2

þ �

lk þ �

� �2
s (9:36c)

This is actually three equations, one for each eigenvalue (k¼1, 2, and 3).
They can be checked as solutions of Eqs. (9.34a)–(9.34c) and (9.35).

*9.6 Stationarity, conservation, and
detailed balance

Kinetic systems often exhibit some form of stability, and can settle
into a stable state. Stability means that the concentrations are constant
and their time derivatives are zero. This requires that the rate con-
stants obey certain relationships. A system might have a stationary
state if the number of moles is conserved, or if it is at thermodynamic
equilibrium. We saw in Section 7.3 that a thermodynamic equilibrium
leads to the condition of detailed balance. This can be generalized to
multi-state kinetic systems where the relations between rate constants
determine important properties of the Q-matrix.

First we look at stationarity. This means that a system has a state
that is stable and unchanging. It could be a thermodynamic equili-
brium, but not all stationary states are equilibrium states, and the
distinction will be explained shortly. In a stationary state all of the
time derivatives are zero. We can use the vector Ast to denote a
particular set of concentrations where this condition is met.
Equation (9.19) then gives

QAst ¼ 0 (9:37)

Note that this equation can be solved to obtain Ast in terms of the
rate constants.1

1 Inverting Q does not work because we will soon see that |Q|¼ 0, making it non-

invertible. To solve for Ast requires another condition such as conservation of number

of moles.

226 MULTI-STATE KINETICS



Now, consider Eq. (9.21). Taking Ast as an eigenvector gives

QAst ¼ lAst (9:38)

From Eq. (9.37) it is clear that l ¼ 0. Thus, Q must have one eigen-
value equal to zero, and Ast is the corresponding eigenvector. This is
an important property of a kinetic system with a stationary state.
The converse of this statement is also true. If a system does not have
a stationary state, none of the eigenvalues can be zero.

This situation was noted above for the three-state model. It has
an equilibrium state, and one of the solutions to Eq. (9.32) is zero.
Look at the solution of the three-state model (Eq. (9.13)), and
imagine that the final term [A]eq is really ½A�eqel3t. This does not
change anything because with l3 ¼0, el3t ¼ 1. The zero eigenvalue
guarantees that when all of the other kinetic processes are over
and done with, the system can come to rest at its stationary state
with A ¼Ast.

Now we consider conservation of the total number of moles of all
interconverting species. For a kinetic system to have this property,
there can be no destructive or creative processes, and no fluxes into
or out of the system. Associations and dissociations are not allowed,
as they change the number of moles. Aside from conservation
issues, association processes give rise to nonlinear terms of the
form [A][B], and the mathematical methods used here to solve
these problems no longer work.

If the total number of moles never changes, the time derivatives
must sum to zero

Xn

i ¼ 1

d½Ai�
dt
¼ 0 (9:39)

Looking at the right-hand side of Eq. (9.19), the product QA can be
multiplied out and the elements of the resulting vector added
together. Equation (9.39) tells us this must be zero

Xn

j¼ 1

Xn

i ¼1

Q ij½Ai� ¼ 0 (9:40)

Now, reverse the summation order and collect factors of each Ai

Xn

j¼ 1

Q 1j½A1� þ
Xn

j¼ 1

Q 2j½A2� þ � � � þ
Xn

j¼1

Q nj½An� ¼ 0 (9:41)

Each term of Eq. (9.41) contains a sum over all the elements
of one column of Q. This equation holds for any [A1], [A2], . . . [An],
and that means that the sums multiplying each [Ai] must also be
zero. Hence, we have the result that each column of Q must sum
to zero. It is easy to check that Q in Eq. (9.30) obeys this rule. This is
a general property of multi-state kinetic systems that conserve
moles. We will see in the analysis of single-channel kinetics that the
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matrices do not have this property because probability is not con-
served (Section 9.11).

Both stationarity and conservation lead to the result that Q has a
determinant equal to zero. For stationarity the matrix has an eigen-
value equal to zero, so |Q| ¼0 by Eq. (A2.23). Conservation also gives
us |Q| ¼0; this is a consequence of columns adding up to zero.
Because any row of Q can be expressed as minus the sum of all
the other rows, the rows are not linearly independent, and the
determinant is zero. This means that a kinetic system that obeys
conservation must have at least one zero eigenvalue, and so it must
also have a stationary state.

Finally, we look at equilibrium and the condition of detailed
balance. As noted in Section 7.3, when the two-state system reaches
equilibrium the forward and reverse rates balance out perfectly. If a
multi-state system is at equilibrium, then this same condition will
hold for each interconversion

�ij½Ai� ¼ �ji½Aj� (9:42)

where �ij denotes the rate constant by which Ai converts to Aj, and
�ji denotes the rate constant for the reverse process. In words, this
means that the rate of direct conversion from Ai to Aj equals the rate
of direct conversion in the opposite direction. This is exactly what
was stated for the two-state system in Section 7.3.

The ith diagonal element of Q is the sum of the exit rates from Ai,
i.e.

Pn
j ¼ 1 aij. Each off-diagonal element of column i will be the rate

constant of one of the reverse steps, i.e. one of the �ji. So with the aid
of Eq. (9.42), we see that the columns will sum to zero, as already
deduced from the constraint of conservation. Further, since a sys-
tem that obeys detailed balance will have a stationary state, the
matrix will have one eigenvalue equal to zero. Hence, the condition
of detailed balance (as expressed in Eq. (9.42)) imposes the same
constraints on the rate matrix derived from stationarity and
conservation.

Conserved systems and systems with a stationary state need
not obey detailed balance. The columns of Q sum to zero, but
this can be done without satisfying Eq. (9.42). This means that
the system will cycle through a sequence of states repetitively.
A molecule may go from state A to B to C to A more often than
from state A to C to B to A. In general, for this to happen, a source
of energy is required. For example, going from A to B may
be accompanied by ATP hydrolysis, so that cycling in the order
A, B, C, A consumes energy. The reverse cycle would require
ATP synthesis, and would be energetically unfavorable. The
system would keep cycling in the energetically favored direction,
consuming ATP. Finally, when the ATP–ADP reaction reaches
equilibrium, detailed balance will then be obeyed. These issues
will be taken up below in relation to single-channel kinetics
(Section 9.11).
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9.7 Single-channel kinetics: the three-state model

In Section 7.9 we saw that single-channel kinetics relates rate con-
stants to the stochastic behavior of ion channels. Now we will
return to the single-molecule realm to see how the multi-state
kinetic methods are adapted to this class of problems. This means
that we must change from a macroscopic level, where concentra-
tions are the variables of interest, to the microscopic level, where
the variables are probabilities. In fact, this change is trivial. If
the sum of the concentrations of all the different interconverting
species is T, then the concentration of species A will be PAT, where
PA is the probability of a molecule being in state A. As a result the
kinetic equations for changes in probability have the same basic
form as the equations for changes in concentration. The mathema-
tical strategies for finding solutions are also quite similar.

The ideas in this section are applicable to any single-molecule
measurement, but we will use ion channel terminology here and
refer to states as open and closed. We will start with a three-state
model (see Scheme (9B)), like that used at the beginning of the
chapter, but here we will specify that the two right-most states are
open channels

C
�
 ��!
�

O1

��! �
�

O2 (9B)

Both open states have the same conductance, so that one cannot tell
by measuring current which open state the channel is in.

It should be clear from the two-state model of Section 7.9 that the
closed-time distribution of Scheme (9B) will be a single exponential,
e��t. This is because there is only a single closed state. However, it
is clear that a single exponential cannot describe the open-time
distribution of Scheme (9B). Openings begin in state O1, but from
there they can either close directly or flip to O2. Thus, we would
expect to see a population of brief events that go straight to C, and a
population of long events that spend some time in O2.

The derivation of the open-time distribution for Scheme (9B)
parallels the treatment of the macroscopic kinetics of the three-
state model. Differential equations are again written down for
the different species, but now they express gains and losses
in probability instead of concentration. We only need differ-
ential equations for the two open states. The probability of
being closed is irrelevant because once a channel closes, sub-
sequent activity has no bearing on the problem. Taking the
probability of being in state O1 as Po1, and the probability of being
in state O2 as Po2, we have

dPo1

dt
¼ �ð� þ �ÞPo1 þ �Po2 (9:43a)
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dPo2

dt
¼ �Po1 � �Po2 (9:43b)

Note that the opening rate, �, does not appear in these equations.
This reaffirms the irrelevance of the closed state.

At this point we might think that we should eliminate one of the
variables with a conservation constraint, as was done for the macro-
scopic behavior of both the two-state and three-state models.
However, as time evolves the probability of the channel being
open decreases. Conservation does not apply here, and this will be
examined further below. By a process of substitution and elimina-
tion between Eqs. (9.43a) and (9.43b), similar to that used to obtain
Eq. (9.3) from Eqs. (9.1a)–(9.1c), we can obtain a second order differ-
ential equation in one of the variables. Using the trial solution elt

leads to a quadratic equation similar in form to Eq. (9.5)

l2 þ ð� þ � þ �Þlþ �� ¼ 0 (9:44)

There are two solutions

l1 ¼
�ð� þ � þ �Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� þ � þ �Þ2 � 4��

q
2

(9:45a)

l2 ¼
�ð� þ � þ �Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� þ � þ �Þ2 � 4��

q
2

(9:45b)

So the general solution to Eqs. (9.43a) and (9.43b) is a sum of two
exponentials

Po1 ¼ a1el1t þ a2el2t (9:46)

As for the three-state model for macroscopic concentrations,
going from the general solution to a specific solution requires an
initial condition. However, now the initial condition is not arbi-
trary. At the start of a channel opening, the channel must be in
O1, because that is the only state accessible from the closed state.
Thus, at t ¼ 0, Po1 ¼1 and Po2 ¼ 0. Accordingly, Eq. (9.46) gives

a1 þ a2 ¼ 1 (9:47)

Substitution of Eq. (9.46) into Eq. (9.43a) gives

�Po2 ¼ a1l1el1t þ a2l2el2t þ ð� þ �Þða1el1t þ a2el2tÞ (9:48)

Since Po2 ¼0 at t ¼0, we have

a1ðl1 þ � þ �Þ þ a2ðl2 þ � þ �Þ ¼ 0 (9:49)

Equations (9.47) and (9.49) are then solved for a1 and a2

a1 ¼
�l2 � � � �

l1 � l2
(9:50a)
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a2 ¼
l1 þ � þ �
l1 � l2

(9:50b)

We can now write out Eq. (9.46) explicitly as

Po1 ¼
�l2 � � � �

l1 � l2
el1t þ l1 þ � þ �

l1 � l2
el2t (9:51)

And Eq. (9.48) can then be used to obtain Po2 from Eq. (9.43a)

Po2 ¼
�

l1 � l2
el1t � �

l1 � l2
el2t (9:52)

(Simplification of Eq. (9.52) was achieved with the aid of the rela-
tions l1l2 ¼��, and l1þ l2 ¼ �(�þ �þ �), which are easily derived
from Eqs. (9.45a) and (9.45b).)

Now there are two ways to proceed to an expression for the open-
time probability. We can realize that the probability of a closing
transition occurring at time t is equal to the closing rate constant, �,
times the probability of being in state O1. This is �Po1, and the open-
time probability distribution is obtained by integrating this expres-
sion from 0 to t. (Recall that the probability distribution is the
integral of the probability density – Eq. (7.33).)

Po ¼
�l2 � �
l1 � l2

el1t þ l1 þ �
l1 � l2

el2t (9:53)

Alternatively, we could take the open-time distribution as Po1þ Po2.
This means that the probability of a channel still being open at time
t is the sum of the probabilities of the channel being in either of the
two open states. Both strategies lead to the same expression for the
open-time distribution (Problem 6).

A plot of Po1, Po2, and their sum helps visualize how these
different probability functions change with time (Fig. 9.2). We see
that Po1 starts out at one and decays rapidly. This reflects the
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Fig: 9:2: Plots of Eqs. (9.51)–(9.53)

with �¼ 4, and �¼ �¼ 1 (giving

l1¼�0.76 and l2¼�5.24).
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predominant fast component. Because all openings begin in O1, Po2

is initially zero and rises to a maximum before decaying. We see that
Po reflects both of these quantities.

All of these functions are sums of two exponentials with the
same decay constants, but in different proportions. The maximum
in Po2 reflects the fact that one of the coefficients in Eq. (9.52) is
negative, as was seen in the case of [B] plotted in Fig. 9.1.

9.8 Separation of timescales in single
channels: burst analysis

It is very common in single-channel experiments to observe chan-
nel openings in clusters or bursts. A long period with no openings
will be followed by many openings in rapid succession, and then
another long period with no openings (Fig. 9.3).

A three-state model with two closed states can account for this
behavior, provided that the transitions between the open and
closed states are fast and the transitions between the two closed
states are slow. The closed-time distribution will have two compo-
nents. The brief closed times within the bursts will make up a fast
component, and the long closed times between the bursts will make
up the slow component.

The two-closed state model has the following form (Scheme (9C))

C1
��! �
�

C2

��! �
�

O (9C)

We just solved essentially the same problem in the preceding section.
We just need to interchange � with �, and � with �. From Eqs. (9.45a)
and (9.45b), the closed-time distribution then has the following expo-
nential decay constants

l1 ¼
�ð�þ � þ �Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ � þ �Þ2 � 4��

q
2

(9:54a)

l2 ¼
�ð�þ � þ �Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ � þ �Þ2 � 4��

q
2

(9:54b)

Burst duration

Open times

Closed

Open

Fig: 9:3: Three bursts of single-

channel openings. The middle

burst is expanded.

232 MULTI -STATE KINETICS



The closed-time distribution is obtained by using these expressions
for l1 and l2 and making the corresponding replacements in the
coefficients of Eq. (9.53).

As in Section 9.3, the condition that leads to a separation of
timescales is that the second term in the square root must be
much smaller than the first: (�þ �þ �2)>>4��. The situation that
gives rise to bursting is when � is slower than the other rates.
A transition to C1 will then begin a long-lasting inter-burst interval.
The brief closed times result from the channel entering C2 from O,
and returning directly to O. With the stipulation that � and � >>�,
the same reasoning that led to Eqs. (9.15) and (9.17) gives the follow-
ing approximate expressions for l1 and l2

l1 �
���
� þ � (9:55a)

l2 � �ð� þ �Þ (9:55b)

First consider l2. The lifetime distribution of state C2, is e�(�þ �)t.
The two pathways out of that state have a perfectly additive effect
in decreasing its lifetime. We can now determine the fraction of
departures from C2 into the two destinations, O and C1. They
should be in the proportion �/�. The fraction of exits from C2 to O
is �/(�þ �), and the fraction of exits from C2 to C1 is � / (�þ �). These
fractions can be used in the closed-time distribution to give the
proportion of brief and long closures, respectively

PC �
�

� þ � e�ð�þ �Þt þ �

� þ � e���t=ð�þ �Þ (9:56)

Viewing the process in this way allows us to derive a few additional
interesting features of bursts. We can ask how many openings are
likely to appear in a burst. First we determine the probability of a burst
having only one opening. The channel will be in C2, and for the burst
to end, the channel has to flip to C1. According to the reasoning of the
preceding paragraph, the probability of doing so is �/(�þ�). For a two-
opening burst the channel must return from C2 back to O; the prob-
ability of this happening is �/(�þ�). After the second opening is over
the channel is once again in C2, and this time there must be a transi-
tion to C1, with a probability of �/(�þ�). The product of these two
separate events gives the probability of a two-opening burst as ��/
(�þ�)2. Repeating these steps leads to a general expression for the
probability of an n-opening burst

PðnÞ ¼ ��n�1

ð� þ �Þn
(9:57)

The mean value of n can be written out and the sums evaluated with
Eqs. (A1.11) and (A1.12)

n ¼

P1
n¼ 1

nPðnÞ

P1
n¼ 1

PðnÞ
¼ � þ �

�
(9:58)
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It is easy to count the number of openings per burst in a single-
channel record and determine the average. The mean lifetime of a
closure within a burst is 1/(�þ �), and together with Eq. (9.58) one
can solve for the rate constants � and � (Colquhoun and Hawkes,
1982).

One notable application of burst analysis was an investigation of
channel blockade by local anesthetics (Neher and Steinbach, 1978).
These drugs enter open channels and act like plugs to prevent ion
flow. In the presence of a local anesthetic, recordings of acetyl-
choline receptor single-channel currents look very much like Fig. 9.3.
But the closures within bursts are drug binding events rather than
channel gating transitions.

Neher and Steinbach used the following model (Scheme (9D)) to
interpret their data

C
��! �
�

O
kb½D��! �

kd
B (9D)

The state denoted by B is a blocked state. The local anesthetic binds
to the open state at a rate equal to the binding rate constant, kb,
times the drug concentration [D], and dissociates with a rate kd. The
constant � was determined from the open-time distribution in
the absence of the local anesthetic (but in the presence of acetyl-
choline). When the local anesthetic was added the open-time distrib-
ution showed a more rapid exponential decay. The rate of decay
increased linearly with concentration, and the slope gave kb. In the
presence of the local anesthetic brief closures were seen, reflecting
blocking events. These brief events had an exponential distribution
of lifetimes, and this gave an estimate of kd.

These results were consistent with Scheme (9D), but a more
rigorous test of this model was sought. The bursts of openings
became longer as the local anesthetic concentration was increased.
Neher and Steinbach (1978) made a separation of timescales argu-
ment to obtain an approximation for the mean burst duration. They
assumed that O and B equilibrated rapidly so that within a burst the
fraction of time spent in O was

xo ¼
kd

kd þ kb½D�
(9:59)

a burst must end by transitions from O to C, so the rate of burst
termination is �xo. The mean burst duration is then obtained as the
inverse of this rate

tb ¼
1

�
1þ kb½D�

kd

� �
(9:60)

This equation predicted the measured mean burst duration very
well over a range of local anesthetic concentrations, providing
strong support for the open-channel block model represented by
Scheme (9D).
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9.9 General treatment of single-channel
kinetics: state counting

A channel gating scheme is represented by a set of differential
equations, as exemplified by Eqs. (9.43a) and (9.43b) for the two-
open-state model, and these equations can be written in the matrix-
vector form of Section 9.4. Our state vector is nowPo, which represents
a set of open probabilities for an arbitrary number of open states.

Po ¼

Po1

Po2

:
:

Pon

0
BBBB@

1
CCCCA (9:61)

The matrix is formulated from the rates for transitions between and
out of the various open states. Return transitions from the closed to
the open states are irrelevant. The two-open-state model has the
following matrix

Q o ¼
�� � � �
� ��

� �
(9:62)

The subscript o means that this matrix is for open-state probabi-
lities. For closed states we would use the subscript c. In terms of Po

and Qo, the evolution through time of the open-state probability
vector obeys a differential equation of the same form as Eq. (9.19)

dPo

dt
¼ Q oPo (9:63)

This equation can be solved in the same way as Eq. (9.19). The
exponential decay constants are the eigenvalues of Q o. The number
of eigenvalues gives us the number of exponentials in the open-time
distribution. This number in turn will be set by the dimension of Po,
which is equal to the number of open states. Of course, the same
method can be used for closed times where a matrix Q c replaces Q o.

This leads to an important rule for single-channel kinetics. The
number of exponentials that a gating scheme predicts in the life-
time distribution for one particular conductance level is equal to the
number of states with exactly that conductance. So, for example,
when one observes that an open-time distribution is well described
by a sum of three exponentials, one can conclude that the open state
of that channel possesses three kinetically distinguishable conforma-
tions. Figure 9.4 shows an example of lifetime distributions for both
open times and closed times from a Cl� channel activated by the
neurotransmitter GABA. These distributions were created from a
long record of channel transitions such as that shown in Fig. 7.11.
Each distribution was well fitted by a sum of two exponentials,
implying that this channel has two open states and two closed states.
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In practice, one must recognize the possibility of processes too fast or
too slow to detect, as well as similar or degenerate eigenvalues. So the
number of exponentials is generally taken as the lower bound to the
number of states with a given conductance.

The coefficients of the exponentials are determined by the same
mathematical method used for macroscopic kinetics. One deter-
mines the eigenvectors of the matrix, and combines them to satisfy
the initial condition. In the case of a single-channel lifetime distri-
bution the initial condition is again dictated by the distribution
among open states at the start of an opening. For a full treatment
of single-channel kinetics with matrix methods see Colquhoun and
Hawkes (1995).

*9.10 Relation between single-channel
and macroscopic kinetics

The equations for multi-state kinetics are clearly very similar for
macroscopic and single-molecule systems. The two realms can be
connected explicitly. Consider the kinetic scheme for a channel
with multiple open and closed states. We start with the full matrix,
Q, for interconversions between all these states (Eq. (9.19)), and
then partition it into submatrices based on the channel conduct-
ance states. Within Q we will find the submatrix Q o that accounts
for transitions between the various open states as well as transitions
out of the collection of open states. We will also find the submatrixQ c

that accounts for transitions between the various closed states as well
as transitions out of the collection of closed states. Finally, we can also
recognize the submatrices Q c�o and Q o�c that account for transitions
between open and closed states. In these terms, Eq. (9.19) is written as

Q c Q c�o

Q o�c Q o

� �
Pc

Po

� �
¼

dPc
dt

dPo
dt

0
@

1
A (9:64)
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Fig: 9:4: Lifetime distributions

for open times and closed times,

from single-channel recordings of

the GABA receptor channel

(Fig. 7.11). A semilogarithmic plot

shows exponentials as straight lines.

Fits gave 97e�t/0.81þ 23e�t/12.9 for

the open-time distribution (a) and

145e�t/0.99þ 4.9e�t/45.3 for the

closed-time distribution (b) (Zhang

and Jackson, 1995).
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Thus, we have Eq. (9.19), but withQ partitioned as just described,
and with A partitioned into Pc and Po. Multiplying out the left-hand
side gives two matrix equations

Q cPc þQ c� oPo ¼
dPc

dt
(9:65)

Q o� cPc þQ oPo ¼
dPo

dt
(9:66)

The matrix equation for calculating the closed-time distribution
is obtained by discarding the term Q c � oPo from Eq. (9.65), and the
matrix equation for calculating the open-time distribution is
obtained by discarding the term Q o � cPc from Eq. (9.66). These
two discarded terms represent returns to the state in question,
and in single-channel kinetics these processes are irrelevant. This
outlines a general method for going back and forth between the full
kinetic scheme and the sub-schemes for the lifetime distributions at
the single-molecule level.

*9.11 Loss of stationarity, conservation,
and detailed balance

The full kinetic scheme for the conformational transitions of a
protein will have an equilibrium stationary state, provided that all
the transitions satisfy detailed balance (Section 9.6). However,
because single-channel analysis focuses on a limited part of the
full scheme, there are fundamental differences. In single-channel
kinetics, the probability of one channel staying in any particular
state must decay to zero with time; no state endures forever. This
means that there is no stationary state. The probability decays with
time so it cannot be a conserved quantity. Within the confines of
single-channel kinetics, detailed balance no longer holds because
transitions out of the state of interest (e.g. from closed to open) are
not balanced by return transitions.

All this has a bearing on the properties of Q o and Q c. They
generally have nonzero determinants, and all nonzero eigenvalues.
If they had an eigenvalue equal to zero, then the lifetime probability
would have a constant, non-decaying term (c.f. the last term of
Eq. (9.13)), and this would give the impossible result of a nonzero
limit as t!1. The zero eigenvalue of the transition matrix is a
requirement of stationarity, conservation, and detailed balance,
and it is important to realize that the partitioning process of
the foregoing section, by which one extracts the relevant single-
channel submatrices from the Q-matrix, leads to matrices with
fundamental differences.

This is generally true for single channels, regardless of whether
the scheme obeys detailed balance or not. When detailed balance
holds for the full kinetic scheme, more can be said about the shape
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of the lifetime distribution. For a single-channel kinetic scheme
with reversible transitions, the lifetime distribution is restricted
to monotonic decay from one to zero (see Po in Fig. 9.2). The lifetime
distribution is a sum of decaying exponentials in which each term
has a positive coefficient. If detailed balance is violated, this is no
longer true. Negative coefficients are possible and lifetime distribu-
tions can have inflections as probabilities rise and fall.

To see how this comes about, let’s look at the following cyclic
scheme (Scheme (9E))

C

O1

O2

α
β δ γ

ε
φ

(9E)

This scheme has two open states, like Scheme (9B), except that both
open states connect to the closed state. This creates an interesting
situation where violation of detailed balance leads to a preference
for clockwise or counterclockwise movement through the three
states.

First, we note that the rate constants are no longer independent.
We can see this by calculating the ratios of concentrations (much
like the cyclic schemes of Chapter 5). The ratio [O2]/[C] determined
by direct interconversion is �/", and this same ratio can also be
found to be ��/�� by considering transitions from O2 to C passing
through O1. At equilibrium the two expressions must be equal

��" ¼ ��� (9:67)

The idea is the same as that for Eq. (5.13), but there we used equili-
brium constants. If the rates do not obey Eq. (9.67), then detailed
balance is violated, and the system will show a preference for
cycling in one direction. This means that some source of energy
drives at least one of the steps, so that it is not at equilibrium.

To derive the open-time distribution of Scheme (9E) we deter-
mine the matrix for open times

Q o ¼
�� � � �

� �� � "

� �
(9:68)

where Q o has the following eigenvalues

l1 ¼
�ð� þ � þ � þ "Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� þ � þ � þ "Þ2 � 4ð�� þ �"þ �"Þ

q
2

(9:69a)

l2 ¼
�ð� þ � þ � þ "Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� þ � þ � þ "Þ2 � 4ð�� þ �"þ �"Þ

q
2

(9:69b)
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The initial condition is determined by the relative frequency of
openings into O1 versus O2, and they are clearly in proportion with
the rates � and �. Thus, Po1ð0Þ ¼ �=ð� þ �Þ and Po2ð0Þ ¼ �=ð� þ �Þ.
For the coefficients of the exponentials in Po1, this leads to

a1 þ a2 ¼
�

�þ � (9:70)

We can then calculate Po2 from Po1 and obtain the second condition

��

�þ � ¼ ð� þ � � l1Þ a1 þ ð� þ � � l2Þ a2 (9:71)

Now Eqs. (9.70) and (9.71) can be solved for a1 and a2. This leads to
expressions for Po1 and Po2 that can be added together to obtain the
open-time distribution

Po ¼
1

ð�þ �Þðl1 � l2Þ
ð�ðð�þ �Þl2 þ �� þ �"Þel1t þ ðð�þ �Þl1 þ �� þ �"Þ el2tÞ

(9:72)

Now we can examine the consequences of violating detailed
balance by taking an extreme case and letting � and � go to zero.
Looking back at Scheme (9E) we see that this makes all openings
start in O1. Further, they must return to C from O2. This forces the
channel to cycle through all three states for every opening. Eq. (9.72)
then reduces to

Po ¼
�l2

l1 � l2
el1t þ l1

l1 � l2
el2t (9:73)

There is an important difference between Eq. (9.72) and
Eq. (9.73). It may not be obvious, but the coefficients of Eq. (9.72)
are always positive if Eq. (9.67) is obeyed. By contrast, it is quite easy
to see that the coefficients of Eq. (9.73) are opposite in sign. Thus,
the violation of detailed balance leads to a qualitative difference.
This is illustrated by plotting the two expressions (Fig. 9.5), first with
� ¼1, � ¼10 (values chosen to satisfy Eq. (9.67)), and then with
� ¼� ¼ 0 (see Colquhoun and Hawkes, 1995).

The slope at t ¼ 0 is zero for � ¼� ¼0. This means that the
probability of a channel closing immediately after opening is zero.
The probability density function (the derivative of the distribution)
would thus start at zero (where the � ¼� ¼ 0 curve in Fig. 9.5 is flat),
go through a maximum, and then decay to zero. This kind of beha-
vior is occasionally observed in channel studies. One good example
is the cystic fibrosis transmembrane conductance regulator. The
binding of ATP drives this Cl� channel into an open state. Closure
of the channel follows hydrolysis of the bound ATP. Thus, there is a
delay before an open channel can close (Zeltwanger et al., 1999).

The result illustrated above with the three-state model has been
generalized to show that for any single-channel scheme in which the
individual steps obey detailed balance, the coefficients are necessarily
positive (Kijima and Kijima, 1987). Thus, the distribution decays
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monotonically with no peaks or inflections. The observation of such
behavior in single-channel data is thus evidence that the channel
gating scheme has at least one energy-consuming step such as ATP
hydrolysis. However, the converse is not true: when the observed
lifetime distribution has all positive coefficients, an energy-consuming
step cannot be ruled out. It is then more difficult to detect nonequili-
brium behavior and more sophisticated analytical methods must be
used (Steinberg, 1987; Rothberg and Magleby, 2001).

9.12 Single-channel correlations: pathway counting

So far we have focused on lifetimes of individual states of a channel.
However, for some kinetic schemes the lifetimes of successive
intervals are interdependent, i.e. they are correlated. This means
that our expectation for the duration of one state will depend on the
duration of the preceding state. Indeed, correlations can extend
over many intervals. We can express this interdependence in
terms of a two-dimensional probability density pc, o(tc, to). The math-
ematical methods used above for single-channel lifetime probabi-
lities can be extended to this more complex problem, although the
deriv ation is rather involved (Fred kin et al., 1985). Here we will
summarize some of the interesting results without delving into
the mathematical details.

The very existence of correlations in channel lifetimes often
establishes an important property of the underlying kinetic
scheme. Imagine that a recording of single-channel current shows
c l e ar c o r r e la t i o n s ( F i g . 9 . 6 ) . W e s ee l o n g c l o s u r es n e xt t o s h o r t o pe n -
ings, and vice versa. Imagine further that one has already analyzed
the open-time and closed-time distributions and found that both are
fitted by double exponentials ( Fig. 9.4). Thus, we kn ow that there are
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Fig: 9:5: Open-time distribution
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two open states and two closed states. The existence of correlations
tells us that two separate gating pathways must exist between the
open and closed states. A model with only one gating pathway
cannot account for correlations.

To see how this works, consider the following sequential gating
scheme (Scheme (9F))

C1
�! � C2

�! � O1
�! � O2 (9F)

A long-duration opening may result if O1 converts to O2. But when
the opening ends with a transition from O1 to C2, the information
about the duration of the opening is irrelevant to whether the
closure will end quickly with a return to O1, or endure for a long time
with a transition to C1. In fact, if one derives the two-dimensional
probability for an open time and subsequent closed time, one obtains
a product of the open-time and closed-time distributions. The probabi-
lities are independent.

Now look at a model (Scheme (9G)) with different behavior

O1
�! � C1

�! � C2
�! � O2 (9G)

An opening in O1 will end in C1 so closed times will be defined by this
initial condition. An opening in O2 will end in C2 and so the closed-
time probability will be different. The duration of a closed time will
now be correlated with the duration of the preceding opening.

In fact, many channels show clear correlations between succes-
sive state lifetimes. This is true of the acetylcholine receptor, and an
analysis along these lines was used to eliminate kinetic schemes
with only one gating pathway between the open and closed states
(Jackson et al., 1983).

Mathematical analysis of correlations in single-channel life-
times produces a correlation coefficient that is a function of the
number of intervening intervals, n. The result is a sum of exponen-
tials decaying in n, and the number of exponential terms is one less
than the number of gating pathways (Fredkin et al., 1985). Thus, an
analysis of single-channel data in this way reduces to a process of
performing a count of the number of gating pathways by which
open and closed states are connected.

More information can be obtained about a channel’s gating
mechanism by using matrix methods to calculate the probability,
or likelihood, of a long sequence of lifetimes constituting many
minutes of channel activity and thousands of single-channel

Closed

Open

Fig: 9:6: Correlations between

channel openings are illustrated

with brief openings in association

with long closures (left), and long

openings in association with brief

closures (right).
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transitions. This calculation can be repeated for several different
candidate kinetic schemes, and the scheme that gives the highest
calculated likelihood is the one that best represents the channel’s
gating activity (Horn and Lange, 1983). This method of likelihood
maximization has provided a great deal of insight into the mechan-
isms of channel gating, particularly of the voltage-gated Naþ channel
(Horn and Vandenberg, 1984).

9.13 Multisubunit kinetics

Multisubunit proteins can exhibit cooperative behavior. In
Chapters 1 and 5 thermodynamic analysis showed how the equili-
brium state of a multisubunit protein varied in a characteristic way.
Now we will look at the kinetics of a multisubunit protein. Take the
case where identical subunits undergo conformational transitions
independently. The simplest is a two-subunit protein described by
Scheme (9H)

A2
2��! �
�

AB
��! �
2�

B2 (9H)

The state vector for this system is ([A2], [AB], [B2]). Each subunit in
the A conformation undergoes transitions to B with a rate constant
�; the reverse rate constant is �. From A2, either subunit can switch,
so the rate constant for going from A2 to AB is 2�. The rate from AB
to B2 is �, because in AB there is only one subunit that can make the
transition. Likewise, the rate constant for going from B2 to AB is 2�,
and for AB to A2 is �. Using these rates for the various transitions
leads to the following matrix

Q ¼
�2� � 0

2� ��� � 2�

0 � �2�

0
@

1
A (9:74)

The characteristic equation (Eq. 9.23) is

l3 � 3ð�þ �Þl2 � 2ð�2 þ 2�� þ �2Þl ¼ 0 (9:75)

This can be solved by factoring to give the following three
eigenvalues

l1 ¼ 0 (9:76a)

l2 ¼ �ð�þ �Þ (9:76b)

l3 ¼ �2ð�þ �Þ (9:76c)

Thus, the two nonzero decay constants will be multiples of the
fundamental single-subunit decay constant, �(�þ �).
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For n subunits, t he model t akes the form of Scheme (9I) below

An
n��! �
�

An� 1B
ðn� 1Þ��! �

2�
An� 2B2

ðn� 2Þ��! �
3�

� � � ABn� 1

��! �
n�

Bn

(9I)

The MWC model has two rows like this ( Chapter 5, S cheme (9F)). We
take the initial condition as all subunits in the A conformation, so An

is the only species present. If a sudden change initiates transitions,
then B will start to form. Individual subunits will relax to a new
equilibrium according t o Eq. (7.4)

x ¼ �

�þ � e�ð�þ �Þt þ �

�þ � (9:77)

where x is the fraction of subunits as A. Note that x0 ¼ 1.
Because the subunits are independent, the probability of finding a

particular combination AiBn� i is then given by the binomial distribu-
tion, with x as the elementary probability taken from Eq. (9.77)

PiðtÞ ¼
n!

ðn� iÞ!i! xið1� xÞn� i (9:78)

In this expression powers of x produce powers of the basic expo-
nential function e�(�þ�)t, i.e. e� (�þ�)t, e�2(�þ�)t, e�3(�þ�)t, up to
e�n(�þ�)t. Thus, without actually writing out and solving the char-
acteristic equation, we can still see that the eigenvalues take the
form � j ( �þ� ), for j ranging from 0 to n (Chen and Hill, 1973).

If we were looking at PBn 
, we could use Eq. (9.78) with i ¼ 0 to give

PBn ¼
�

�þ � ð1� e�ð�þ �ÞtÞ
� �n

(9:79)

This is plotted for different values of n to show that the time course
has a characteristic sig moidal shape (Fi g . 9.7).
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Fig: 9:7 : Plots of Eq. (9.79) for
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This form of kinetic behavior was found in the gating of voltage-
activated channels (Chapter 16), and structural work has verified
that these channels are formed from the expected number of inde-
pendent or nearly independent structural domains.

This model has an elegant mathematical structure with eigen-
values as integral multiples of �þ�. However, a very simple mod-
ification produces a model for conformational transitions in
proteins with qualitatively different behavior (Jackson, 1993c). If
we imagine that each of the transitions in Scheme (9I) is the iso-
merization of a bond within a protein, we can stipulate that each
bond sterically obstructs a global transition when it is in the
A position. The global transition is represented by a step from Bn

to a new state, i.e. Bn!C, and can occur only when all n bonds have
rotated out of the way.

If the transitions to B are slightly disfavored, or if there are many
of these bonds, then a protein will rarely be in Bn. The rarity of this
situation means that the global transition will occur infrequently; it
will be slow compared to the individual bond isomerization rates.
With values of � and � of 109 s�1, typical of bond isomerization
rates in macromolecules, one obtains n eigenvalues that are very
close to integral multiples of �þ � ¼2 �109 s�1. These eigenvalues
reflect the isomerization kinetics of these bonds. However, the
Bn!C transition prevents the model from having a stationary
state, so the eigenvalue of zero seen in Schemes (9H) and (9I)
(Eq. (9.76a)) is lost. Instead we obtain an eigenvalue that is very
close to zero. For a variety of reasonable values of �, �, and n, the
slowest eigenvalue can be as low as 1 s�1. This is consistent with the
generally slower rates of global transitions. Furthermore, the
separation into very different timescales means that the global
transition will be dominated by the slow eigenvalue. The overall
process appears to follow simple single-exponential kinetics, even
though the underlying model has many states.

9.14 Random walks and ‘‘stretched kinetics’’

A kinetic model with a sequence of identical steps often arises
(Scheme (9J))

A0

��! �
�

A1

��! �
�

A2

��! �
�
� � � An�1

��! �
�

An (9J)

In fact, this is the random-walk model of Chapter 6, except that the
steps occur continuously in time rather than at discrete intervals
of � . This continuous-time random walk can be solved, but the result
is mathematically complex (Van Kampen, 1981). Here, we will
revert to the discrete time model developed in Chapter 6.

An interesting property of this model emerges when we take the
initial state as A0, and ask how the probability of being in that state
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decays with time. If we let �¼ �, then p¼ q¼1/2 and the random walk
is symmetric with regard to hopping probability. However, there are
no states to the left of A0. In that sense the model is asymmetric.

This asymmetry forces the first step to be from A0 to A1. We can
determine the probability of being at state A1 after N�2 steps. This
probability times 1/2 gives the desired result, the probability of
being in A0 after N steps. The probability of going from A1 back to
A1 in N�2 steps can be solved with the method of image points
(Chandrasekhar, 1943). The state A0 is a reflecting barrier and can-
not be crossed. It can be shown that each pathway from A1 to A1 that
crosses the barrier corresponds with one pathway from A1 to A�1;
A�1 is the image point of A1. So the probability of arriving at A1 in
the presence of the barrier is the sum of the probabilities of arriving at
A1 and A�1 when the barrier is absent. Adding these two together gives

PA1 ðN � 1Þ ¼ ðN � 2Þ!ð1=2ÞN�2

N
2 � 1
� �

!2
þ ðN � 2Þ!ð1=2ÞN� 2

N
2

� �
! N

2 � 2
� �

!

¼ ðN � 2Þ!ð1=2ÞN�2

N
2

� �
! N

2 � 1
� �

!

N

2
þ N

2
� 1

� �

¼ ðN � 1Þ!ð1=2ÞN�2

N
2

� �
! N

2 � 1
� �

!

(9:80)

Multiplying the numerator and denominator by N/2 gives

PA1ðN � 1Þ ¼ N!ð1=2ÞN� 1

N
2

� �
!2

(9:81)

The probability of arriving at A0 after N steps is half this result,
raising 1/2 to the power N. This is Eq. (6.46) with k ¼ 0. Now the
Gaussian approximation (Eq. (6.49)) can be used

PA0ðNÞ ¼
ffiffiffiffiffiffi
2

pN

r
(9:82)

Since steps are taken at regular intervals in time, N is propor-
tional to time. Equation (9.82) therefore predicts a t�½ time depen-
dence for the decay of A0 in Scheme (9J). This is a unique form of
dynamic behavior that is qualitatively different from exponential or
multiexponential decays predicted for models with just a few states.

This result illustrates a general feature of the dynamics of ran-
dom walk models. They predict a survival probability that decreases
as an inverse power of time. Because the factor of t�½ is raised to the
power of the number of dimensions in the random walk (Section
6.2.2), it is common to write the survival probability as /t�d/2,
where d is the number of dimensions. Note that d is determined as
a parameter from a fit to the time course, and is often referred to as
the dimension of the kinetic process.

The interesting feature of t�d/2 kinetics is that it allows a process
to keep going over an incredibly broad range of times. An exponential
process decays very rapidly as t increases beyond its characteristic
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time constant. With t>10� ¼10/(�þ �) the exponential function is
down to e�10� 5� 10�5. On the other hand, t�½ kinetics means a
process will decrease by a factor of only

ffiffiffiffiffiffi
10
p

¼ 3:1 for every 10-fold
increase in t (Fig. 9.8).

Kinetic processes stretched out over such a broad timescale are
not seen very often, but one well-characterized example is the
rebinding of the ligand CO to myoglobin after photodissociation.
This typically is modeled not as t�d/2 but as exp(t�d/2), which has its
origin in a mechanism related to this one. The favored interpreta-
tion for the stretched kinetics of this recombination process is that
there are closely spaced energy levels (Hagen and Eaton, 1996).
Hopping between energy levels is a kind of random walk, with
behavior similar to that predicted by Scheme (9J).

Problems for Chapter 9

1. For the three-state model, obtain the second order differential
equation in [C] by the same method used to derive Eq. (9.4) for [A].
Then derive the characteristic equation for the eigenvalues.

2. For the three-state model with the initial condition treated in
Section 9.2, derive the general time-dependent expression for [C]
in terms of the rate constants.

3. For the three-state model, obtain the solution to the time depen-
dence of [A] with initial conditions [B]¼1 and [A]¼ [C]¼0.

4. Consider a1, a2, l1, l2, and [A]eq to have been determined from a
fit of Eq. (9.13) to an experimental time course. Normalize all
concentrations to T, and solve for �, �, �, and � (hint: calculate
l1l2 and l1þ l2 and use these results).

5. Determine the l¼0 eigenvector for the three-state model (Scheme
(9A )) using Eqs. (9.36a)–(9.36c). Determine the equilibrium frac-
tions of [A], [B], and [C] directly and compare these two results.
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6. For Scheme (9B) show that Po1þ Po2 gives Po in Eq. (9.53).
7. For Scheme (9B) show that the time derivative of Po at t¼ 0 is��.

In a model with three sequential open states, show that this
relationship still holds (Jackson, 1997b).

8. Derive the open and closed time distributions for a channel
governed by the following kinetic model

O1

�
�! �
�

C
�
�! �
�

O2

9. Derive the open-time and closed-time distribution for a channel
governed by the following kinetic model

O1

��! �
�

C1

�
�! �
�

C2

"�! �
�

O2

10. Use Eq. (9.63) to show that the mean lifetime of state r of a single-
molecule can be expressed as the sum of the elements of the
vector Q r

�2A0.
11. In Fig. 9.4 what is the total number of open-channel events and

closed-channel events?
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Chapter 10

Enzyme catalysis

How enzymes accelerate biochemical reactions is one of the oldest
and most challenging problems in biophysics. An enzyme binds
with high specificity to a substrate molecule, chemically modifies
it, releases the product, and then repeats the cycle. Without the
enzyme, the same chemical reaction can still take place, but at a
vastly slower rate. The most impressive enzymatic accelerations
approach 1020 (Miller and Wolfenden, 2002). A value in the region
of 108–1012 is more typical, but that still represents a remarkable
enhancement. Enzymes are responsible for virtually all of the meta-
bolic chemistry in the biological world. However, there is another
point worth mentioning. Nearly all enzymes are proteins (the
exception is ribozymes – catalytic RNA), so a study of enzyme
catalysis provides a window into the basic mechanics of proteins
carrying out their functions. Enzyme catalysis provides excellent
examples of how the structure and dynamics of proteins relate to
their activity.

We know a great deal about the chemical mechanisms employed
by enzymes. X-ray crystallography has given us atomic-level pic-
tures of enzyme–substrate complexes in which many important
contacts are evident. Some of these contacts are strictly for binding,
and enable the recognition of specific substrates. The binding of
substrate is the first step of enzyme catalysis, and this provides an
important application of the physics of molecular associations
(Chapter 4). The next step is the chemical reaction, and this brings
the rate processes of Chapter 7 into the picture. We will see how
enzyme catalysis can be formulated in terms of how an enzyme
alters the free energy profile along a reaction coordinate.

10.1 Basic mechanisms – serine proteases

It will be very helpful to start with an example that illustrates the
basic sequence of events. For this we will look at a class of enzymes
known as serine proteases. These enzymes include trypsin, chymo-
trypsin, and elastase, all of which digest proteins into small



peptides and amino acids. They are called serine proteases because
of the essential role played by a key serine residue in the enzyme’s
active site. The general chemical reaction catalyzed by serine pro-
teases is the hydrolysis of a peptide bond, as shown in Scheme (10A)
below

X

O

C
H
N Y þH2O�! X

O

C OH H2N Y ð10AÞ

This happens spontaneously in water, but very slowly. In water an
OH� anion attacks the carbonyl and displaces the amino group in
what is generally referred to as an SN2 displacement. Serine pro-
teases perform the same task by a general mechanism illustrated in
Fig. 10.1. The enzyme first binds the substrate through a highly
specific interaction largely determined by a special binding pocket
that recognizes an amino acid side chain on the substrate (R in
Fig. 10.1). The hydroxyl group of the key serine residue (serine 195
of chymotrypsin) becomes chemically activated when a proton is
drawn away by nearby histidine (histidine 57 of chymotrypsin),
leaving a reactive ��O� behind. This ��O� then attacks the
carbonyl carbon of the substrate in the same way that a hydroxyl
anion might in water. An intermediate then forms in which the
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Fig: 10:1: The hydrolysis of a

peptide bond by a serine protease

proceeds through (a) substrate

binding, (b) serine attack of the

substrate carbonyl to form the

first tetrahedral intermediate,

(c) release of amine product to form

an acyl enzyme, (d) attack of the

acyl enzyme by water to form the

second tetrahedral intermediate,

and (e) release of carboxylic acid

product. Residue numbers are for

chymotrypsin but the mechanism

is general.
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targeted C atom assumes a tetrahedral bonding geometry. The pep-
tide bond is broken as the amino group leaves and the carbonyl
C¼¼O double bond forms again. The ��O� of the serine thus dis-
places the amino group to form an acyl enzyme.

At this stage half the job is done. The amino end of the peptide
has been released, but the carboxyl end of the peptide is still coval-
ently attached to the enzyme by an ester linkage to the serine
oxygen atom (acyl enzyme in Fig. 10.1). This ester bond is then
hydrolyzed by water, with assistance from the same histidine that
activated the serine hydroxyl group. It now pulls a proton away
from a water to create an activated hydroxyl, which attacks the
carbonyl group coupled to the serine side chain (an example of
general base catalysis – see Section 10.13). A second tetrahedral
intermediate forms and decomposes as serine 195 releases the
carboxyl group of the substrate.

Serine proteases illustrate some of the key principles of enzyme
catalysis. Firstly, the function of substrate recognition can be dis-
tinguished from the function of catalytic activity. Serine proteases
are very choosy about their substrates. The most important deter-
minant on the substrate is the side chain of the residue at the
carboxyl side of the peptide bond destined for cleavage. Trypsin
preferentially cleaves peptides with positively charged arginine or
lysine in this position. Chymotrypsin preferentially cleaves pep-
tides with an aromatic residue in this position. Another serine
protease, elastase, preferentially cleaves peptides with small alipha-
tic side chains in this position.

Examples of this specificity are illustrated with some rates of
hydrolysis of different substrates in Table 10.1. A peptide with
tryptophan is cleaved 106 times faster by chymotrypsin than by
trypsin. Conversely, when the tryptophan is replaced by lysine,
the tables are turned, and now trypsin works more than 104 times
better. An explanation for this specificity can be found in the struc-
ture of the protein. Serine proteases have a pocket that pulls in the
side chain, as roughly depicted in Fig. 10.1. Trypsin has a negatively
charged aspartate at the base of this pocket that interacts with the

Table 10.1 Rate of hydrolysis (M�1 s�1)

Substrate with

X¼ tryptophan

Substrate with

X¼ lysine

Chymotrypsin 1.3 � 106 69

Trypsin 1.5 1.9 � 105

Trypsin (D189S) 4.8 7.3

Rates of hydrolysis of peptide substrates by chymotrypsin, trypsin, and a

mutant trypsin with aspartate 189 replaced by serine. The substrate is

succinate–alanine–alanine–proline–X–aminomethylcoumarin, with X either

tryptophan or lysine as indicated (from Hedstrom et al., 1994).
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positively charged lysine or arginine in the substrate. Mutation of
this aspartate to serine makes trypsin even slower than chymotryp-
sin in cleaving the lysine substrate.

This is far from the whole story for substrate recognition by
serine proteases. Several residues of the enzyme help shape the
binding pocket, and adjacent residues on the substrate interact
with other sites (Hedstrom et al., 1994). But these residues do not
participate directly in catalysis. Catalysis is performed by a separate
group of residues that includes the serine after which serine pro-
teases are named in addition to the histidine shown in Fig. 10.1 and
an aspartate (see Fig. 10.12). These residues define the catalyzed
chemical reaction, and are conserved among serine proteases with
very different substrate specificities. We will see in Section 10.14
how the side chains of these amino acids can work together to form
and break covalent bonds.

Another important principle of enzyme catalysis illustrated by
the serine proteases is that the substrate is bound in such a way that
the targeted part of the substrate, the carbon atom of the peptide
bond, is held in position adjacent to the attacking catalytic group of
the enzyme. Holding two chemically reactive groups in close proxi-
mity allows the reaction to proceed far more rapidly than it would if
the same two groups were free in solution. This proximity effect
plays a major role in catalysis, and its impact will be estimated in
Section 10.8.

Another point to be taken up in Section 10.14 is that the environ-
ment of the enzyme helps to enhance the reactivity of the group
carrying out the catalysis. The hydroxyl side chain of serine is
ordinarily rather benign, but through interactions with other
groups in the protein it is converted into a highly reactive oxyanion
(��O�). Without the special environment of an enzyme it takes
extreme conditions such as high or low pH to create a species
with comparable reactivity.

It is one thing to write out the chemical mechanism used by an
enzyme, and quite another to explain how the reaction is actually
accelerated. The chemical mechanism is an essential starting point
in posing questions about the physical factors that lead to rate
enhancement. We will now turn to the formulation of the kinetic
equations, and use this as a framework for analyzing the physical
factors that make enzymes such effective catalysts.

10.2 Michaelis–Menten kinetics

Various enzymes employ different chemical mechanisms involving
different numbers of binding, conversion, and release steps. In spite
of this, a simple model captures the qualitative behavior quite
generally. If we recognize that it all starts with substrate binding,
and lump the subsequent steps together, we can envision a basic
two-step process (Scheme (10B))
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K S kcat

Eþ S  ��! ES �! Eþ P ð10BÞ

This is a minimal scheme. Substrate binding is described as a
chemical equilibrium and assigned the dissociation equilibrium
constant KS. The conversion of substrate S into product P, and the
ensuing dissociation step are combined into one step to which the
rate constant kcat is assigned. We assume that the first step of
enzyme–substrate binding is rapid compared to the second step so
that KS can be used to relate the concentrations, [E], [S], and [ES]

½ES�
½E�½S� ¼

1

KS
(10:1)

With the total amount of enzyme fixed at [Et] ¼ [E]þ [ES], we can
eliminate [E] and solve for [ES]

½ES� ¼ ½Et�½S�
½S� þ KS

(10:2)

The production of P from ES is a first order reaction with a velocity
v ¼ kcat[ES] (Scheme (10B)). Replacing [ES] with the expression in
Eq. (10.2) allows us to write the reaction velocity as a function of [S]

v ¼ kcat½Et�½S�
½S� þ KS

(10:3)

This is the Michaelis–Menten equation. It makes the important
prediction that the velocity of the reaction first increases with [S]
when [S] is low, and then saturates when [S] goes above KS (the
Michaelis constant, generally referred to as Km). Thus, enzyme cat-
alysis is second order at low [S], with a rate of � ðkcat½Et�=KsÞ½S�, and
first order at high [S], with a rate of �kcat[Et]. This can be seen in a
plot of Eq. (10.3) (see Fig. 10.2). Saturation behavior is almost uni-
versally observed for enzyme kinetics, and an equation of the form
of Eq. (10.3) describes the dependence of the rate of product forma-
tion as a function of substrate for most enzymes. Enzymatic pro-
cesses can be more complex, particularly where there are multiple
substrates, but saturation is still observed. In rare cases where
saturation is not observed, it is usually because the solubility of a
substrate prevents experiments with high enough concentrations.

In performing a kinetic analysis of an enzyme, Eq. (10.3) is usually
fitted to a plot of velocity versus [S]. In this way the basic parameters KS

and kcat are determined. These parameters are of fundamental import-
ance in quantifying enzyme activity, and provide the starting point for
more detailed questions about catalytic mechanism.

At saturating substrate concentration there is essentially no free
enzyme; 100% of the enzyme has substrate bound. Product will
then be formed at a rate of kcat[E]. For this reason kcat is often
referred to as the turnover number of the enzyme; kcat can be
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interpreted in terms of catalytic efficacy, i.e. as the rate constant for
the actual catalytic event in which bound substrate is converted to
product. However, the assumptions that go into the derivation of
the Michaelis–Menten equation can be violated in ways that leave
the basic form of the equation intact but undermine this interpreta-
tion of kcat. For example, if the dissociation of product is rate limit-
ing, then kcat will have more to do with the release step then the
actual catalytic conversion. The catalytic step could then be much
faster, but it would appear to be slower because of the time required
for dissociation. For this reason, kcat is taken as a lower bound to the
conversion rate of the enzyme–substrate complex.

When kcat is close to the true turnover rate of the enzyme–
substrate complex, it can be compared with the rate of the uncata-
lyzed reaction to provide a measure of the catalytic power of an
enzyme. The rate of the reaction without the enzyme is defined in
terms of a rate constant k0 as k0[S]. If we take kcat as a corresponding
rate of the S!P reaction within the enzyme, then the rate enhance-
ment by the enzyme is the ratio kcat/k0.

The rate constant kcat can be divided by the Michaelis constant to
give kcat/KS, and this ratio has an important meaning as the apparent
second order rate constant at low, non-saturating substrate concentra-
tions. The ratio kcat/KS is often referred to as the catalytic efficiency,
and for many different enzymes falls in the range 105–109

M
�1 s�1

(Miller and Wolfenden, 2002). This may seem like a wide range, but
the uncatalyzed reaction rates range from 10�17 to 10�1 s�1. The range
of observed kcat/KS values may indicate that there is a physical limit to
the catalytic power that can be achieved by an enzyme. Alternatively,
this may reflect the result of evolutionary pressure to make enzymatic
reactions go at biologically useful rates.

Another interesting generalization has been made about KS

(Fersht, 1998). For most enzymes KS is 1–100 times greater than
the typical value of [S] seen in a cell. This means that most enzymes

vmax  =  kcat [E t
  

]

v
[S]  =  Ks
v  =  ½ vmax

[S]

Fig: 10:2: Plot of the

Michaelis–Menten equation

(Eq. (10.3)).
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are not saturated under biological conditions. This allows the
enzyme to regulate the concentration of the substrate more effec-
tively. If the concentration goes up the rate of the reaction increases
in a compensatory manner.

Enzymes do not appear to maximize the strength of substrate
binding. The value of KS is usually high compared to the dissocia-
tion constant of the same molecule to a protein with no catalytic
function (Fersht, 1998). For example, KS is about 0.1–10 mM for
ATP for many enzymes. However, other proteins bind ATP with
dissociation constants �1010 lower (for myosin it is 10�13

M). This
suggests that the evolutionary pressure on a substrate binding
site does not favor binding with maximal strength. Indeed, very
tight binding might counteract catalysis, either by freezing the
structure of the substrate to prevent the transition state from
forming, or by retarding product release. We will see that one reason
that binding does not reach its maximum strength is because some of
the potential binding energy is utilized for catalytic functions
(Sections 10.6–10.10)

10.3 Steady-state approximations

Most enzymes employ mechanisms that are more complex than that
assumed above for the Michaelis–Menten equation. Nevertheless, they
can usually be treated with a steady-state approximation, in which the
concentrations of intermediates do not change with time. To see how
this works in a simple case we will modify the Michaelis–Menten
mechanism (Scheme (10B)) to include the forward and reverse sub-
strate binding steps

k1 k catEþ S  ��! ES �! Eþ P
k�1

ð10CÞ

Scheme (10C) is the Briggs–Haldane mechanism. The rate of change of
[ES] depends on the rates of association, dissociation, and catalysis

d½ES�
dt
¼ k1½E�½S� � k�1½ES� � kcat½ES� (10:4)

If binding is rapid, then we can assume that the concentration of ES
will quickly reach a steady state, and remain constant as the reac-
tion proceeds. Setting the above derivative equal to zero, solving for
[ES], and using the condition [Et] ¼ [E] ¼ [ES], leads to an expression
similar in form to Eq. (10.3)

v ¼ kcat½Et�½S�
½S� þ ðkcat þ k�1Þ=k1

(10:5)

Note that if kcat<< k�1, then Eq. (10.3) is recovered (with KS¼ k�1/k1).
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For a more complex example we can take the serine protease
mechanism (Scheme (10D)) as shown below

k1 k2 k3

Eþ S  ��! ES1 �!ES2 þ P1 �! Eþ P2
k�1

ð10DÞ

In this mechanism ES1 corresponds with the initial complex and ES2

corresponds with the acyl enzyme (Fig. 10.1). The two products released
in successive steps, P1 and P2, are the amino and carboxy peptides.

We have the following kinetic equations for ES1 and ES2

d½ES1�
dt

¼ k1½E�½S� � ðk�1 þ k2Þ½ES1� (10:6)

d½ES2�
dt

¼ k2½ES1� � k3½ES2� (10:7)

At steady state these derivatives are zero, so we have

½ES1�
½E�½S� ¼

k1

k�1 þ k2
(10:8)

½ES2�
½ES1�

¼ k2

k3
(10:9)

The rate of product formation is k3 times the concentration of ES2

v ¼ k3½Et�
½ES2�

½E� þ ½ES1� þ ½ES2�
¼ k3½Et�

½E�
½ES2� þ

½ES1�
½ES2� þ 1

� � (10:10)

Using Eqs. (10.8) and (10.9) and rearranging yields the velocity as a
function of [S]

v ¼ k1k2k3½Et�½S�
k1½S�ðk2 þ k3Þ þ k3ðk�1 þ k2Þ

(10:11)

The important point to note here is that the velocity has the
same qualitative dependence on [S] as the Michaelis–Menten and
Briggs–Haldane mechanisms. But the values of the parameters are
now very different. This is an important point because the con-
centration for half saturation is no longer a simple equilibrium
constant and the maximum velocity depends on the rates of
two steps.

Steady-state approximations are very useful in the study of
enzyme kinetics (Cleland, 1970; Plowman, 1972). Even with a long
string of intermediates and with multiple substrates, the steady-
state approximation can still provide a useful expression for the
velocity. The concentration dependence usually has the form of a
rectangular hyperbola (Fig. 10.2), but with parameters depending
on combinations of rate constants. The steady-state approximation
is especially important in enzyme kinetics because the exact
method of solving multi-state kinetics problems of Chapter 9 runs
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into problems in treating binding steps. The second order terms in
the rate equations prevent the use of matrix methods and make the
mathematics much more difficult.

10.4 Pre-steady-state kinetics

It takes time for an enzymatic reaction to reach a steady state. The
approach to steady state is often detectible, and can provide import-
ant information about a reaction mechanism. From Scheme (10C)
we can write a differential equation for [ES]

d½ES�
dt
¼ k1½E�½S� � ðk�1 þ kcatÞ½ES� (10:12)

We use [E] ¼ [Et] � [ES] to eliminate [E] as follows

d½ES�
dt
¼ k1½Et�½S� � ðk1½S� þ k�1 þ kcatÞ½ES� (10:13)

This equation is still difficult to solve, but if we neglect changes in
[S] during the approach to steady state it becomes easy. This approxi-
mation is reasonable because there is much more substrate than
enzyme (after all, the enzyme is the catalyst). So a small amount of
substrate can completely tie up all of the enzyme. With [S] constant,
Eq. (10.13) becomes a simple first order differential equation, for
which the solution is an exponential function with a decay constant
k1[S]þ k�1þ kcat. The specific solution depends on initial conditions.
At t ¼0, [ES] ¼0, and at longer times a steady state is reached where
[ES] is constant. Thus, [ES] has the following dependence on time

½ES� ¼ ½Et�½S�
½S� þ ðkcat þ k�1Þ=k1

�
1� e�ðk1½S� þ kcat þ k�1Þt

�
(10:14)

This expression starts off with [ES] ¼ 0, and then rises to a steady
state where [ES] ¼ [Et]([S]/([S]þ (kcatþ k�1)/k1)). The rate of product
formation is kcat[ES], so there is a lag before product formation
gets up to speed. This lag has the same decay constant as that for
[ES] to reach steady state.

Note that when [S] is large compared to (kcatþ k�1)/k1, the steady-
state level of [ES] equals the total enzyme concentration. This reflects
mass action, where high substrate pushes the equilibrium to the right,
so that nearly all the enzyme is complexed with substrate. This can be
very useful because sometimes the enzyme concentration is not
known. There are practical problems such as an unknown fraction of
denatured protein, and variations in the fraction of active enzyme from
batch to batch. This creates some uncertainty about the exact concen-
tration of active enzyme, and if [ES] can be accurately measured in the
pre-steady-state domain, then a useful estimate of [Et] can be made.

An important example of pre-steady-state kinetics is the hydrolysis
of p-nitrophenyl esters by chymotrypsin. The product of the first step is
p-nitrophenol, which is liberated during the acylation of the enzyme.
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The kinetics of this step is especially easy to follow because
p-nitrophenol has a strong absorbance of visible light, and the ester
does not. The analysis leading to Eq. (10.14) can be adapted to this
particular case to estimate the time course of formation of the acyl
enzyme (Problem 3). There is an initial burst of p-nitrophenol produc-
tion because it is the product of the first step of the reaction. But as the
acyl enzyme intermediate builds up the rate of p-nitrophenol produc-
tion slows down to a steady-state level. The time constant for reaching
this steady state is the same as that in Eq. (10.14). The burst of
p-nitrophenol production at the beginning of the measurement is
then equal to the amount of enzyme that can be acylated, and so the
concentration of active enzyme can be determined (Fersht, 1998).

An analysis of pre-steady-state kinetics often provides crucial
data that allow a complete determination of a set of rate constants.
Analysis of the steady-state rate (Eq. (10.5)), provides determinations
of the ratio (kcatþ k�1)/k1 and of [Et]kcat. With [E]t determined from
the magnitude of the pre-steady-state burst, we then have kcat.
To solve for the two remaining unknowns, k1 and k�1, we can use
the time constant for approach to steady state from Eq. (10.14), and
the concentration of half-maximal rate.

10.5 Allosteric enzymes

In the analysis of the steady-state approximation it was noted that
more complex mechanisms still lead to the same simple qualitative
dependence on substrate concentration. This is because many
enzymes have a single substrate binding site. Enzymes with multiple
substrate binding sites can exhibit cooperative behavior, and a sigmo-
idal dependence of velocity on [S]. For a concerted binding model such
as in Section 4.2.1 we might expect something like Eq. (4.7)

v ¼ kcat½Et�
½S�n

½S�n þ KS
(10:15)

We saw how the activity of the enzyme phosphofructokinase shows
cooperative activation, and can be regulated by various effectors
(Section 5.11). The Monod–Wyman–Changeux model accounts very
well for this behavior, with activity as a function of substrate concen-
tration going as the fraction of occupied binding sites (Eq. (5.22)).

For mechanisms of catalysis Monod et al. identified two distinct
classes of allosteric enzymes, which they called ‘‘K systems’’ and
‘‘V systems’’. In K systems, it is the affinity, K, which is regulated.
Substrates and allosteric effectors bind with different affinities to the
T and R conformations. In these enzymes the catalytic efficacy of the
T and R conformations is the same. The function of the protein is
regulated solely through binding, and the sigmoidal dependence of
rate on concentration perfectly mirrors the sigmoidal binding behav-
ior. In V systems the velocity is regulated. Substrate has the same
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affinity for the T and R conformations, so there will be no sigmoidicity
as described in Eq. (10.15). The value of kcat for the R state is higher
than that of the T state, and an allosteric activator preferentially binds
the R conformation. By shifting the conformational equilibrium
toward the catalytically active R state, the rate of enzyme catalysis
is accelerated, but KS does not change. Allosteric inhibitors bind
preferentially to the catalytically inactive T state and shift the equili-
brium the other way.

Monod et al. found a number of examples of both K and V
systems, and the classification is clearly useful. But it is not entirely
clear why there are no mixed K and V systems, with allosteric states
differing in both affinities and catalytic efficacy. Nevertheless, the
classification takes on added significance in providing another
example of the fundamental importance of the distinction between
the binding function and catalytic function in enzymes.

10.6 Utilization of binding energy

The presentation so far has been phenomenological. Enzymes were
assumed to enable a reaction to go faster and the consequences
were examined. But the real question about enzymes is how do
they enhance these rates. We will now turn to this question and
explore the fundamental physics of catalysis.

Most ideas about enzyme catalysis invoke some form of utiliza-
tion of binding energy. Stronger binding to the transition state is
one example. Binding energy is envisioned as reducing the height of
the energy barrier Ey. However, we will soon see that there are
entropy effects as well.

When we think about the utilization of binding energy, the
binding process can no longer be viewed as completely distinct
from the catalyzed reaction. Stronger contacts between the enzyme
and substrate can be harnessed for catalysis. However, it is also
possible for stronger contacts between the substrate and enzyme to
oppose motion in the reaction coordinate toward the top of the energy
barrier. In this case stronger binding would slow the reaction down.

Measurements on a series of substrates support the idea that
binding energy and catalytic effectiveness are related. These mea-
surements show a general trend that KS and kcat are inversely corre-
lated (Fersht, 1998; Hedstrom et al., 1994). Thus, tighter binding
reduces KS and increases kcat. This is not a hard and fast rule because
there are so many ways in which structural variations can influence
binding and catalysis. But the broad trend makes a case for utiliza-
tion of binding energy.

In Fig. 10.3, k2, the rate of the first acylation step of chymotrypsin
(Fig. 10.1 and Scheme (10D)) is plotted logarithmically versus the
substrate binding energy (�RT ln KS). This plot shows a wide scatter
as some variations in substrate structure strengthen binding with or
without increasing kcat. However, this scatter is roughly delimited to
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the left by an exponential increase in rate with binding energy
(dashed line). This represents an envelope corresponding to struc-
tural modifications in which binding energy is utilized with great-
est effect to accelerate the reaction.

A literal interpretation of the idea of utilization of binding
energy would suggest that increments in binding energy produce
an exponential increase in rate

kcat / e� RT ln KS (10:16)

where  is a parameter introduced to denote the fraction of binding
energy that is utilized. The dashed line in Fig. 10.3 illustrates the
case for  �1, representing maximally efficient utilization of bind-
ing energy in catalysis. This may indicate that some contacts
involved in substrate binding are very strongly coupled to the reac-
tion. The utilization of binding energy represents a partial break-
down of the distinction between the two basic functions of an
enzyme, binding and catalysis. Binding energy aids catalysis, and
we will now explore some of the ways this can happen.

10.7 Kramers’ rate theory and catalysis

Understanding the utilization of binding energy requires a theoretical
framework, so we turn to Kramers’ theory for diffusion over an energy
barrier (Section 7.8). This theory provides the ideal starting point for
examining most of the key hypotheses for enzymatic catalysis.

We start with Eq. (7.31)

J ¼ DPðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkT=�y

q e�Ey=kT (10:17)

This expression was obtained by taking the steady-state solution of
the equation for diffusion in a reaction coordinate. The reaction
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coordinate was denoted by �, and D was the diffusion constant for
movement along this coordinate. The potential energy as a function
of � has a barrier with a height Ey and a width 1/�y. The flux over the
barrier is given by J; this flux can be divided by moles or molecules
to obtain a rate constant.

We will use Eq. (10.17) to examine each of the key factors that
control the rate of a reaction. Of course, the height of the energy
barrier, Ey, is an obvious focus. We can also look at the distribution
of molecules at the foot of the barrier. In fact, some of the most
important mechanisms of enzymatic rate enhancement can be
understood in terms of altering this distribution, as will be seen in
the next two sections. We can also focus on D and try to obtain some
insight into how an enzyme might alter the ease of movement along
the reaction coordinate.

10.8 Proximity and translational entropy

Binding a substrate restricts its motion. The substrate’s chemically
targeted bonds are held near an enzyme’s catalytic side chains. The
catalytic group, e.g. the serine oxygen atom of a serine protease,
could react with a substrate if it were free in solution, but this
reaction would depend on collisions between the two molecules.
The enzyme assists this process by drawing the catalytic group and
the substrate together. This in effect converts a second order reac-
tion, dependent on the concentration of substrate and chemical
catalyst, into a first order reaction dependent on the concentration
of the enzyme-substrate complex.

This effect can be visualized in terms of the reaction coordinate
at the foot of the energy barrier. Figure 10.4 shows what the reaction
coordinate looks like for intramolecular and intermolecular pro-
cesses. For the intramolecular case, � is confined to a potential
energy well on the reactant side. For the intermolecular case the
reactant side of the barrier is a flat line; diffusion will proceed along
this line, with the molecule reaching the foot of the barrier and
crossing it.

The shape of these curves at the foot of the barrier determines
the value of P(a) in Eq. (10.17). This equation was actually the
penultimate step in the derivation of the Kramers expression for
the rate constant in Chapter 7. The final step of the derivation
entailed evaluating P(a) for an equilibrium distribution in � within
a parabolic energy well on the left side of the barrier. Having
the reactant bound in this way corresponds to the intramolecular
case. The energy in the vicinity of the minimum at � ¼ a is
U(�) ¼�a(� � a)2, and the probability of � having a particular value
is given by the Boltzmann distribution, Pð�Þ ¼ e�Uð�Þ=kT . Evaluating
the Boltzmann integral for this potential energy function gave
PðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a=pkT

p
. By substituting this expression into Eq. (10.17),

we retrace the derivation of Eq. (7.32)

Intramolecular

Intermolecular

ξ =  a

ξ =  a

E

E

Fig: 10:4: Potential energy

profiles along the reaction

coordinate for intramolecular

and intermolecular reactions.
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kintra ¼
Dintra

ffiffiffiffiffiffiffiffiffiffi
�a�

y
q
pkT

e�E y
intra

=kT (10:18)

where D has been given the subscript intra to take into account the
possibility that the diffusion constant takes on different values in
different environments. This will be considered further in Section 10.11.

For the intermolecular case P(a) is simply the bulk concentra-
tion, C, which should be the same everywhere to the left of � ¼ a in
the lower sketch of Fig. 10.4. Equation 10.17 then yields the corres-
ponding intermolecular rate constant

kinter ¼ Dinter

ffiffiffiffiffiffiffiffi
�y

pkT

s
e�E y

inter
=kT (10:19)

To compare the speed of the intra and intermolecular reactions,
we must multiply kinter by the concentration, C (which for now is
one dimensional), and then take the ratio of Eqs. (10.18) and (10.19)

kintra

CK inter
¼ Dintra

CDinter

ffiffiffiffiffiffiffiffi
�a

pkT

r
e
�

E y
inter
�E y

intra

�
=kT (10:20)

The width of the barrier 1/�y was assumed to be the same for both
and so it cancelled (if one had a basis for believing that an enzyme
altered this parameter, then it could be retained in Eq. (10.20)). This
equation can now be used to compare the rates of the uncatalyzed
and enzyme catalyzed reactions. We will use it not just for evaluat-
ing proximity but for other factors as well.

To focus on proximity, we take Dintra ¼Dinter and Eyintra ¼ Eyinter.
The ratio in Eq. (10.20) then reduces to ð1=CÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�a=pkTÞ

p
. This key

quantity is the rate enhancement afforded by forcing the substrate
and catalytic side chain into close proximity. It is actually a ratio of
two reciprocal lengths. The variable C is molecules per unit length
to the left of the barrier, and �a is a force constant, with units of
energy per square length. So dividing by kT (which has units of
energy), and taking the square root leaves units of inverse length.
This ratio of kintra/(Ckinter) is in effect the length per molecule when
free in solution divided by the length over which the molecule can
move in the bound state.

We now estimate these two lengths. For C we use the standard
concentration of one molar. The volume per molecule at one
molar is 0.166 � 10�23 liter. Since C in the present discussion is
one dimensional, we take the edge along a cube with this volume,
1.18 � 10�7 cm.

Now we turn to �a, the force constant that holds the reactant in its
potential energy well around �¼ a. A few values were mentioned in
Section 2.12. Stretching a C–C bond has a force constant of 660 kcal
¯
�2 mole�1, and for a typical hydrogen bond the force constant is

30 kcal ¯�2 mole�1. It is unlikely that an enzyme would hold a sub-
strate in position as tightly as a C–C bond so we can use this force
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constant to get an upper bound, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�a=pkTÞ

p
then becomes 19 ¯

�1.
So the corresponding length available to � within the energy well is
5.3�10�10 cm. The ratio of this quantity to the value of 1.18� 10�7 cm
based on the standard concentration for the intermolecular rate gives
an enhancement factor of 223. The hydrogen bond force constant can
be used to make a more plausible estimate, because this is typical of
the noncovalent interactions that stabilize protein–ligand complexes.
This gives a somewhat smaller factor of 47.5.

These factors are for the one-dimensional reaction coordinate
drawn in Fig. 10.4. To go to the three-dimensional case we can think
of a three-dimensional potential energy well centered at a, and the
intermolecular reaction as a three-dimensional volume with a at a
corner. So we can simply cube the one-dimensional factor to obtain
acceleration factors of 1.1 � 107 for the C–C bond and 105 for the
hydrogen bond force constants.

It is helpful to view these rate enhancement factors in terms of
effective concentrations. The intermolecular rate is for a standard
state of 1 M, so we can think of the intramolecular reaction proceed-
ing as though it were intermolecular, but with a concentration that
gives the intramolecular rate. Thus, a rate enhancement factor of
105 of the intramolecular rate over the intermolecular rate means
that one of the reactants has an effective concentration of 105

M. It
was once thought that the concentration of water represents a
physical limit to how high the effective concentration can be. This
gave a maximum rate enhancement factor of 55, which seriously
underestimates the accelerating power of proximity. The reason is
that the reaction coordinate can be confined to a much smaller
volume than the average volume per molecule of water.

This same idea emerged earlier when we calculated the transla-
tional entropy change of an association process (Section 4.6). In fact,
the evaluation of P(a) in the Kramers rate expression (leading to
Eq. (10.18)) entails the same calculation made in the evaluation of
the translational entropy of a bound molecule. To calculate P(a) for
a potential energy function we evaluated an integral that is essentially
a partition function; it is the integral of a Boltzmann factor (Eq. (1.4)).
This establishes a formal connection between the proximity effect in
catalysis and the entropy loss upon formation of the activated com-
plex. The reacting complex has a lower entropy than the two separate
species. By pulling the substrate into position, the enzyme overcomes
this entropy obstacle and accelerates the reaction.

An experimental approach to the evaluation of the proximity
effect is to synthesize an organic molecule that undergoes an intra-
molecular reaction equivalent to a reaction that occurs between two
separate molecules. An early example was the nucleophilic attack
on an ester by a carboxyl oxygen atom (Fig. 10.5) (Bruice, 1970).
In succinyl ester, the free carboxyl group attacks the esterified
carboxyl group; the reaction is intramolecular. The corresponding
intermolecular reaction between acetic acid and acetyl ester is
slower by a factor of 105 at concentrations of 1 M of each reactant.
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In the intramolecular case, the carboxyl group is within easy reach
of its target. For the comparable intermolecular reaction the acetyl
group must encounter the ester by diffusion, and so the reaction is
slower. The observed rate in the intramolecular case suggests that the
carboxyl group has an effective concentration of 105

M. There are many
other examples of comparisons between intramolecular and inter-
molecular reactions, and for the most part, the rate enhancements
approach but rarely exceed 105–106 (Bruice, 1970). However, the rate
enhancement can be even higher when rotation is restricted, and this
can also be taken into account.

10.9 Rotational entropy

The formation of an enzyme–substrate complex restricts rotation as
well as translation. Two reactants usually must be correctly oriented
for the reaction to occur. The enzyme–substrate complex can bring the
reacting groups into the correct orientation as well as the correct
position. So one can view rotational restriction as a proximity effect
in rotational coordinates. The rotational factor will not be derived here
as directly as the proximity factor of the preceding section. Instead, the
parallel will be exploited between translational and rotational
entropy. This parallel allows us to use the analysis of rotational con-
tributions to binding energy (Section 4.7) to assess how restricting
rotation contributes to enzyme catalysis.

Consider the various contributions to binding free energy treated
in Chapter 4. The formation of a complex involves the loss of three
translational degrees of freedom, the loss of three rotational degrees of
freedom, and the gain of six vibrational degrees of freedom. The
translational and rotational entropy lost during a molecular associa-
tion (Eqs. (4.25) and (4.30)) are opposed by a gain in vibrational entropy
(Eq. (4.33)). The translational factor of the preceding section can be
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seen as a part of that balance. The rotational contribution to the
binding entropy was similar in magnitude (Eq. (4.30)) so the trans-
lational and rotational contributions to enzyme catalysis should also
be similar. Restricted rotation should therefore give about the same
enhancement as proximity, a factor of 105–107.

Combining the effects of proximity and restricted rotation
together gives a total enhancement of 1010–1014. Thus, proximity
combined with restricted rotation can contribute an enormous
amount to the rate enhancement by enzymes, and these entropy
effects are generally regarded as among the most important factors
in rate enhancement by enzymes (Jencks, 1975).

10.10 Reducing Ey: transition state
complementarity

In spite of the importance of the entropy effects just discussed, one
naturally thinks about catalysis in terms of a reduction in the energy of
the transition state. This old idea in enzyme catalysis introduced by
Pauling in 1946 has guided a great deal of experimental and theoretical
work. In general, the rates of reactions catalyzed by enzymes have Q 10

values of 1.5–2, and the Q 10s of the corresponding uncatalyzed reac-
tions are generally quite a bit higher (Miller and Wolfenden, 2002).
This demonstrates that enzymes reduce Ey.

Crystal structures of enzyme–substrate and enzyme–inhibitor
complexes are full of suggestions about how an enzyme reduces
Ey. The first enzyme whose structure was determined, lysozyme,
showed an aspartate in a position where, if ionized, it could stabi-
lize a positively charged oxycarbenium (C��Oþ¼¼C) intermediate
that forms during the cleavage of the polysaccharide substrate. The
bond angles of the cyclic sugar that contains these atoms must also
change to accommodate this intermediate, and the enzyme could
strain the substrate to bend the bonds.

Proving the ideas for transition state stabilization based on crystal
structures is quite difficult. If one wants to calculate the reduction in
transition state energy resulting from binding to an enzyme, the force
fields discussed in Section 2.14 are inadequate. They do not include
terms for changes in covalent bonding. Quantum mechanics must be
used for this critical energetic contribution, and quantum mechanical
calculations are so demanding on computer power that they must be
limited to a small part of the enzyme–substrate complex. Thus, hybrid
force fields have been developed in which a small part of the system is
selected for more quantitative analysis. The first such effort made a
strong case for the role of electrostatic interactions in the reduction of
Ey by lysozyme, with bond strain playing a relatively minor role
(Warshel and Levitt, 1976). More work with such hybrid models shows
great promise in dissecting the contributions of various enzyme–
substrate interactions in the reduction of Ey (Wang et al., 2001).
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A number of experiments have suggested that enzymes bind more
tightly to the transition state. Transition state analogues have been
synthesized and found to bind the active site of an enzyme more
tightly than substrate molecules. The enzyme proline racemase
inverts the symmetry of the � carbon of proline. The reaction involves
the removal of the hydrogen atom from the � carbon to form a planar
intermediate (Fig. 10.6). The transition state analog shown in the top
part of Fig. 10.6 has the same planar geometry as the transition state.
This molecule is a very potent inhibitor of the enzyme (Cardinale and
Abeles, 1968). Indeed, proline racemase binds this compound 160
times more tightly than proline. It is tempting to say that this
means that the enzyme reduces Ey by the corresponding amount
(RT ln 160¼3 kcal mole�1), but the double bond in the transition
state analog changes its electronic structure and alters its interactions
with the binding site. We do not know how to tease apart the effect of
geometry from the effect of electronic structure, but it is nevertheless
clear that enzymes show preferential binding to structures that mimic
the transition state of the reaction they catalyze.

Transition state analogues such as that shown in Fig. 10.6 are
among the most potent enzyme inhibitors known. X-ray crystal-
lography of complexes with these compounds has confirmed the
complementarity between the active sites of enzymes and the trans-
ition states. In general, these compounds bind about 102–104 times
more tightly than substrates (Fersht, 1998). Without knowing how
much of this is due to differences in electronic structure and how
much to differences in geometry, we can guess that enzyme–
substrate complementarity can reduce Ey by �2.8–5.6 kcal mole�1.
This should be viewed as a lower bound, because the analogues only
approximate the transition state. A real transition state could bind
more tightly to reduce Ey by even more.

The alternative to varying the structure of the ligand is varying
the structure of the enzyme by genetic engineering. This approach
has been used extensively by Fersht and colleagues in the study of
the enzyme tyrosyl-tRNA synthase. This enzyme catalyzes the form-
ation of an ester between the amino acid carboxyl and an OH of the
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terminal ribose of the tRNA. These studies revealed two residues
which when mutated reduce kcat but do not significantly alter
the binding of the substrates tyrosine and ATP (Wells and Fersht,
1986). These residues, threonine 40 and histidine 45, therefore play
a role in the enzyme’s tighter binding to the transition state. A
model based on the crystal structure has shown that these residues
are situated such that they can form H-bonds with the g phosphate
of ATP, provided that the a phosphate–oxygen bond angles are
distorted to allow this phosphorous atom to assume a penta-
coordinated state. This is what should happen during nucleophilic
attack by the tyrosine carboxyl oxygen (Fig. 10.7). Based on the
factor by which the rate is changed, it can be estimated that each
hydrogen bond between the protein and g phosphate contributes
3–5 kcal mole�1 of stabilization to the transition state, a range
consistent with typical H-bond energies (Section 2.10)

Antibodies against transition state analogs provided a particu-
larly dramatic demonstration of transition state complementarity
(Schultz and Lerner, 1995). Synthetic analogs of the transition state
were used to immunize an animal, and the antibodies that were
produced acted like enzymes. For example, the tetrahedral inter-
mediate in an ester hydrolysis reaction is mimicked by a phospho-
nate ester (Fig. 10.8). Antibodies against this analog hydrolyze
esters. In general, the rate enhancement by these catalysts is rather
modest, ranging from 102 to 104. The amount of acceleration is
difficult to interpret quantitatively in terms of a specific mechan-
ism. Nevertheless, reducing Ey must be the major factor. The cata-
lytic activity of these antibodies provides an independent line of
evidence for the importance of transition state complementarity as
a factor in catalysis.

Finally, it should be emphasized that binding to the transition
state is not the only way to reduce Ey. The enzyme can also interact
with the substrate in its ground state to raise its energy and close the
gap with the transition state. An example of such a mechanism was
suggested by a combined structural and theoretical study of the
enzyme orotidine monophosphate decarboxylase (ODCase) (Wu
et al., 2000). ODCase removes a carboxyl group from the nucleotide
orotidine monophosphate to produce uridine monophosphate. The
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carboxyl group targeted for removal has a negative charge. When
the enzyme binds, it pushes a negatively charged aspartate, located
in its active site, close to the carboxyl group of the substrate. The
resulting electrostatic repulsion helps expel the carboxyl group. Of
course, this strong electrostatic repulsion strongly opposes binding,
but it is overwhelmed by a large number of attractive interactions
between the enzyme and other parts of the substrate. Such an
unfavorable interaction in an initial enzyme–substrate complex
has been referred to as ‘‘electrostatic stress’’ (Fersht, 1998), and
this idea has been invoked in many studies of enzymes.

10.11 Friction in an enzyme–substrate complex

Kramers’ theory tells us that if the environment of the enzyme alters
the constant for diffusion along the reaction coordinate, then the rate
will change. Rapid random motions generate friction (Section 6.7) and
such motions within a protein generate friction along the reaction
pathway. The solution can contribute to this friction through the
random motions of solvent and solute molecules. Now we will con-
sider whether the random motions within a protein are different from
molecular motions in solution, and what consequences these differ-
ences have for Dintra versus Dinter (see Eqs. (10.18)–(10.20)).

Internal motions in proteins can be studied using molecular
dynamics simulations. We will look at the results of one such study
of the small protein pancreatic trypsin inhibitor (McCammon et al.,
1979). This work focused on the torsional motions of tyrosine side
chains. The flat aromatic ring of tyrosine rotates around an axis
formed by the C–C bond connecting the phenol to the peptide back-
bone. These random motions are strongly damped by the environ-
ment, and from the time course of this damping a coefficient of
friction was estimated. From there the Einstein formula D¼ kT/f
(Eq. (6.62)) gave a diffusion constant D¼2.3� 1011 s�1. This value is 3
or 4 times larger than rotational diffusion constants for benzene,
suggesting that the environment of a protein can isolate its internal
motion from the solution. Thus, there is a modest shielding of solvent
fluctuations and a reduction of friction for tyrosine side-chain rotation
within the protein. An effect like this on a reaction coordinate would
accelerate the reaction in a similar way, but compared to the many
orders of magnitude enhancement of rates provided by changing Ey,
and translational and rotational entropy, this effect is not impressive.

Experimentally, the influence of friction on motions within a
protein can be studied by varying the solvent viscosity. Because
some of the random motions within a protein involve moving
parts of the protein through the solvent, the solvent viscosity
slows these motions down. The rates of CO and O2 binding to
hemoglobin and myoglobin decrease with increasing viscosity, in
accord with Kramers’ theory (Beece et al., 1980). But the dependence
was weaker than expected, indicating once again that the protein
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partially shields internal motions from solvent fluctuations. The
value of D for these motions will therefore be larger.

In a similar study, the rate of catalysis by the enzyme carboxy-
peptidase was found to depend on solvent viscosity. These results
were interpreted in detail in terms of Kramers’ theory (Gavish and
Werben, 1979). The variable kcat for hydrolysis of the peptide sub-
strate was reduced as the viscosity increased to a degree that sug-
gests that in this case the protein does not shield the reaction
coordinate from solvent movements. If the enzyme were able to
screen out solvent motions very well then one would expect a
weaker dependence of kcat on viscosity. Thus, although the studies
of this question are rather limited, it appears that enhancing rates
by shielding out solvent fluctuations and thus reducing the effective
friction along the reaction coordinate is not a major factor in
enzyme catalysis. Nevertheless, these studies establish the role of
solvent friction in the dynamic processes within proteins.

Clear thinking about the relation between fluctuations and fric-
tion can help explain what is wrong with some fanciful ideas about
protein fluctuations accelerating enzymatic reactions. Enzymes
cannot harness fluctuations in the internal motions of proteins
because their random nature causes rapid reversal of the direction
of any motion within distances of � 0.1 ¯ and times of 1 ps (Section
6.4). The intrinsic randomness of such motions generates friction,
and increasing these fluctuations increases friction to make any
kinetic process slower. Under some conditions Kramers’ theory
can generate a rate constant that increases with increasing friction.
But this is for a low-density, low-viscosity limit that applies to gases.
In the high-density, high-viscosity limit applicable to liquids, fluc-
tuations cannot make anything speed up. Furthermore, an enzyme
cannot release stored potential energy to kick a molecule over its
transition state because kinetic energy in any one mode is dissi-
pated very rapidly into a vast number of other modes.

10.12 General-acid–base catalysis
and Brønsted slopes

Returning to the question of how an enzyme utilizes binding
energy, we examine the relationship between driving force and
transition state energy. For this we turn to the linear free energy
relations for kinetic processes (Section 7.4). If binding energy can
change the driving force for a reaction, then we can expect a pro-
portional change in the transition state energy. Acids and bases
serve as catalysts in a wide range of chemical and biochemical
reactions, and there is an extensive body of literature on how to
relate kinetics to energetics for such reactions.

Amino acid side chains are often reluctant catalysts. For example,
the serine oxyanion of a serine protease does not readily form
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in solution. The situation is illustrated best by considering ester
hydrolysis by water. Either OH� or H2O can act as a nucleophile
and attack a carbonyl to form a tetrahedral transition state. OH�

readily reacts with esters, but at neutral pH the OH� concentration
is very low. H2O attacks an ester too, but extremely slowly compared
to OH�. So the situation in solution is that the reactive species is not
abundant and the abundant species is not reactive. Likewise, in a
serine protease the serine hydroxyl predominates and it is a weak
nucleophile. The serine oxyanion, which is a strong nucleophile,
should be abundant only at very unphysiological pH.

A weakly reactive H2O molecule will behave more like a strongly
reactive OH� ion in the presence of a general-base catalyst. A general-
base catalyst is a buffer that pulls a proton away from a water
molecule. Ester hydrolysis is accelerated by increasing the buffer
concentration, even as the pH is kept fixed. The B� form of the buffer
activates a water molecule to increase the nucleophilicity of the aqu-
eous oxygen atom (Fig. 10.9). Buffers can also act as general-acid
catalysts by activating water to donate Hþ. These two forms of rate
enhancement are called ‘‘general’’ to distinguish them from the ‘‘spe-
cific’’ pH dependent variety involving direct action of Hþ or OH�.

To measure the effectiveness of general-acid or general-base
catalysis, one varies the concentration of the buffer and measures
the second order rate constant of the catalyzed reaction. It turns out
that different buffers show considerable variation in their effective-
ness as general-acid or general-base catalysts. Strong acids or bases
work better than weak acids or bases. For example, the strong base
pyridine works much better than the weak base acetate as a catalyst
of ester hydrolysis. When the logarithm of the second order rate
constant (k2) for each catalyst is plotted versus pKa for several
buffers, the relation is close to linear (Fig. 10.10).

B –

R

H

OR ′

H

O

C

O δ–

δ+

Fig: 10:9: General-base catalysis

of nucleophilic attack by water.

–1

–2

–3

–4

–5

–6
–2 0

water

slope = 0.47

formate

lo
g(

k 2
) (s)

succinate
pyridine

acetate

4-picoline

phosphate

aniline

imidazole

2 4

pK a

6 8

Fig: 10:10: The log of the rate of

ester hydrolysis is plotted versus

pKa of the conjugate acid of the

buffer used as general-base catalyst.

The slope of 0.47 is the parameter �

in Eq. (10.21). Data from Jencks and

Carriuolo (1961).

10.12 GENERAL-ACID–BASE CATALYSIS AND BRØNSTED SLOPES 269



This is an example of a linear free energy relation and the
equation that describes this relation for acid–base catalysis is
known as the Brønsted equation. For general-base catalysis

log k2 ¼ Aþ � pKa (10:21)

For general-acid catalysis

log k2 ¼ A� �pKa (10:22)

Different reactions have their own characteristic value of � or �.
These parameters tell us how sensitive or susceptible a particular
reaction is to one of these forms of catalysis.

The pKa is the logarithm of an ionization equilibrium constant, so it
is the free energy of ionization divided by RT. The Brønsted equations
tell us that some of the ionization energy of the buffer can be used to
lower the energy of the transition state. Accordingly, � and � reflect
the fractions of ionization energy that can be used in this way.

The fact that buffers with more extreme values of pK can make
better catalysts offers a strategy by which enzymes can use side
chains with higher or lower pKs in their active sites to enhance a
reaction rate. But an additional problem has to be overcome. The
strongest acids, which make the best catalysts, are mostly ionized at
neutral pH, and in the ionized state they are useless in catalysis.
Likewise, the strongest bases are mostly protonated and cannot pull
a proton away from water. These factors make it difficult to observe
general acid–base catalysis under many conditions. Enzymes over-
come this problem by providing an environment in which a very
strong acid or base can be prevented from exchanging a proton with
the surrounding water. This will be illustrated first with b-gala-
ctosidase and then with chymotrypsin.

10.13 Acid–base catalysis in b-galactosidase

b-Galactosidase splits disaccharides containing galactose. The enzyme
attacks the O-linked carbon atom of galactose using a glutamate side
chain carboxyl as a nucleophile. As the bond between the enzyme and
galactose forms, the bond with the other sugar is broken. The result-
ing covalent enzyme–galactose complex is unstable and is hydrolyzed
by water, releasing free galactose into solution. An interesting side
note on this mechanism is that in these two steps, the symmetry of
the O-linked carbon atom of the galactose is inverted twice. The net
result is no change in the symmetry of the sugar. Other enzymes
perform the same chemical task with a one-step mechanism, and
these enzymes invert the symmetry of the carbon atom.

In the first step, the nucleophilic attack of the sugar by a glutamate
side chain, a second nearby glutamate residue provides assistance,
serving as a general-acid catalyst. As the nucleophilic glutamate
attacks the galactose carbon, the second, catalytic glutamate provides
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a proton to the departing oxygen atom (Fig. 10.11). By receiving a
proton from the catalytic glutamic acid, the sugar oxygen atom is
much more easily displaced by the nucleophilic glutamate carboxyl
group (Richard, 1998).

Normally, a glutamate side chain carboxyl, with a pK of around
4, is ionized at neutral pH. The glutamate that attacks the galactose
ring is ionized, but the other catalytic glutamate close by is not.
Ionization of the second glutamate would place two negative
charges right next to each other, and this would have a very high
energetic cost. The pK for ionization of the second glutamate is thus
raised to a value above 7. As a result, this second glutamate retains
its proton at neutral pH, giving us an ideal acid catalyst, a strong
acid that is protonated.

The environment of the second glutamate changes as the galactosyl–
enzyme intermediate forms. Once the first glutamate has formed
a bond with the galactose, it is no longer charged. This removes
the obstacle to ionization of the second glutamate, so it loses its
proton. This deprotonation during the first step adds a substantial
energy to the driving force of the second step. We can use the
Brønsted relation (Eq. (10.22)) to estimate the impact of the
increased driving force (Richard, 1998). For reactions in appropriate
model compounds, � for this reaction was estimated as �0.9. An
analysis of mutant enzymes lacking the catalytic glutamate residue
indicated that glutamate protonation contributed 5.3 kcal mole�1 to
the ionization energy. Thus, according to Eq. (10.22) log k2 will
increase by 0.9� 5.3¼ 4.8, and the rate will be enhanced by a factor
of 63 000.

For the second step of the reaction, the hydrolysis of the enzyme–
galactose complex, the catalytic glutamate’s role is reversed. Having
ionized, it is now perfectly poised to function as a general-
base catalyst. It draws a proton away from a water molecule to
enhance its reactivity toward the carbon atom that links the galac-
tose to the enzyme. This accelerates the second step of the process.
Thus, we have the same residue serving first as an acid catalyst
when it is protonated, and then as a general-base catalyst when it is
ionized.
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Fig: 10:11: In b-galactosidase, an

ionized glutamate carboxyl acts as a

nucleophile, attacking the carbon

atom on the galactose ring. A

protonated glutamic acid (above)

accelerates the process by

providing a proton for the oxygen

atom of the departing sugar.
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10.14 Catalysis in serine proteases
and strong H-bonds

The serine protease example used at the beginning of this chapter
would seem like a perfect illustration of base catalysis (Fig. 10.1). In
chymotrypsin, histidine 57 should serve as a base to withdraw the
proton from serine 195, thus activating it for nucleophilic attack on
the peptide carbonyl. However, the pKs don’t work out. Histidine
generally has a pK of�7, which makes it far too weak to activate the
serine hydroxyl (its pK is �14). To resolve this issue it has been
proposed that the environment of the histidine side chain (histidine
57 in Fig. 10.1) changes when a substrate binds, raising its pK and
improving the ability of histidine to catalyze the reaction.

A key element in the proposed mechanism for the pK shift of
histidine 57 is the special character of an H-bond with aspartate 102
(Cassidy et al., 1997). The proton that forms this H-bond has an
unusually large upfield chemical shift in NMR. Furthermore, in
complexes between the enzyme and certain transition-state analog
inhibitors, the distance between the N�1 atom of histidine 57 and
the carboxyl O atom of aspartate 102 is unusually short (2.52 ¯

compared to �2.8–2.9 ¯ in typical H-bonds; Section 2.10). These
properties suggest that this H-bond is extremely strong; the energy
was estimated as 11 kcal mole�1. Such strong H-bonds are formed
when the H atom is shared more equally by the donor and acceptor.
The H atom then assumes a position roughly equidistant between
the donor and acceptor, and there is little or no barrier to proton
transfer between the two. This is then called a low-barrier H-bond.

Formation of a low-barrier H-bond depends on matching the pKs
of the donor and acceptor. A low dielectric constant is also neces-
sary, and the interior of a protein provides this. The pKs of aspartate
and histidine become more closely matched provided that both of
the ring N atoms of histidine are protonated. If the histidine N"1 is
ionized, then N�1 will have a much higher affinity for its proton than
the aspartate carboxyl group (Fig. 10.12). The mismatch of pKs gives

O OO –O

N ε1 N ε1N δ1 N δ1
H HH H

O O

O

O

N

N

C
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His 57 His 57Ser 195

substrate

substrate

Ser 195

Asp 102 Asp 102

C C

Fig: 10:12: Substrate binding to

chymotrypsin brings histidine 57

and aspartate 102 close together,

allowing them to form a very strong

low-barrier H-bond. This increases

the pK of the N"1 atom of histidine

57, allowing it to act as a general-

base catalyst and pull the hydroxyl

proton off serine 195.

272 ENZYME CATALYSIS



rise to an H-bond with a typical energy of about 3–4 kcal mole�1.
Substrate binding has been proposed to induce a conformational
change in the protein, shortening the distance between the N and
O atoms, and allowing them to form a strong H-bond. This increase
in the energy of the H-bond must then be added to the energy of
protonation of N"1. The increase in bond energy was estimated as
�7 kcal mole�1, and the pK of N"1 was shown to go up to �12.

This is a substantial increase in the pK of the side chain of histidine
57, and as a result it becomes a more effective catalyst (Fig. 10.12). In
fact, the increase in pK varies with different side chains on the sub-
strate, and as the pK increases, acylation gets faster. This was demon-
strated by investigating a series of chymotrypsin inhibitors that induce
the conformational transition and increase the histidine pK to varying
degrees. The log of the rate enhancement for substrates with the same
side chains as the inhibitors was plotted versus the pK, giving a slope of
0.68 (Lin et al., 1998). Thus, we have a Brønsted slope, �, which applies
to the catalysis of the nucleophilic attack of a peptide bond by a serine
hydroxyl within the unique environment of chymotrypsin’s active site.
Low-barrier H-bonds have been proposed to play a role in catalysis by a
number of other enzymes as well as chymotrypsin (Cleland et al., 1998).

10.15 Marcus’ theory and proton transfer
in carbonic anhydrase

Carbonic anhydrase catalyzes the reaction shown in Scheme (10E)

HCO �
3
 ��! CO2 þ OH� (10E)

Unlike most enzymes, both the forward and reverse directions of
the reaction catalyzed by carbonic anhydrase are physiologically
important. This enzyme assists in the solvation of CO2 produced
during respiration, so in tissues the reaction runs to the left, but in
the lungs dissolved HCO3

� must be converted to CO2 and released
into the air so the reaction runs to the right.

Carbonic anhydrase has a Zn atom to which a water molecule is
tightly bound. The bound water rapidly donates a proton to bicar-
bonate (Scheme (10F))

E� Zn�H2OþHCO �
3
 ��! E� Zn� OH� þCO2 þH2O (10F)

The rate-limiting step in the overall process is not this one but the
change in protonation state of the Zn-bound water through proton
exchange with a histidine residue in the active site of the enzyme
(Scheme (10G))

E� Zn� OH� þHisH  ��! E� Zn�H2OþHis� (10G)

Mutating this histidine to alanine reduces kcat 20–50 fold, and the
reason that the reduction is not greater is that buffers in solution
can supply the proton formerly provided by the histidine.
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Structure–activity studieswith mutant formsofcarbonic anhydrase
have shed light on the reaction coordinate for this proton transfer step
(Silverman et al., 1993). Mutants were constructed in which residues
near the proton donor histidine were altered. The change in charge
and polarity at these locations changed the histidine’s pK. Additional
data were provided by using proton donors in solution. For each
case the rate of proton transfer and the pK of the donor and acceptor
were measured. The pK difference between the donor and acceptor
provides a measure of the driving force of the reaction. These data thus
can be used to explore the dependence of rate on driving force.

Marcus’ theory provides a relation between the rate and driving
force that describes a wide range of charge-transfer processes
(Section 7.6), including proton transfer. Taking Eq. (7.21) and adding
a parameter, w, gives an expression that can be applied to Scheme
(10G) as follows

Gy ¼ wþ Go
y 1þ �Go

4Go
y

� �2

(10:23)

where Gy is the activation free energy for a particular driving force,
�Go, and Go

y is the value of the activation energy at zero driving force.
We refer to w as the ‘‘work term,’’ and it represents contributions to
the energy barrier that remain the same as the driving force changes.

Plotting the logarithm of the rate of proton transfer versus the
driving force revealed a curvature predicted by the Marcus free
energy relation (Fig. 10.13). This plot gave an excellent fit to
Eq. (10.23), indicating that Marcus’ theory can account for the
kinetics of proton transfer in carbonic anhydrase.

The fit of Eq. (10.23) indicates that once the donor and acceptor
are in position for proton transfer, the intrinsic barrier for the
reaction is quite low (�Go

y ¼ 1.4 kcal mole�1). This is similar to the
intrinsic barrier for non-enzymatic proton transfers between simi-
lar groups. However, although carbonic anhydrase is considered a
fast enzyme (kcat is over 105 s�1), proton transfer reactions in
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Fig: 10:13: The rate of proton

transfer from a donor to a zinc-

bound hydroxyl within the active

site of carbonic anhydrase (Scheme

(10G) is plotted versus the �pK for

the proton donor and acceptor.

The data were fitted to Eq. (10.23)

to give Go
y¼ 1.4 kcal mole�1 and

w¼ 10 kcal mole�1 (Silverman et al.,

1993).
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solution can be considerably faster (1011 s�1; Section 8.7). The dif-
ference is the large value of w (10 kcal mole�1), which represents a
contribution to the barrier unrelated to the driving force. This has
been interpreted in terms of the need for organization of the water
molecules within the catalytic pocket of the enzyme. The histidine
proton donor and the zinc-bound hydroxyl acceptor are separated
by 9–12 ¯. Water molecules in between form a shuttle for the
proton. It has been suggested that these waters must align them-
selves correctly for proton transfer to occur. The probability of
attaining the correct alignment would then relate to w, and this
probability does not appear to depend on the pK values of the donor
and acceptor (Silverman, 2000).

Problems for Chapter 10

1. Work out the time course for a substrate consumed in an enzy-
matic reaction that follows Michaelis–Menten kinetics (the result
will be in the form of t as a function of [s]). Plot and compare the
results for an initial concentration of 5�KS and 0.2�KS; take
Vmax¼1 for both.

2. Start with Scheme (10D) and incorporate the binding of a second
substrate into the second step. Derive the steady-state expression
for the rate of product formation as a function of the concentra-
tions of the two substrates.

3. Derive an expression for the pre-steady-state kinetics of
p-nitrophenol production by chymotrypsin. Assume that p-nitro-
phenol is produced in the first step of Scheme (IOC) and take this
step as irreversible.

4. Consider the consequences of multiplying �a in Eq. (10.18) by a
factor. Compare the rate enhancement with the change in free
energy of a harmonic oscillator. (Use the result of Problem 11 from
Chapter 1.)

5. One expects that lowering Ey of a reaction by �Ey should increase
the reaction rate by e��Ey=kT . If the entire expression for the activa-
tion energy (U(�)¼ Ey��y(�� �y)2; Section 7.8) were divided by a
factor, what does Kramers’ theory tell us about the acceleration of
the rate?

6. Combine all of the factors for rate enhancement discussed in this
chapter into an estimate of the maximal catalytic power of the
ultimate enzyme.
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Chapter 11

Ions and counterions

The biological milieu is a salty aqueous solution. Ions dissolved in
water are pushed and pulled by the electrical forces from other ions
and charged macromolecules. Charged molecules tend to be sur-
rounded by ions of the opposite sign. These surrounding ions neu-
tralize electrostatic interactions and screen them out. Dissolved
ions dramatically alter the energetic landscape in a solution, and
this chapter will discuss these effects and develop the theories that
explain them.

To get a feel for the energies involved, consider the Coulomb
potential (Eq. (2.1))

U ¼ q1q2

"r
(11:1)

For Naþ and Cl�, the distance of closest approach (center-to-center)
is about 3 ¯. Using the dielectric constant of water ("� 80), we
obtain a potential energy of �9.3 �10�14 erg when these two ions
are in direct contact. The actual interaction is somewhat stronger
than predicted by Eq. (11.1) because the field is so strong around an
ion that the solvent becomes ordered, effectively lowering ". At
298 K, kT ¼ 4.1 �10�14 erg. So the attraction between Naþ and Cl�

has a � two-fold advantage over thermal fluctuations. Recalling the
amount of energy it takes to overcome translational entropy
(Chapter 4), we see that this attraction is far too weak to cause a
stable association.

The interaction between Naþ and Cl� is weak enough to allow
them to dissociate and dissolve in water. Although electrostatic
interactions in water are often not very strong, they are long
ranged. Compared with all other intermolecular potential energy
functions, the Coulomb potential decreases slowly with increasing r.
The combined properties of weakness and long range create a
situation in which the spatial distribution of ions becomes espe-
cially important. Though they do not associate, on average Naþ and
Cl� spend more time in each other’s vicinity. And ions with the same
charge tend to avoid each other. The distribution reflects a balance
between electrostatic forces and thermal agitation. To explore this



balance we will develop the Poisson–Boltzmann equation, and solve
it in various forms and contexts to understand a wide range of
interesting and important ionic effects in biology.

11.1 The Poisson–Boltzmann equation
and the Debye length

The Poisson–Boltzmann equation combines the Poisson equation of
electrostatics with the Boltzmann distribution. The Poisson equa-
tion expresses the general relation between a charge distribution,
�(r), and the electrical potential ’(r)

r2’ðrÞ ¼ �4p
"
�ðrÞ (11:2)

This equation generalizes the Coulomb potential to an arbitrary
distribution of charge, and reduces to the Coulomb potential
when �(r) is a single point of charge in a uniform dielectric medium.
Because �(r) is closely related to the distribution of ions that we
would like to derive, the Poisson equation is ideal for the present
purpose. We take r as the position with respect to some charged
object of interest, which could be an ion, a charged protein, a
membrane, or biopolymer. For each of these cases, the Poisson
equation will be used, but the geometry will determine the coordi-
nate system, and accordingly, the form for r2’(r).

Focusing on the charge density, we can express it in terms of
the concentrations of the various ions. For a simple binary salt
with concentrations cþ(r) for cations and c�(r) for anions,
�(r) ¼ eÃ10�3(cþ(r) � c�(r)). Since � is in units of esu cm�3, and c is
in units of mole liter�1, we must multiply by e, the unitary electro-
nic charge, Ã, Avogadro’s number, and 10�3 liter cm�3. For an
arbitrary collection of ions with valences zi and concentrations ci,
this generalizes to

�ðrÞ ¼ e~A10�3
X

i

ziciðrÞ (11:3)

The concentration at r can be related to the potential energy
with the aid of the Boltzmann distribution

ciðrÞ ¼ cið1Þe�ezi’ðrÞ=kT (11:4)

Here ci(1) is the bulk concentration at a far off reference position
where ’ is taken as 0. Substituting this into Eq. (11.3) leads to

�ðrÞ ¼ e~A10�3
X

i

zicið1Þe�ezi’ðrÞ=kT (11:5)

Using this expression for �(r) in Eq. (11.2) leads to the
Poisson–Boltzmann equation
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r2’ðrÞ ¼ �4pe~A10�3

"

X
i

zicið1Þe�ezi’ðrÞ=kT (11:6)

Thus, we have eliminated �(r) to obtain a differential equation for ’(r).
The solution to Eq. (11.6) provides an expression for the electrical
potential that takes into account the screening by ions. Once known,
’ (r) can then be used to calculate the charge density with Eq. (11.5).
Depending on the geometry, solving this equation requires different
strategies and approximations, as we will soon see.

Although solving the Poisson–Boltzmann equation is a major goal
of this chapter, we can obtain one particularly useful insight without
going that far. Since the interaction is often weak the quantity in
the exponential, ezi’(r)/kT, is often<< 1. Thus, we can approximate
the exponential in Eq. (11.6) as 1� ezi’ (r)/kT, with the result

r2’ðrÞ ¼ �4pe~A10�3

"

X
i

zicið1Þ 1� ezi ’ðrÞ
kT

� �
(11:7)

At the reference point where concentrations assume their bulk
values, the solution is electrically neutral, so �iezici(1) ¼ 0. This
simplifies Eq. (11.7) to

r2’ðrÞ ¼ 4pe2~A10�3

"kT

X
i

z 2
i cið1Þ’ðrÞ (11:8)

This is referred to as the linearized Poisson–Boltzmann equation. It
will soon be solved, but first we look at the factor multiplying ’(r) on
the right-hand side. It defines a key parameter as follows

1

lD
2
¼ 8pe2~A10�3I

"kT
(11:9)

The symbol I denotes the ionic strength, I ¼ 1
2 �iz 2

i cið1Þ. Now
Eq. (11.8) is simply

r2’ðrÞ ¼ 1

lD
2
’ðrÞ (11:10)

The variable lD has the dimension of length and is known as the
Debye length. If Eq. (11.10) were transformed to a variable with units of
lD, then there would be no parameters in the equation. That means
that lD is the fundamental unit of length for an ionic solution.

For 1 M NaCl (I ¼1) and T ¼298 K, lD ¼ 3.05 ¯. Note that lD/ I�½,
so reducing I makes lD longer. For example, with 10 mM NaCl,
lD ¼ 30.5 ¯. At distances shorter than lD electrostatic interactions
will be strong, and at longer distances they will be effectively
screened out by ions. Therefore lD is essentially the ionic screening
distance, and so it makes sense that it decreases with increasing
ionic strength. Note that I depends on the valence as z2. Thus,
I increases more rapidly when multivalent ions are added to a
solution. Multivalent ions are more effective than monovalent
ions at screening electrostatic interactions.
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11.2 Activity coefficient of an ion

Ionic solutions are not ideal. For example, a 100 mM NaCl solution
has an osmolarity of 187 mOsm rather than 200 mOsm. A major
factor in this nonideal behavior is the attraction between the oppo-
sitely charged ions. The Poisson–Boltzmann equation, as employed
in the classical work of Debye and Hückel, provides a means for
understanding this nonideality. We will illustrate this by deriving
an expression for the ionic activity coefficient. We first solve the
linearized Poisson–Boltzmann equation to obtain the potential
energy function, ’ (r), and then use this result to calculate the
energy of placing an ion in a solution with other ions.

The relevant geometry is illustrated in Fig. 11.1. A cation will
tend to attract anions so that their average density close in will be
higher than the density further out. This surrounding charge is
viewed as the ionic ‘‘atmosphere’’ of the central ion.

The distance to the center of the ion, r, is the only relevant
coordinate. That means that r2 should be taken in spherical coor-
dinates (Appendix 6). The Poisson–Boltzmann equation cannot be
solved analytically in spherical coordinates, so we use the linearized
form (Eq. (11.10))

1

r

d2ðr’ðrÞÞ
dr2

¼ 1

lD
2
’ðrÞ (11:11)

Multiplying through by r gives a differential equation in the func-
tion r’ (r), which is easily integrated

r’ðrÞ ¼ Ae�r=lD þ Ber=lD (11:12)

In Eq. (11.12), A and B are constants of integration that must be
determined by boundary conditions. The coefficient B is clearly zero
to allow ’! 0 as r!1. The constant A is determined by consider-
ing the electric field at the ion’s surface, which must be a contin-
uous function of r. At the surface there is no ionic screening, so the
field can be computed from the Coulomb potential for a charge q.
With an ionic radius of a, the field at the surface is

E ¼ q

"a2
(11:13)

We can use this boundary condition to determine the remaining
coefficient A in Eq. (11.12) by expressing the potential

’ðrÞ ¼ Ae�r=lD

r
(11:14)

and differentiating it with respect to r to obtain the electric field

EðrÞ ¼ Ae�r=lD

r

1

lD
þ 1

r

� �
(11:15)
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‘‘atmosphere,’’ with charge density, �.
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We now set r ¼ a, equate Eq. (11.13) with Eq. (11.15), and solve for
A as follows

A ¼ q

"

ea=lD

1þ a=lD

� �
(11:16)

Substituting this expression for A into Eq. (11.14) yields the solution

’ðrÞ ¼ q

"r

e�ðr�aÞ=lD

1þ a=lD

� �
(11:17)

This is the potential energy around an ion. It can be broken
up into two parts, a Coulombic part and an ionic screening part.
The Coulombic part is q/"r, so we rewrite Eq. (11.17) as the follow-
ing sum

’ðrÞ ¼ q

"r
þ q

"r

e�ðr�aÞ=lD

1þ a=lD
� 1

� �
(11:18)

The second term is the ionic screening contribution.
The stated goal of this section was to evaluate how ionic screen-

ing contributes to the nonideality of an ionic solution. The electrical
potential in Eq. (11.18) enables us to do this, since it can be used to
calculate the work, and hence free energy, of placing an ion in the
solution. The work of placing the charge, q, at r ¼0 is envisioned
as an incremental charging process. The idea is the same as that
used to calculate the self-energy of an ion in a dielectric medium
(Section 2.2), and in fact, the charging of the first term in Eq. (11.18),
the unscreened Coulomb potential of the ion, gives the familiar self-
energy (Eq. (2.4)). This quantity is independent of other ions so it is
irrelevant. The second term does depend on ion concentration
(because lD does), so the integration of this term gives us the work
done on the other ions in the solution by charging the central ion
at r ¼ 0

W ¼ 1

"a

1

1þ a=lD
� 1

� �Zq

0

q0 dq0 ¼ � q2

2"

1

lD þ a

� �
(11:19)

This term is added to the expression for the free energy of an
ideal solution to correct for ionic screening

G ¼ Go þ RT ln c þW (11:20)

The activity coefficient, �, for a single ion is defined as kT ln � ¼W.
Thus, we have

ln � ¼ � q2

2"kT

� �
1

lD þ a
(11:21)

The value of lD is considerably larger than that of the radius of
the ion at low salt concentrations, so we can drop a to obtain what is
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commonly referred to as the Debye–Hückel limiting law for the
activity coefficient of an ionic solution.

ln � ¼ � q2

2"kTlD
(11:22)

At 298 K this works out to log10� ¼ �0:5056
ffiffi
c
p

for a salt of mono-
valents (such as NaCl), and to �1:751

ffiffi
c
p

for a salt of a divalent and a
monovalent (such as CaCl2). Note that the activity coefficients go to
zero as c approaches zero, as expected since all solutions are ideal at
infinite dilution.

Figure 11.2 compares the theory with experiment, showing that the
limiting law works as long as the concentration is low (up to �10 mM).
Note that the limiting law gives an activity coefficient that depends
only on an ion’s charge, and not on any other specific properties. Thus,
all ions of the same charge are the same in the limiting case. This is
reasonable, since the Coulombic potential depends only on charge.

Equation (11.21) improves on the limiting law, providing agreement
with experiments up to �100 mM. In contrast to the limiting law,
this expression has an ion specific quantity, a, the ionic radius. The
influence of this part is not electrostatic but rather reflects the inabil-
ity of two ions to occupy the same space. This excluded volume
effect would be present even for neutral molecules. The best value of
a obtained by fitting Eq. (11.21) (legend of Fig. 11.2) tends to be larger
than the sum of the crystal radii of the anion and cation. This reflects
the hydration shell that prevents the ions from getting too close.

The Debye–Hückel theory provides a good approximate picture
of the ionic atmosphere that screens the Coulomb potential of an
ion. Using Eq. (11.17) to substitute for ’ (r) in Eq. (11.2) (withr2 as in
Eq. (11.11)) gives

�ðrÞ ¼ q

4prlD
2

e�ðr�aÞ=lD

1þ a=lD

� �
(11:23)
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The amount of charge in a shell of thickness dr at r is 4pr2�(r)dr.
A graph of 4pr2�(r) is plotted in Fig. 11.3.

We see that the maximum counterion charge density occurs at
r ¼ lD (Problem 3). For longer lD (corresponding to lower ionic
strength) the ionic atmosphere is more spread out. This illustrates
the importance of lD as a basic unit of length in the evaluation of
ionic interactions in solution.

The success of Debye–Hückel theory indicates that it captures
the essence of ionic interactions in dilute solutions. However, the
theory fails at higher concentrations owing to the breakdown of two
major approximations. The first of these is the linearization of the
Poisson–Boltzmann equation, used to obtain Eq. (11.7). This approx-
imation depends on the exponent of Eq. (11.6), ez’/kT, being small.
Recall at the beginning of this chapter that the Coulomb interaction
energy was estimated as 9.3 �10�14 erg �2kT for r ¼3 ¯. However,
for r ¼ lD (30 ¯ for I ¼10 mM), e’/ kT�1/5. Thus, the region with
the highest ion density (Fig. 11.3) gives a potential that is low enough
for the linearization approximation to work. The concentration at
which the theory starts to deviate from experiment in Fig. 11.2
corresponds with the point at which e’ (lD) / kT becomes significant
compared to one.

The other important approximation used in Debye–Hückel the-
ory is a bit more subtle. This involves using a potential based on the
average charge density, �(r). The true mean potential at a particular
distance from a selected ion requires taking an average over the
positions of all the other ions. This includes configurations in which
there are many ions in the same region. The mean charge density
does not give the correct weight to these multi-ion configurations.
Multi-ion effects are more important at high concentrations, and
that is when calculating the potential from the mean charge density
becomes a poor approximation. The linearization approximation
discussed in the preceding paragraph can be overcome by using
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Fig: 11:3: Plot of 4pr2� (with �

from Eq. (11.23)) versus r for two
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a computer to obtain a numerical solution. However, the problems
arising from the use of the mean charge density are more difficult.
They require more sophisticated theoretical techniques or Monte
Carlo computations to treat the complex behavior of a system with
many molecules.

Rigorous analysis shows that the Debye–Hückel theory becomes
exact in the limit of infinite dilution. Excellent intermediate level
discussions of ionic solutions, including the approximations of
Debye–Hückel theory and some of the methods for overcoming these
problems, can be found in Chapter 18 of Hill (1960) and Chapter 15 of
McQuarrie (1976).

An additional problem with the Poisson–Boltzmann equation is
especially relevant to certain biophysical systems. If one considers
the distribution of counterions in water near a low dielectric region,
the ions will be repelled by the image force (Section 2.3). It is
difficult to incorporate this effect into the Poisson–Boltzmann equa-
tion. This situation was studied by performing computer simula-
tions of the Brownian motion of ions in small spherical and
cylindrical water-filled cavities within a low dielectric medium
(Moy et al., 2000). As the cavity shrinks down to the Debye length
of the solution, there is less and less ionic screening. In fact, under
typical physiological conditions where lD�10 ¯, ionic screening is
essentially eliminated inside a cylinder the size of large ion
channels,�10 ¯. Ions feel the full image force of the low dielectric
medium and ionic screening is irrelevant. Only when the cylinder
was more than 2 Debye lengths wide did the effect of ionic screen-
ing for an ion in the center of the cylinder approach that of a bulk
solution.

11.3 Ionization of proteins

Ionizable amino acids such as glutamate, lysine, and arginine
speckle the surface of a protein. When one of their side chains
ionizes, the total charge of the protein changes, and electrostatic
interactions alter the ionization energies of the other amino acid
side chains. Ionizing one side chain makes it harder to ionize others,
and this spreads out a protein’s titration curve over a wider pH
range than if the same groups are independent in solution. This
effect is reduced by the addition of salt, because salt screens the
electrostatic interaction between the charges on the protein.
Debye–Hückel theory provides a satisfactory explanation for this
effect.

The basic model, due to Linderstrøm-Lang (1924), assumes that
the charge on a protein is smeared out uniformly over the surface of
a sphere. The ionization energy is then taken as the electrostatic
work done in charging the sphere. If there were no salt then we could
use the self-energy (Eq. (2.4)). In an ionic solution, we use the integral
computed in Eq. (11.19), which gives the energy for charging a sphere
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in the presence of salt. Following Scatchard (1949), we write the free
energy change for ionizing one particular group on a protein, with a
change in valence from z to zþ1, as follows

�Go ¼ �RT ln K0 þ wðzþ 1Þ2 � wz2 (11:24)

where K0 is the intrinsic equilibrium constant for the group in the
absence of electrostatic interactions and w(zþ1)2�wz2 is the change
in electrostatic energy. It depends on the square of the charge, and this
is a hallmark of electrostatic self-energies. Here z2 corresponds to q2

in Eq. (11.19), so w in Eq. (11.24) is

w ¼ 1

2"

1

lD þ a
(11:25)

To relate these equations to a protein titration experiment we
consider an ionization equilibrium in which the charge increases by
one. We divide the charges into two groups, p permanent charges (or at
least charges completely ionized in the pH range of interest) and
n ionizable charges. According to Eq. (11.24), when the number of
ionizable charges increases from i to iþ 1 the free energy change is

�Go ¼ �RTðn� iÞ
i

ln K0 þ wð pþ iþ 1Þ2 � wðpþ iÞ2

¼ �RTðn� iÞ
i

ln K0 þ wð2pþ 2iþ 1Þ

¼ �RTðn� iÞ
i

ln K0e
� wð2pþ2iþ1Þ

RT

i

n�i

 !
(11:26)

Here (n � i)/i is a statistical factor that reflects the number of sites
at which the forward and reverse ionization processes can occur
(the same factor appears in the analysis of the MWC model of
Section 5.7). It was absent from Eq. (11.24) because this equation is
for just one particular ionizing group on the protein.

The equilibrium constant of ionization is then the term in par-
entheses in Eq. (11.26)

½Hþ�½Ai�
½Aiþ 1�

¼ K0e
� wð2pþ2iþ1Þ

RT

i

n�i (11:27)

where Ai denotes the protein with ionization state i. Taking the
logarithm (base 10) and using log(e) ¼0.434 gives

log½Hþ� þ log
½Aiþ 1�
½Ai�

¼ log K0 �
0:434wi

RTðn� iÞ ð2pþ 2iþ 1Þ (11:28)

or pH� log
½Aiþ 1�
½Ai�

¼ pK þ 0:434wi

RTðn� iÞ ð2pþ 2iþ 1Þ (11:29)

To know the ratio [Aiþ1]/[Ai] we would have to make very difficult
measurements of the number of proteins with i and iþ1 titrated
groups. To avoid this problem we focus on the center of the titration
curve, where about half the groups are ionized and i� n � i.
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The statistical factor, i/(n � i), is then about one, so the same equili-
brium constant applies to any group. The ionization of the species,
Ai going to Aiþ1 is then representative of A$A� interconversions

½A��½Hþ�
½AH� �

½Ai�½Hþ�
½Aiþ 1�

(11:30)

We now define the extent of the ionization process as �¼ [A�]/
([AH]þ [A�]). This allows us to express i as �n and [A�]/[AH] ¼ [Aiþ1]/
[Ai] as �/(1��). Equation (11.29) thus becomes

pH� log
�

1� � ¼ pK þ 0:434ð2pþ 2�nþ 1Þw=RT (11:31)

This equation has been widely used in the analysis of protein
titration experiments. One varies pH and measures �. A plot of
pH � log(�/(1 ��)) versus � will be linear, and the slope can be
used to calculate w. Values of w measured in this way agree reasonably
well with estimates based on Eq. (11.25) (Tanford, 1955; Breslow and
Gurd, 1962; Stigter and Dill, 1990). Note that in the absence of
electrostatic interactions w is zero, and Eq. (11.31) simplifies to the
Henderson–Hasselbach equation, as expected for independent and
equivalent ionization events.

11.4 Gouy–Chapman theory and membrane
surface charge

Biological membranes usually have some charge at their surface.
This charge arises from the polar head groups of phospholipids,
charged amino acids on membrane proteins, and charged sugars on
membrane glycoproteins. Membrane surface charge will influence
the distribution of dissolved ions, and this is described by the
Poisson–Boltzmann equation in a theory developed by Gouy and
Chapman. This theory was actually developed around 10 years ear-
lier than the Debye–Hückel theory, and the two theories show a
striking parallel (for references to original articles see Overbeek,
1952, and Latorre et al., 1992).

In applying the Poisson–Boltzmann equation to membranes, we
note that the only important spatial dimension is the distance from
the surface, denoted here as x. In one dimension the Laplacian
operator in Eq. (11.2) is simply the second derivative, so the
Poisson equation becomes

d2’ðxÞ
dx2 ¼ � 4p

"
�ðxÞ (11:32)

and the Poisson–Boltzmann equation is

d2’ðxÞ
dx2 ¼ � 4p~Ae10�3

"

X
i

zicið1Þe�ezi’ðxÞ=kT (11:33)
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At this point in the above development of Debye–Hückel theory the
linearization approximation was used. This was necessary because the
mathematics is too difficult when the Laplacian is taken in spherical
coordinates. However, in one dimension the Poisson–Boltzmann
equation can be solved exactly, without resorting to linearization.

First, Eq. (11.33) is multiplied by the integration factor, 2d’(x)/dx
to give

2
d’ðxÞ

dx

d2’ðxÞ
dx2 ¼ �2

d’ðxÞ
dx

4pe~A10�3

"

X
i

zicið1Þe�ezi’ðxÞ=kT (11:34)

Both sides can now be integrated from x to1 to give

d’ðxÞ
dx

� �2

� d’ð1Þ
dx

� �2

¼ 8pkT~A10�3

"

X
i

cið1Þ e�ezi’ðxÞ=kT � e�ezi’ð1Þ=kT
� �

(11:35)

Since ’ and its derivative are zero at x ¼1,

d’ðxÞ
dx

� �2

¼ 8pkT~A10�3

"

X
i

cið1Þ e�ezi’ðxÞ=kT � 1
� �

(11:36)

For a simple binary salt such as NaCl, z ¼ �1, and we can write
out the sum

d’ðxÞ
dx

� �2

¼ 8pkT~A10�3 c

"
ðe�e’ðxÞ=kT þ ee’ðxÞ=kT � 2Þ (11:37)

Taking the square root of both sides gives

d’ðxÞ
dx

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pkT~A10�3 c

"

s
ðe�e’ðxÞ=2kT � ee’ðxÞ=2kTÞ

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pkT~A10�3 c

"

s
sinh

�e’ðxÞ
2kT

� �
(11:38)

where we used (e�a/2 � ea/2)2 ¼ e�aþ ea � 2 in the first step.
The obvious next step is to integrate Eq. (11.38) to obtain ’(x).

However, it is worth pausing here and using this result for another
important insight. We define a surface charge density, �, and note
that it must be balanced by an equivalent amount of ionic charge of
opposite sign in the solution. This charge is the integral over �(x), so
the balance is expressed as

� ¼ �
Z1
0

�ðxÞdx (11:39)

Using Eq. (11.32) to express �(x) in terms of ’ gives

� ¼ "

4p

Z1
0

d2’

dx2 dx ¼ � "

4p
d’ð0Þ

dx
(11:40)
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where once again we have exploited the fact that the derivative of ’
goes to zero at x ¼1.

Equation (11.40) relates the surface charge to the electric field
(the gradient of the potential) at the membrane surface. Now, we
use Eq. (11.38) to evaluate d’ (0)/dx in Eq. (11.40) and obtain an
important result known as the Gouy–Chapman equation

� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"kT~A10�3 c

2p

s
ðe�e’0=2kT � ee’0=2kTÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"kT~A10�3 c

p

s
sinh

e’0

2kT

� �
(11:41)

where ’0, which replaces ’ (0), is referred to as the surface potential.
The constant in front of the exponential factors works out toffiffi

c
p
=136, giving � in units of electronic charges per ¯

2 (Latorre
et al., 1992).

If the exponential in Eq. (11.41) is linearized, and the definition
of the Debye length (Eq. (11.9)) is used, the equation reduces to a
very simple form

� ¼ "

4plD
’0 (11:42)

Thus, surface potential and surface charge are directly propor-
tional to one another. This proportionality is analogous to
the relation between voltage and charge on an electrical
capacitor. Recall that capacitance, C is q / V. Likewise, Eq. (11.42)
gives "/4plD¼ �/’0, so "/4plD is an effective capacitance per unit
area. Its dependence on the dielectric constant, ", is the same as
that of a capacitor, and lD can be taken as the distance between the
capacitor’s two plates. The picture of two opposing layers of charge
has lead to the term ionic double layer for this kind of charge dis-
tribution at a surface.

Now, we return to Eq. (11.38). Integration followed by some
rearrangement leads to

x

lD
¼ ln

ðee’ðxÞ=2kT þ 1Þðee’0=2kT � 1Þ
ðee’ðxÞ=2kT � 1Þðee’0=2kT þ 1Þ

� �
(11:43)

When e’ /2kT<< 1, linearization of the exponentials again simpli-
fies things quite a bit.

x

lD
¼ ln

’0

’

� �
(11:44)

or ’ ¼ ’0e�x=lD (11:45)

This can be compared to Eq. (11.17). Both potential functions decrease
exponentially in units of lD. The factor of 1/r in Eq. (11.17) reflects the
spherical geometry of the ion’s environment.
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The case of low ionic strength is of interest. As the salt is diluted,
some ions must remain near the membrane to maintain electro-
neutrality. As a result, the concentration right at the surface goes to
a nonzero limit as the bulk concentration is reduced. We can see
how this comes about by noting that when ’0 is large, only one of
the exponential terms in Eq. (11.41) needs to be considered. For a
negatively charged surface

� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"kT~A10�3c

2p

s
ðe�e’0=2kTÞ (11:46)

This is then squared to give

�2 ¼ "kT~A10�3

2p
ce�e’0=kT (11:47)

Now, we note that the concentration of ions is given by the
Boltzmann distribution

cðxÞ ¼ cð1Þe�e’ðxÞ=kT (11:48)

So ce�e’0=kT in Eq. (11.47) is actually c0, the concentration at the
membrane surface. Making this substitution gives

c0 ¼
2p�2

"kT~A10�3
(11:49)

Thus, c0 is independent of c(1), the bulk concentration, in this low c
limit. This result has interesting consequences for permeation in
ion channels, as we will soon see.

The Gouy–Chapman theory makes some very important predic-
tions that are readily tested. This will be illustrated after a discus-
sion of the limitations of Gouy–Chapman theory, and how these
limitations are overcome by the modifications of Stern.

11.5 Stern’s improvements of Gouy–Chapman
theory

Gouy–Chapman theory breaks down with high charge densities
and strong fields. A similar problem was already discussed for
Debye–Hückel theory (Section 11.2). With a surface potential of
the order of 100 mV (a bit high but not impossible), the exponential
factor in Eq. (11.48) becomes e4 ¼55. If c(1) ¼0.1 M, then the con-
centration of the attracted ion works out to be 5.5 M right at the
surface, a value above saturation for many salts. The theory has a
greater tendency to fail with multivalent ions, which interact more
strongly with a charged surface, and can even bind with a high
degree of specificity. Two modifications introduced by Stern lead
to a theory that addresses these shortcomings (Overbeek, 1952;
Aveyard and Haydon, 1973).
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The first modification takes into account the finite size of an ion.
An ion’s center cannot actually be at a distance x ¼ 0 from the
surface. The closest it can get is one ionic radius away. So there is
a zone right at the surface that excludes ions. This is incorporated
into the theory by adding a displacement to x equal to the radius of
the ion. This may seem like a small correction, but the energy can be
very high at the surface of a charged membrane so the correction
can make a big difference.

The second modification is to incorporate specific binding to sites
on the membrane surface. To be in contact with the surface, they must
be within one ionic radius, giving them a position x¼ a. The ions
interacting with the surface can thus be divided into two groups. The
first group, the bound ions, forms what is called the Stern layer. The
second group is outside the Stern layer but within about a Debye
length of the surface. These make up what is called the diffuse layer
(Fig. 11.4). They are not bound like those in the Stern layer, but they are
still close enough to feel the pull of the surface charge.

To maintain charge balance, the densities of these two layers
must add up to the density of fixed charge in the membrane

� ¼ �st þ �d (11:50)

The subscripts st and d denote the Stern and diffuse layers, respectively.
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Ions in the Stern layer are described by a binding equilibrium
(Chapter 4). For a cation, Aþ, binding to a negatively charged site,
S�, we have (Scheme (11A))

Aþ þ S� �! �AS (11A)

The concentrations are related according to a binding equilibrium

½AS�
cðaÞ½S�� ¼ K (11:51)

where c(a) is the concentration of Aþ at x ¼ a. The binding energy is
broken down into two parts, a chemical part, RT ln K0, and an elec-
trostatic part, based on the electrostatic potential at x ¼ a

RT ln K ¼ RT ln K0 þ e~Az’ðaÞ (11:52)

Here K 0 is the binding constant that would be seen in the absence of
electrostatic interactions with the surface.

The charge density of the Stern layer depends on the density of
the fixed charges that form the binding sites, and the fraction of sites
occupied. The site density is denoted as �s, and the fraction of sites
occupied (expressed in terms of [S�] and [AS]) gives �st, as follows

�st ¼
ze�s½AS�
½S�� þ ½AS� ¼

ze�s

1þ ½S��=½AS� (11:53)

[S�]/[AS] can be replaced with the aid of Eq. (11.51)

�st ¼
ze�s

1þ 1=ðcðaÞKÞ ¼
ze�s

1þ 1=ðcðaÞK0ee~Az’ðaÞ=RTÞ
(11:54)

The second step made use of Eq. (11.52).
To obtain the charge density of the diffuse layer we use

Eq. (11.41), but with ’ (a) in place of ’0

�d ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"kT~A10�3c

p

s
sinh

�e’ðaÞ
2kT

� �
(11:55)

Equations (11.54) and (11.55) provide relations between the charges
of the two layers and the modified surface potential, ’(a).

Recall the analogy with a capacitor (Eq. (11.42)). The Stern layer
and the diffuse layer behave as two capacitors in series. The total
capacitance then becomes

C ¼ CstCd

Cst þ Cd
(11:56)

At high ionic strength most of the binding sites are occupied and the
capacitance of the Stern layer is greatest, so C goes to Cd. At low
ionic strength the capacitance of the diffuse layer is greater, so C
goes to Cst.

Experimental analysis of the distribution of ions at a charged
lipid surface has revealed both the Stern layer and the diffuse layer

290 IONS AND COUNTERIONS



(Bedzek et al., 1990). The Gouy–Chapman–Stern theory gives a satis-
factory account of ion-membrane interactions for a wide range of
biophysical processes (McLaughlin, 1989).

From a practical point of view the most important difference
between the Gouy–Chapman and Stern theories is that in Gouy–
Chapman theory the charge is all that matters. Different ions will
act the same if their charge is the same. Thus, one can interchange
Naþ, Kþ, NH4

þ, or tetraethylammonium with no change in behavior.
Likewise, a series of divalent ions, Mg2þ, Ca2þ, St2þ, etc. should also
produce indistinguishable results. This will not be the case if ions
bind to the surface because the binding constant K 0 is ion specific.
One often sees differences in the actions of divalent cations at a
surface. This is generally interpreted as evidence for binding to sites
on the membrane and the formation of a Stern layer.

11.6 Surface charge and channel conductance

The conductance of an ion channel varies with the concentration of
permeant ions. Surface charge draws ions toward the mouth of the
channel, concentrating them and increasing the conductance above
that expected from the bulk concentration. From Eq. (11.48) we can
relate the relevant concentration of the permeant ion, c0, to the
surface potential

c0 ¼ cð1Þe�e’0=kT (11:57)

we take c0 as the concentration at the surface of the membrane, and
presumably at the mouth of the channel as well. If there is a surface
charge on the membrane and the ionic strength is altered by adding
or removing an impermeant ion, the surface potential will change
through Eq. (11.41), and the resulting change in c0 will alter the
channel conductance. Thus, by changing the surface potential,
impermeant ions can influence the flow of permeant ions.

This effect has been demonstrated in a number of channels.
For example, the conductance of a Kþ channel in heart muscle is
reduced by the addition of various impermeant ions such as choline,
Ca2þ, and Mg2þ (Fig. 11.5). The drop in conductance reflects the
neutralization of a negative surface charge, leading to a reduction
in the concentration of Kþ at the mouth of the channel. As the ionic
strength increases, the effect of the existing surface charge is neu-
tralized so the channel conductance approaches the value that
would be seen in a neutral membrane. Overall, this effect is well
described by Gouy–Chapman theory. Equation (11.41) gives surface
charge as a function of surface potential, and this expression can
be inverted to obtain the surface potential as a function of the
ionic strength and surface charge (Problem 6). With Eq. (11.57),
the surface potential then gives the concentration at the mouth of
the channel, which is proportional to channel conductance.
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Varying the concentration of a permeant ion can produce
another interesting surface charge effect. According to Eq. (11.49),
c0 at a charged surface will go to a finite limit as the bulk concentra-
tion is reduced to zero. This means that for a channel in a charged
membrane, as the permeant ion concentration is reduced, the con-
ductance can go to a nonzero limit. This seems paradoxical, because
at zero ion concentration there is nothing to carry current.

In experiments with a Ca2þ-activated Kþ channel reconstituted
into bilayers, the lowest conductance seen at low Kþ concentrations
was about 30% of the highest conductance obtained with a saturat-
ing Kþ concentration. Neutralizing charge on the membrane sur-
face by altering the lipid composition allowed the channel current
to go to much lower values as the Kþ concentration was reduced
(Moczydlowski et al., 1985). Chemical modification of glutamates
near the channel mouth removed negatively charged side chains,
with a similar outcome (MacKinnon et al., 1989).

It is important to distinguish whether the surface charge is on the
lipid or the channel protein. Equation (11.49) depends on the charge
being uniformly distributed over a planar surface. However, when the
charges are on channels the distribution is not uniform. Each protein
looks more or less like a point of charge at a distance that is large
compared to the size of the protein. This situation was studied by
Cai and Jordan (1990), who obtained a numerical solution to the
Poisson–Boltzmann equation for the geometry shown in Fig. 11.6a.
Treating the channel conductance as a saturating function of c0 gave a
curve that remained quite high as the concentration decreased. But as
the bulk concentration fell into the low mM range, c0 (and the channel
conductance) dropped sharply (Fig. 11. 6b). This behavior is sensitive to
the precise nature of the charge distribution at the mouth of the
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channel, so one can learn something about the locations of fixed
protein charges from these kinds of experiments.

11.7 Surface charge and voltage gating

A surface potential has a direct effect on voltage gating of ion
channels. This is because the voltage seen by a channel’s gating
charge is actually the difference between the voltages at each sur-
face (Fig. 11.7). Changing the surface potential at one or both sides
will thus change the electric field acting on the channel.

To account for this effect of surface potential on channel gating,
it is clear from Fig. 11.7 that all we need to do is take the Boltzmann
equation of voltage-gating (Eq. (1.28)) and add the surface potentials
to �V. Taking �’0 as ’0-right �’0-left, we have

Po ¼
1

1þ eð�V��V0þ�’0Þ=Vs
(11:58)

If the two sides of a membrane have different charge densities then
changing the concentrations of ions will affect ’0 differently on the
two sides, and �’0 will change. Alternatively, even if surface charge
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is symmetrically distributed, �’0 can be altered by adding or remov-
ing ions on just one side of the membrane.

This kind of b ehav ior is very common (see Chapter 17 of Hi lle,
1991). In general, monovalent ions produce shifts that are in reason-
able agreement with Gouy–Chapman theory. In the Ca2þ-activated
Kþ channel from skeletal muscle, the voltage dependence of chan-
nel opening followed a Boltzmann equation, and as the potassium
concentration on one side of the membrane was increased from 1 to
150 mM, the voltage dependence of the open probability shifted by
nearly 40 mV (MacKinnon et al., 1989). The magnitude of this shift
was very well described by Gouy–Chapman theory, with � ¼ �0.23
elementary charge nm�2. On the other hand, for many channels
divalent cations produce variable shifts, and this is the signature of
a Stern layer formed by specific binding sites.

11.8 Electrophoretic mobility

A charged particle migrates in an electric field, and this is termed
electrophoresis. For a total charge Q , the force exerted by the field is

Fe ¼ EQ (11:59)

The electric field, E, accelerates the particle until a balance is
reached with the frictional resistance to movement, at which
point the particle moves with a constant velocity (Section 6.7). The
friction is proportional to the velocity, v, and pushes in the opposite
direction (Eq. (6.58))

Ff ¼ �f V (11:60)

This proportionality defines the frictional coefficient f.
The average velocity reflects a balance between these two forces.

Setting Fe in Eq. (11.59) equal to�Ff in Eq. (11.60) leads to an expression
for the velocity where the forces balance

v ¼ EQ

f
(11:61)

∆V

∆V –  ∆ϕ0

ϕ0-right

ϕ0-left

Fig: 11:7: The voltage seen by

a channel in a membrane is the

membrane potential, �V, minus the

difference in surface potentials at

each side. In this sketch a much

larger surface potential on the right

side than the left side reverses the

sign of the membrane potential.
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The electrophoretic mobility, u, is defined from this equation as the
ratio of the velocity to the field

u ¼ v

E
¼ Q

f
(11:62)

It is tempting at this point to take the coefficient of friction from
Stokes’ law (Eq. (6.65)). Then the electrophoretic mobility would be

u ¼ Q

6p�a
(11:63)

where a is the radius of the particle (taken as a sphere) and � is the
viscosity. However, when there are ions in the solution, Eq. (11.63) is
incorrect. The trouble is that the counterions that are concentrated
in the vicinity of the particle undergo electrophoresis in the oppo-
site direction. The movement of these ions causes the fluid to
stream along, and this moving fluid pulls the particle in the direc-
tion opposite to the direct pull exerted by the electric field
(Fig. 11.8). As a result, u is much lower than that given by Eq. (11.63).

It may seem daunting to try to account for the interaction
between the counterions, the fluid, and the surface charge of the
particle, but a simple theory has been developed that achieves this.
Consider a thin sheet-like section of solution at a distance x from the
particle surface (Fig. 11.8). The field pulls the sheet because there
are ions dissolved in it. The force is E�(x)Adx, where Adx is the
volume of the sheet. Adjacent sheets moving at different velocities
exert a sheer force on one another. The sheer force is

� �A
dv

dx

����
x

at x; and �A
dv

dx

����
xþdx

at xþ dx

We now consider a steady state in which the particle moves at a
constant velocity. The fluid streams along parallel to the particle
surface, with layers closer to the particle matching more closely the
velocity of the particle. The velocity of each layer is constant, so the
forces on any layer must add up to zero. Thus, the force of the electric
field is balanced by the sum of the sheer forces from above and below

+      +      +      +      +      +      +      +      +      +      +      +      +      +

-        -        -        -        -

x

A

F = EσA

F = Eρ( x)d xA

d x
-        -               -        -

E Fig: 11:8: The surface of a

charged particle in an ionic solution.

The field, E, pulls the positively

charged surface (dark gray) one

way and the negatively charged

counterions the other. A volume

element of solution, Adx at a

distance x from the surface (light

gray), is pulled by the field and by

sheer forces exerted by the layers

of fluid above and below.
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E�ðxÞAdx ¼ �A
dv

dx

����
xþdx

��A
dv

dx

����
x

(11:64)

This can be rearranged to give

E� ¼ � d2v

dx2 (11:65)

Using the Poisson equation (Eq. (11.2)) to replace � gives

� E"

4p
d2’

dx2 ¼ �
d2v

dx2 (11:66)

Integration leads to a relation between the first derivatives. The
derivatives of both ’ and v are zero at x ¼1; far away from the
particle the potential is flat and the fluid is stationary. Thus, we are
left with the same relation between the derivatives

� E"

4p
d’

dx
¼ � dv

dx
(11:67)

Integrating again and taking advantage of ’(1) ¼0 and v(1) ¼ 0
gives

� E"

4p
’ð0Þ ¼ �vð0Þ (11:68)

Dividing this equation through by E and � would appear to give
us an expression for the mobility u as v/E (Eq. (11.62)). But first we
must realize that ’(0) in this situation differs in a subtle way from ’0

defined in the Gouy–Chapman theory above. There, ’0 was the
potential at the distance where an ion is in direct contact with the
surface. In Eq. (11.68) ’(0) is the potential at the distance where
the fluid sticks to, and moves with, the particle. These two ‘‘zeroes’’
are not the same. Because of this distinction the symbol � is used for
’ (0) in the expression for the electrophoretic mobility, and is com-
monly referred to as the zeta-potential. Thus, Eq. (11.68) gives

u ¼ v

E
¼ "�

4p�
(11:69)

This result, originally due to Helmholtz and improved by von
Smoluchowski, is referred to as the Helmholtz–Smoluchowski equa-
tion (Overbeek and Wiersema, 1967). The result is remarkable because
it is independent of the particular way in which ’ and � vary with x.
The particle size and charge do not appear in Eq. (11.69), and this is
mysterious because intuition tells us that the electrophoretic mobility
ought to depend on these properties. This is clarified by thinking of
the particle as a large uniformly charged sphere for which Eq. (11.17)
can be used to express the screened potential. We take the potential
at r�, defined as the distance used to compute the zeta potential

� ¼ Q

"r�

e�ðr��aÞ=lD

1þ a=lD

� �
(11:70)
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For a large sphere r�� a, so the exponential term is �1. Substitution
into Eq. (11.69) gives (Chapter 3.1.D of Benedek and Villars, 2000)

u ¼ Q

4p�að1þ a=lDÞ
(11:71)

For a particle much larger than lD we see how u is lower than that
given by Stokes’ law (Eq. (11.63)). This solves the mystery. The charge
and size do affect the mobility through �. Equation (11.71) makes that
dependence explicit.

For particles with sizes comparable to lD, Eq. (11.71) becomes
less accurate, and as the size decreases further the electrophoretic
mobility approaches that for small ions. More detailed theoretical
treatments of these issues highlight the importance of the ratio a/lD

as a critical parameter. When the particle is much larger than the
thickness of the ionic double layer, Eqs. (11.69) and (11.71) are
reasonably accurate (Overbeek and Wiersema, 1967).

One helpful perspective on why the electrophoretic mobility can
be expressed with the simplicity of Eq. (11.69) is that the local inter-
actions between the particle surface and the surrounding ions and
fluid dominate in resisting the motion of the particle. By contrast,
Stokes’ law treats the fluid displacement by the movement of the
particle (Fig. 6.7). The streaming of the fluid around the entire par-
ticle is then taken into account.

Although electrophoresis is an extremely widespread analytical
tool in the separation and characterization of proteins and nucleic
acids, quantitative theories are rarely implemented. Proteins do not
have uniformly charged surfaces, and quantitative calculations
of electrophoretic mobility depend on too many details such as
shape and charge distribution. By contrast, the electrophoretic
mobilities of cells and liposomes are well described by the
Helmholtz–Smoluchowski equation. Variations in ionic strength
produce the expected changes in mobility. Monovalent ions pro-
duce nonspecific effects, following the Gouy–Chapman theory.
Multivalent ions produce specific effects indicative of site binding,
as provided for by the Stern modifications (McLaughlin, 1989).

11.9 Polyelectrolyte solutions I. Debye–Hückel
screening

Polyelectrolytes such as DNA and RNA have charge distributed over
their entire length. The density of charge is usually quite high so
that the electrostatic potential near the surface is substantially
larger than kT. The Boltzmann term e�e’/kT can therefore no longer
be linearized. The Poisson–Boltzmann equation can be solved
exactly for a uniformly charged cylinder, but only in the restricted
case where the polyelectrolyte’s counterions are the only ions pre-
sent, i.e. no added salt (see Oosawa, 1971). Here we will explore
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some approximate and intuitive theories that have wider applic-
ability (Manning, 1969; Oosawa, 1971).

We assume that the repulsion between charges will straighten
out the polymer and make it look like Fig. 11.9, with each charge, q,
separated from its neighbor by a distance, b. The electrostatic repul-
sion helps give DNA its long persistence length (Section 3.4). We will
now calculate the potential energy at the surface of this chain.
Equation (11.17) is the starting point. The solution is taken as dilute
so lD is large compared to the size of the individual charges on the
polyelectrolyte, justifying the approximation 1þ a/lD�1. The
potential for just one of the charges on the polyelectrolyte is

’ðrÞ ¼ qe�ðr�aÞ=lD

"r
(11:72)

Recall that this is the Coulomb potential with the term e�r/lD reflect-
ing the screening effect of dissolved salt.

It is important to note that lD is calculated using the ionic
strength of the inorganic ions. Including the polyelectrolyte, with
a value of z that can easily surpass 104, would make lD extremely
short even with a very low concentration. However, polyelectro-
lytes cannot screen electrostatic interactions well because their
charge is spread out over a great distance. The better screening
ability of multivalent ions depends on their charge being concen-
trated at one point in space.

The polyelectrolyte molecules are assumed to be well separated
so they do not interact with one another. That allows us to focus on
the interaction between the polyelectrolyte and the surrounding
salt in solution. We will now calculate the potential at the surface
of one of the balls in Fig. 11.9. Number the charges on the polyelec-
trolyte starting from one end. The distance between charge i and j is
ji� jjb, so from Eq. (11.72) the screened potential at the site of
charge i due to charge j is qeð� i�jj jb=lDÞ=ð" i� jj jbÞ (a in the exponent
is negligible). Summing over j, and adding in the term for charge i
itself gives

’ ¼ q

"a
þ 2q

"

X1
n¼1

e�nb=lD

nb
(11:73)

The first term is from the ith charge, taken from Eq. (11.72), with
r ¼ a. The factor of 2 in the second term reflects the interactions
with charges on each side. The sum to infinity means that we are
looking at a very long chain.

b

q q qqqqFig: 11:9: A polyelectrolyte

represented as a linear chain of

charges separated by a spacing, b.
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We now approximate the sum as an integral with x ¼ nb and with
dx /b as the differential

’ ¼ q

"a
þ 2q

"b

Z1
b

e�x=lD dx

x
(11:74)

Transforming variables to z ¼ x /lD gives

’ ¼ q

"a
þ 2q

"b

Z1
b=lD

e�zdz

z
(11:75)

This integral cannot be evaluated analytically,1 but when b /lD is
small (b<< lD is valid for low ionic strength) it can be approximated
as

’ ¼ q

"a
� 2q

"b
ln

b

lD
(11:76)

This approximation makes sense, because the exponential term
makes the integrand small for large z. The integral blows up as
b/lD!0, and this occurs in a region where the exponential is close
to one. So for small b/lD the integral should behave like the integral
of 1/z, in which a negative logarithmic singularity dominates.

We can now calculate the work done on the dissolved ions to
charge up the entire chain. This is similar to estimating the work of
charging a sphere in the treatment of an ion (Eq. (11.19)). Thus, we
integrate Eq. (11.76) from 0 to q

W ¼ 1

"a
� 2

"b
ln

b

lD

� �Zq

0

q0 dq0

¼ q2

2"a
� q2

"b
ln

b

lD

¼ q2

2"a
� q2

"b
ln bþ q2

"b
ln lD (11:77)

Just as Eq. (11.18) was separated into salt-dependent and salt-
independent parts, we have done that again here. The last term in
Eq. (11.77) contains all the salt dependence (lD). The other two terms
are the same with or without salt. In the interest of understanding
how salt influences the behavior of the polyelectrolyte, we take this

1 Integrating by parts givesZ
e�zdz

z
¼ e�zln zþ

Z
e�zln zdz

Integrating by parts again gives

e�zln zþ e�zðzln z� zÞ þ
Z

e�zðzln z� zÞdz

Repeating this generates terms of the form e�z zi and e�z zi ln z. All terms evaluated at

z¼1will be zero because of the exponential. All terms evaluated at b/lD will by small

compared to the leading term �e�b=lD lnðb=lDÞ � �lnðb=lDÞ.
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last term as the work done on the salt per charge of the polyelec-
trolyte to place it in solution

W ¼ q2

"b
ln lD (11:78)

This equation, due to Manning (1969), expresses the salt depen-
dence of the free energy of dissolving a charged polymer. It is not a
true limiting law such as the one from Debye–Hückel theory
(Eq. (11.22)), because it has the undesirable property of becoming
infinite as the salt concentration goes to zero (ln lD!1). This
problem arises because when lD becomes as long as the polymer
then the chain can no longer be treated as infinite. However, the salt
has to be very dilute for this to happen so Eq. (11.78) is valid down to
a very low salt concentrations.

Equation (11.78) can be used to calculate many fundamental
properties of polyelectrolyte solutions. For example, the activity
coefficient of ionic species i is influenced by polyelectrolyte, and
this contribution is obtained by differentiating Eq. (11.78) with
respect to the concentration of that ion

kT ln �i ¼
qW

qci
¼ q

qci

q2

"b
ln lD

� �
(11:79)

With lD from Eq. (11.9) we can show that for a binary salt

qlD

qc
¼ � lD

2ðc1 þ c2 þ ccÞ
(11:80)

where c1 and c2 refer to the anions and cations of an added salt and cc

is for the polyelectrolyte’s own counterions. Using this in the differ-
entiation of Eq. (11.79) gives (Manning, 1969)

kT ln � ¼ � q2

2"bðc1 þ c2 þ ccÞ
(11:81)

11.10 Polyelectrolyte solutions II.
Counterion-condensation

The foregoing analysis of Debye–Hückel screening works only for
polyelectrolytes with a low charge density. When a polyelectrolyte
has a high charge density it attracts ions so strongly that it gives
rise to a unique form of association called counterion-condensation
(Oosawa, 1971). This can be understood with the aid of a model in
which the discrete charges of Fig. 11.9 are smeared uniformly over
the length of the chain.

For very close interactions, the Debye–Hückel screening can be
ignored. For the interaction with an ion carrying a charge of qi, the
Coulomb potential is integrated over interactions with a line of
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charge with a density of qj /b. This is an integral of 1/r, so we have a
logarithmic function

’ðrÞ ¼ �
2qiqj

"b
ln r (11:82)

where r is small compared to the length of the polyelectrolyte.
The classical configuration integral (Eq. (1.4)) is then used to cal-

culate the ion–polyelectrolyte contribution to the partition function

� ¼
Zrmax

0

e�’ðrÞ=kT2prdr (11:83)

The factor 2pr is due to the polar coordinate system, and rmax is an
arbitrary large distance, which will soon be seen to be irrelevant.
Substituting Eq. (11.82) into Eq. (11.83) gives

� ¼
Z rmax

0
r

2qiqj

"bkT 2prdr

¼ 2p
Z rmax

0
r

1þ
2qiqj

"bkT dr (11:84)

Although this is an easy integral, no effort is made to evaluate it.
Instead, we focus on the qualitatively different behavior it will
exhibit depending on whether the exponent of r is greater than or
less than �1. For 1þ ð2q1q2Þ=ð"bkTÞ <�1 the integral diverges. For
values> �1, the integral converges. This defines the quantity
� ¼ ðq1q2Þ=ð"bkTÞj j as a pivotal charge-density parameter of the poly-
electrolyte. For

� � 1 (11:85)

the divergence of Eq. (11.84) means that the ion–polyelectrolyte
system has a very high free energy, and is therefore unstable. By
contrast, for

�51 (11:86)

the polyelectrolyte will be screened by counterions in the standard
way, and we can expect the Debye–Hückel screening of the preced-
ing section to provide an adequate description.

Manning (1969) proposed that in the unstable situation charac-
terized by Eq. (11.85), ions in solutions will accrete around the
polyelectrolyte to reduce its effective charge density. This accumu-
lation continues until � is brought down to 1. This will increase the
effective mean spacing between charges to a new value beff, defined
by the equation

�eff ¼
q1q2

"beff kT

����
���� ¼ 1 (11:87)

The polyelectrolyte then behaves as though it has b¼ beff. Thus,
counterion-condensation onto a polyelectrolyte reduces its charge
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density to a value that gives a convergent configuration integral. The
nature of the bound or condensed state need not be precisely speci-
fied; counterion-condensation does not depend on the chemical nat-
ure of the counterion, only on its charge. For any choice of ions added
to a solution, the same quantity will bind to the polyelectrolyte,
provided that the charge is the same. Thus, like the screening inter-
actions discussed in Debye–Hückel theory and Gouy–Chapman the-
ory, counterion-condensation lacks chemical specificity.

The crucial spacing for which � ¼ 1 works out to be b ¼ 7.1 ¯,
with q1 and q2 taken as the unitary charge and T ¼298 K. Many
polyelectrolytes have more closely spaced charges, so counterion-
condensation is quite common. For DNA b ¼ 1.7 ¯, so we would
expect enough charge to bind to increase b to 7.1 ¯. Since � and
�eff are proportional to the charge density before and after counterion-
condensation, respectively, we can take the fraction of polyelectro-
lyte charge that is neutralized by counterion-condensation as
ð� � �eff Þ=� ¼ ð� � 1Þ=� and the fraction of charge remaining as
�eff=� ¼ 1=�. For DNA, �¼ 4.2, so the fraction of charge neutralized
by monovalent counterions is 0.76. For a variety of different counter-
ions over a wide range of concentrations, this prediction has been
experimentally verified (reviewed by Manning, 1978).

Counterion-condensation tells us that the fraction of bound salt
remains constant as bulk salt concentration is varied. This is not
what one expects of a standard molecular association (Chapter 4).
There should be a graded change in binding site occupancy as the
concentration of a ligand is changed. Counterion-condensation thus
violates mass action. The reason for this is the long range of
the electrostatic potential of a linear array of charges. We saw that
summing over all the relevant Coulomb potentials gave a potential
energy that increases logarithmically with lD (Eq. (11.78)). Diluting the
salt increases lD, making the attraction for ions stronger. This increase
exactly cancels the increase in the entropic drive to dissociate, which is
also logarithmic. The balancing of these two logarithmic terms results
in a constant degree of association. Ultimately, counterions will
dissociate, but only when the salt is so dilute that lD becomes longer
than the length of the polyelectrolyte. The length of a 1000 base pair
DNA molecule is 3500 ¯; lD is this long in �1mM NaCl.

The large amount of charge on polyelectrolytes leads to some-
what similar behavior even when a macromolecule deviates from a
linear geometry. The counterions still neutralize a fraction of
charge. The charge neutralized and the number of condensed coun-
terions are not constant as in the treatment given above, but they
change very slowly with salt concentration (Oosawa, 1971).

11.11 DNA melting

The repulsion between the negatively charged phosphates is a
major destabilizing factor in double-stranded DNA. Adding salt
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screens this repulsion, stabilizes the double helix, and raises the
melting point. Experiments have shown that the melting tempera-
ture of DNA increases with the logarithm of the concentration of
salt. This can be explained by a theory that incorporates the two
effects, Debye–Hückel screening and counterion-condensation,
developed in the preceding two sections.

Consider an equilibrium (Scheme (11B)) between double-
stranded and single-stranded DNA, in which i counterions are
liberated

D �! � 2Sþ i Aþ (11B)

where D and S denote double and single strands. The salt is denoted
as Aþ. Although the helix–coil transition is not a simple two-state
process (Section 3.12), we will approximate it as such and take
Scheme (11B) as a two-state melting of a single cooperative unit.
This is a reasonable simplification because we are mainly interested
in the melting temperature and not the shape of the transition.

Scheme (11B) implies an equilibrium constant

K ¼ ½S�
2ci

½D� (11:88)

for which we take the free energy change as a function of the salt
concentration

�G ¼ �G0 þ iRT ln c (11:89)

where �G0 refers to everything that goes into the free energy other
than the mass balance contribution of ion binding. It includes
energies for the interaction between the DNA strands, water solva-
tion, and Debye–Hückel screening.

First we use the results for counterion-condensation to estimate i,
the difference in number of counterions bound. As noted above, the
fraction of charge on the polyelectrolyte in the absence of counterion
condensation is 1=�. There is a corresponding number of counterions
free in solution. If �d and �s are the charge-density parameters for
double- and single-stranded DNA, respectively, then the change in
the number of free counterions upon melting is

i ¼ 1

�s
� 1

�d
(11:90)

Now we consider the salt dependent electrostatic contribution
to �G0. This arises from the interaction between the polyelectrolyte
and its ionic atmosphere, and is denoted as �Gel. The treatment of
Debye–Hückel screening produced Eq. (11.78) as an expression for
the work done per charge to place a polyelectrolyte in a salt solu-
tion. This result can be rewritten as kT�eff ln lD, and this is then
divided by � to account for the fraction of unneutralized charge.
Multiplying by Avogadro’s number converts this to free energy per
mole (replacing kT with RT). Since �eff ¼ 1, the difference between
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the electrostatic contributions from double- and single-stranded
DNA is

�Gel ¼
1

�s
� 1

�d

� �
RT ln lD (11:91)

We now combine this with the mass action term, iRT ln c, from
Eq. (11.89), and take i from Eq. (11.90), to give

�G ¼ �G00 þ 1

�s
� 1

�d

� �
RT ln lD þ

1

�s
� 1

�d

� �
RT ln c (11:92)

The second and third terms on the right represent the contributions
of Debye–Hückel screening and counterion-condensation, respec-
tively, and �G00 is what is left after subtracting �Gel from �G0. Once
again (as in Eqs. (11.18) and (11.77)), we have divided the free energy
into salt-dependent and salt-independent parts so that we can focus
on salt effects.

We now observe that lD is proportional to 1=
ffiffi
c
p

(Eq. (11.9)). We
can thus extract the salt-independent factor in lD from the middle
term on the right-hand side of Eq. (11.92) and absorb it into �G00 to
create �Gc. Since ln 1=

ffiffi
c
p
¼ �1=2 ln c, we can combine the two terms

in Eq. (11.92) that depend on c as follows

�G ¼ �Gc þ
1

2

1

�s
� 1

�d

� �
RT ln c (11:93)

This is a key result. It can be used to determine how salt influ-
ences the equilibrium between single-stranded and double-stranded
DNA. To look at the melting temperature we replace �Gc by
�Hc � T�Sc, and set T equal to the melting temperature, Tm, at
which point double-stranded and single-stranded DNA have equal
free energies, so �G ¼0, as follows

0 ¼ �Hc � Tm�Sc þ
1

2

1

�s
� 1

�d

� �
RTm ln c (11:94)

Solving for Tm gives

Tm ¼
�Hc

�Sc � 1
2

1
�s
� 1

�d

� �
R ln c

(11:95)

This equation already makes the point that raising the salt con-
centration raises the melting temperature, but it can be simplified
by noting that �Sc is larger than the second term in the
denominator. The fraction can therefore be expanded using
1=ð1� xÞ � 1þ x to give

Tm �
�Hc

�Sc
1þ 1

2�Sc

1

�s
� 1

�d

� �
R ln c

� �
(11:96)
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Thus, Tm varies linearly as ln c, and the slope is

�HcR

2�Sc
2

1

�s
� 1

�d

� �
¼ RTcm

2�Hc

1

�s
� 1

�d

� �
(11:97)

where we replaced �Sc by �Hc /Tcm.2

Equation (11.96) describes how Tm increases linearly with the
logarithm of the salt concentration. An example of such behavior is
illustrated in Fig. 11.10. As noted above, �d ¼ 4.2. We can measure
�Ho calorimetrically or from the van’t Hoff equation (Eq. (1.19)).
This leaves one unknown, �s, on the right-hand side of Eq. (11.97).
From the slope of plots such as Fig. 11.10 one can estimate �s as�1.7
(Record, 1975). This is consistent with the view that single-stranded
DNA has half the number of charged phosphates, and is a bit
more extended than double-stranded DNA. This theory success-
fully describes a large body of experimental data on how salt influ-
ences DNA melting (Manning, 1978). Thus, the two effects of
Debye–Hückel screening and counterion-condensation provide a
good accounting of how salt affects the relative stability of single-
stranded and double-stranded DNA.

Problems for Chapter 11

1. Calculate lD for a NaCl solution with concentrations of 25 and
50 mM. Repeat the calculation for MgCl2.

2. Show that �(r) (Eq. (11.23)) integrated over space gives a total
counterion charge that perfectly balances the charge of the ion.

3. Find the distance at which the charge density is highest in
Debye–Hückel theory (the maximum of Eq. (11.23)).

4. Calculate the net counterion charge within a sphere around an ion
of radius lD.

2 Tcm is the melting temperature of a fictitious salt-independent state so it is not equal

to Tm, but the percentage difference is not large on an absolute temperature scale.
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Fig: 11:10: The melting

temperature of T4 DNA versus

salt (data from Record, 1975).
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5. Use the Debye–Hückel limiting law to derive the ionic strength
dependence of a simple ionization equilibrium of the form
Aþ þ B� �! �AB: (Neglect the contribution of Aþ and B� to I.)

6. Invert Eq. (11.41) to obtain an expression for ’0 in terms of c and �
(see Appendix 5).

7. Show that the surface potential for a sphere (from Eq. (11.18)) is
identical to that for a plane (Eq. (11.42)) when the radius of the
sphere, a>> lD. This indicates that Gouy–Chapman theory is valid
for the membrane of a spherical cell.
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Chapter 12

Fluctuations

Biological systems often fluctuate more noticeably than typical physical
and chemical systems. This reflects the large size of many biological
molecules and the small size of cells. The molecular nature of matter
gives rise to fluctuations in every imaginable property. These fluctuat-
ions may or may not be easy to see, and size is a critical factor. In a
system with N molecules, many measured quantities are proportional
to N, but the fluctuations are proportional to N ½. The fluctuations
relative to the mean then decrease with the size of a system as N�½.
When N is Avogadro’s number, the task of observing these fluctuations
in a conventional measurement becomes quite a challenge. Of course,
there are some incredibly sensitive measurements that can be made.
Signals arising from single molecules can be detected, and the fluctuat-
ions in these signals reflect the stochastic nature of molecular activity.
But in many cases where the single-molecule signals are too small to
see, the collective fluctuations may still be detectable. The special size
scales found in biology generate a uniquely fluctuating world that
merits special attention.

We have encountered fluctuations already in Chapter 3 in relation
to conformations of macromolecules, and in Chapter 6 in relation to
random walks. The probability of fluctuations can be calculated
whenever statistical mechanics is used to develop a quantitative
molecular description, and in many situations fluctuations contain
important information. The study of fluctuations then becomes a
powerful experimental approach by which models can be tested
and molecular parameters estimated. Understanding fluctuations
also has a practical value in helping one minimize the instrumental
noise that limits what can be measured. Finally, since fluctuations are
an intrinsic part of molecular activity, understanding them deepens
one’s understanding of how molecules work.

12.1 Deviations from the mean

There are a number of ways to quantitate fluctuations. A probability
distribution tells us how often different values of a number are
observed. The Boltzmann distribution is a familiar example that



tells us how the energy of a molecule varies. However, one would
often like to view the magnitude of the fluctuations in terms of
a single number. For this we naturally turn to the deviation from
the mean, �x ¼ x�x. But averaging this quantity gives zero. Instead,
we take the mean-square deviation, or variance, �x2 ¼ ðx� xÞ2.
Squaring before averaging avoids the problem of the positive devi-
ations canceling the negative deviations. We can put �x2 into a
particularly convenient form by multiplying out the square

�x2 ¼ ðx� xÞ2 ¼ x2 � 2xxþ x2

¼ x2 � x2 (12:1)

This is the most common way to represent fluctuations, and the
quantity �x2 is the variance of x. Taking the square root gives the
familiar root-mean-square or rms deviation, which has the advant-
age of having the same units and dimensions as the measured
quantity, x.

Note what happens if we sum two independent random
variables

�ðxþ yÞ2 ¼ ðxþ y� xþ yÞ2

¼ x2 � 2xxþ x2 þ y2 � 2yyþ y2þ2xy� 2x y (12:2)

If x and y are uncorrelated, then we have xy¼ x y. The resulting
cancellations simplify the expression considerably

�ðxþ yÞ2 ¼ x2 � x2 þ y2 � y2

¼ �x2 þ�y2 (12:3)

This means that uncorrelated fluctuations add as their squares.
They can thus be viewed as the edges of a right-angled triangle,
with the fluctuations of the sum being the hypotenuse, as in the
Pythagorean theorem. This is an important general property of
fluctuations. It is a straightforward matter to generalize this form
of additivity to an arbitrary number of variables as long as they are
independent.

This give us a taste of the study of fluctuations, but there is
quite a bit that the rms deviation cannot tell us. It tells us
nothing about the shape of the distribution other than its
width. For example, a distribution could be asymmetric, with
larger positive deviations than negative deviations. The distribu-
tion tells us more about this kind of thing. But even if we know
the complete distribution, we know nothing about the speed of
the fluctuations. In fact, if a system has very slow fluctuations,
then there is a serious risk that a measurement of �x2 made in a
short time will underestimate the true value. Techniques for
quantitating the timescale of fluctuations will be developed
later in this chapter.
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12.2 Number fluctuations and the Poisson
distribution

In the tiny volumes of cells and organelles, the number of molecules
can be very small, and fluctuations can make this number deviate
substantially from the mean. To quantitate these fluctuations we
derive a probability distribution for the number of molecules in a
small volume. Consider a very small volume element v within a
much larger closed volume, V (Fig. 12.1). If V contains N independent
molecules, then the probability of any particular molecule being in v is
p¼ v/V. The probability of finding m molecules in v is then given by the
binomial distribution

PðmÞ ¼ N!pmð1� pÞN�m

ðN �mÞ!m!
(12:4)

We now make some approximations based on the small value of p,
and the fact that expected values of m are tiny compared to N. First of
all, N!/(N�m)!¼N(N�1)(N� 2) . . . (N�mþ 1) � N m. Thus, N !pm/(N�m)!
� (Np)m. Furthermore, we know that Np ¼ m (Eq. (6.37)) and this leaves
us with m m. For the term (1� p)N�m, we note that it can be rewritten

as ð1� pÞ
1
pðN�mÞp

. In this form we can recognize lim
x!0
ð1� xÞ1=x ¼ e�1

(closely related to the formal definition of e as lim
x!0
ð1þ xÞ1=x), so we

have (1� p)N�m� e�(N�m)p. Finally, we can reuse the relation Np ¼ m for
the exponent (N�m)p� Np to obtain e�m. Breaking the right-hand side
of Eq. (12.4) into the appropriate factors, and incorporating these
approximations reduces Eq. (12.4) to

PðmÞ ¼ N!pm

ðN �mÞ!

� �
ðð1� pÞN�mÞ 1

m!

� �

¼ mm e�m

m!
(12:5)

This is the Poisson distribution. If we take m from the concentra-
tion, then it is a simple matter to calculate the probability of finding
m molecules in a small volume.

The Poisson distribution is plotted for a few different values of
m in Fig. 12.2. For m ¼ 0.5 the chance of finding no molecules (m ¼0)
is 0.61, and the probability falls off monotonically as m increases.
For m ¼2 the highest probability is for m ¼ 1 or 2. For m ¼10 we
have a nearly symmetrical distribution centered close to m. For
values of m in this range or higher, it becomes difficult to tell the
difference between the Poisson distribution and the parent binomial
distribution (Eq. (12.4)).

It is important to realize that information about the size of the
system (the magnitude of N) is lost in the limit used to derive the
Poisson distribution. Although N appears at the start (Eq. (12.4)), it

V
v

Fig: 12:1: A small volume v within

a large volume V contains fluctuating

numbers of molecules.
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drops out during the derivation. So the total number of molecules in
the system is no longer relevant. If N had not been large enough, and
p had not been small enough to justify the approximations leading
to the Poisson limit, then an observed distribution would depend
on N, and one might hope to be able to estimate N as a free parameter.
In the Poisson limit this is not possible; N cannot be determined from
the observed distribution. In practice it can be very difficult even to
know from an observed distribution whether it is reasonable to hope
to estimate N from measurements of fluctuations.

The Poisson distribution has a number of mathematical proper-
ties that aid in the analysis of fluctuations. Note that the series
mm=m! is the Taylor series for em (Eq. (A1.4))

X1
m¼ 0

m m

m!
¼ em (12:6)

So the sum of Eq. (12.5) from m¼0 to 1 is eme�m ¼ 1. This is the
expected result because a sum over the probability of all possible
outcomes must be one.

We can use Eq. (12.6) to check that m is indeed the mean

m ¼
X1
m¼ 0

mPðmÞ ¼
X1
m¼ 0

me�m m m

m!
(12:7)

The first term of the sum is zero, so we can take the sum from 1 to1

e�m
X1
m¼1

m m m

m!
¼ e�mm

X1
m�1¼ 0

m m�1

ðm� 1Þ! (12:8)

By comparison with Eq. (12.6) we see that the sum is em, so the right-
hand side reduces to m.

0.7

0.6

0.5

0.4
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0.2

0.1

0.0

0 5 1 0
m

m =  2

m  =  0.5

P
(m

)
m =10

15 20

Fig: 12:2: The Poisson

distribution for different

values of m.
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To evaluate the rms deviations from the mean we first determine
m2, as follows

m2 ¼
X

m

m2PðmÞ ¼
X

m

m2e�m mm

m!

¼ me�m
X1
m¼ 0

m mm� 1

ðm� 1Þ!
(12:9)

Again, the first term is zero, so the same procedure that led to Eq. (12.8)
gives

m2 ¼ m e�m
X1

m� 1¼0

m mm�1

ðm� 1Þ!

¼ m e�m
X1

m�1¼ 0

ðm� 1Þmm�1

ðm� 1Þ! þ
X1

m�1¼ 0

mm� 1

ðm� 1Þ!

 !
(12:10)

Comparing with Eq. (12.8), the first sum is m em. According to Eq. (12.6),
the second sum is em. So we have

m2 ¼ m e�m m em þ em
� �

¼ m2þm (12:11)

Using this result together with Eq. (12.1) gives an expression for the
rms deviations of the Poisson distributionffiffiffiffiffiffiffiffiffiffi

�m2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �m2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þm�m2

p
¼

ffiffiffiffi
m
p

(12:12)

Looking back at Fig. 12.2, we can see that the distributions do
indeed get broader as m increases. However, the magnitude of the
deviations relative to the mean decreases as

ffiffiffiffiffiffiffiffiffiffi
�m2

p
=m ¼ 1=

ffiffiffiffi
m
p

. This
property will be used to estimate the threshold number of photons
that the human eye can detect (see Section 12.3).

Before moving on, we briefly illustrate how to use the Poisson
distribution for the task laid out at the beginning of this section –
quantitating the fluctuations in molecule number in a small volume.
Consider a 1mm cube. The volume is 10�15 liters. At neutral
pH, [Hþ]¼ 10�7

M. Multiplying the product, 10�22 moles, by Avogadro’s
number tells us that at neutral pH our 1 mm cube will contain
60 protons, on average. According to Eq. (12.12), the rms deviation
around this mean will be

ffiffiffiffiffiffi
60
p

¼ 7:7. So the number of protons in a
1 mm cube will fluctuate by �12%. Even lower concentrations might
be relevant to signaling molecules or regulatory proteins. So we could
easily find ourselves in the realm where m is near one. The rms
fluctuations are then similar in magnitude to the mean itself.

12.3 The statistics of light detection by the eye

The eye can see extremely faint spots of light. The actual number of
photons necessary for detection is so small that fluctuations in
perception are large. These fluctuations were interpreted in terms
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of Poisson statistics in a classic study of visual perception (Hecht
et al., 1942; see Chapter 17 of Aidley, 1978, or Chapter 3.4 of Benedek
and Villars, 2000).

The experiment is illustrated in Fig. 12.3. A source of light so
small that it is nearly point-like was focused on the retina by the
lens of the eye. All sorts of conditions were adjusted to optimize
sensitivity. The light was focused on the most sensitive part of the
retina (several degrees away from the fovea – a region where acuity
is highest), and this required having the subject fixate on another
object. Additionally, the subject was dark adapted (by sitting in a
dark room for>20 min), the ideal wavelength of light was selected,
and the duration of the light flash was optimized. Within the small
area of retina upon which the spot of light falls, there are many
photoreceptor cells, and an extremely large number of rhodopsin
molecules. Absorption of a photon by any of these rhodopsin mole-
cules can contribute to the visual response. If we take this large
number of rhodopsin molecules, and accept the premise that
absorption of light by just a few of them produces a threshold
response, then we have a situation for which the Poisson distri-
bution should apply – large N and low p.

The Poisson distribution is used to estimate the probability of
absorbing a number of photons above the threshold, mt. We there-
fore add up all the Poisson terms for m>m0

Pðm � m0Þ ¼
X1

m¼mt

e�m m m

m!
(12:13)

Note that the mean number of photons absorbed, m, varies with the
illumination strength. But for any particular m, the subject may or
may not see the experimental flash of light. Equation (12.13) gives
this probability.

Equation (12.13) is plotted for a few different values of m in Fig. 12.4.
The logarithmic scale helps visualize the change in steepness as m0

increases. This plot shows that as the threshold rises the curve gets
steeper. To see this, imagine that the number of absorption events
needed for detection is large. Then there will be a very sharp thresh-
old, with the subject seeing the light flash every time or never,
depending on whether the intensity is above or below threshold.
This is because the fluctuations in a large number are small relative
to the mean. If the number of photons needed for detection is small
enough for the fluctuations to be significant, then small changes in
the light level will have a less dramatic effect on the fraction of times
detection is successful.

FlashEye

fovea
Fixation point

Fig: 12:3: An experimental

set-up for measuring threshold

light detection by the human eye.
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In these experiments, subjects were tested repeatedly with faint
spots of light to determine the probability of detection as a function
of light intensity. The curves looked like those of Fig. 12.4, with the
best fits obtained for mt in the range 5–8. In the same experiments,
the threshold was estimated independently by careful analysis of
the many factors that determine how much light actually strikes the
retina, and the fraction of this light that is absorbed. This number
fell in the range 5–14, which was taken as good agreement with the
estimate based on Poisson analysis.

One should wonder whether each of the 5–8 photons is absorbed
by a different photoreceptor cell or whether some photoreceptors
need to absorb more than one photon to register a response. It has
been estimated that the area upon which the light spot is focused
contains several hundred photoreceptors, so the chance of one
photoreceptor absorbing two of the 5–8 photons is quite small.
Therefore, a photoreceptor cell can be electrically activated by
one photon. The retinal ganglion cell, which conveys the signal to
the brain, receives synaptic inputs from many photoreceptor cells.
The absorption events within a large pool of photoreceptors
are funneled to a retinal ganglion cell, which sums these inputs
and fires an action potential if the sum exceeds its threshold
(Chapter 16).

12.4 Equipartition of energy

When energy can be expressed as the square of some quantity
(i.e. E¼ aq2), then the Boltzmann distribution leads to a very simple
result for the variance of that value (see Appendix 4 for the integrals)
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 m

t)
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m

Fig: 12:4: Plots of Eq. (12.13)

for various values of mt.
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q2 ¼

R1
�1

q2e� aq2=kTdq

R1
�1

e� aq2=kTdq

¼ kT

2a
(12:14)

So the mean energy is

E ¼ aq2 ¼ kT

2
(12:15)

If the variable is velocity in the x direction, vx, then the energy
will be kinetic, with a ¼m/2. We then have the mean square velocity
in that direction

v 2
x ¼

kT

m
(12:16)

And the mean kinetic energy for motion in the x direction is kT/2.
If the variable is displacement within a parabolic potential

energy well, then the potential energy is �x2/2 (Eq. (2.17)), where �
is the force constant. Equation (12.14) now gives the mean square
displacement, which tells us about fluctuations in position.

x2 ¼ kT

�
(12:17)

This is a useful expression for estimating how much the position of
an atom or molecule will vary if it is held in place by molecular
forces. The various expressions for potential energy from Chapter 2
can often be used to calculate the force constants, which are
obtained as half of the second derivative of the potential energy
function at its minimum.

These results illustrate an important point about how thermal
energy is distributed over different modes. Regardless of the mass
of the molecule, or the strength of the restoring force, the energy
in each mode will be kT/2. This is known as the principle of equi-
partition of energy. It is a principle rather than a law or theorem
because it is not always true. The most important exceptions arise
when quantum mechanics has to be considered. Quantization of
energy levels invalidates the integration of a continuous variable in
Eq. (12.14). For vibration energies of strong covalent bonds with
light atoms, the energies of the quantum states are widely separated
so the integral must be replaced by a sum. However, the weaker
noncovalent forces that stabilize biological structures can be trea-
ted classically to a good approximation, so we can use the equiparti-
tion principle.

It is interesting to explore the consequences of this idea for a
large molecule with many atoms. The equipartition principle states
that each mode of motion will have kT/2 energy. If the atoms move
classically (i.e. no quantum effects), then with three modes of
kinetic energy, the total is 3kT/2. Each atom lies in a potential
energy well, in which displacements from the minimum are
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possible in the x, y, and z directions. This gives another 3kT/2 in
potential energy.1 Thus, a molecule with N atoms will have a mean
energy (kinetic plus potential) of 3NkT. This provides the starting
point for an evaluation of energy fluctuations in a large molecule.

12.5 Energy fluctuations in a macromolecule

The ideas from the equipartition principle can be extended to gain
an understanding of energy fluctuations of a large molecule in
which energy is distributed over many internal modes. We first
need to evaluate E2, where E2 can be expressed as �2q4 for any
mode. We then obtain q4 from the Boltzmann distribution, just as
q2 was earlier with Eq. (12.14) (again see Appendix 4)

q4 ¼

R1
�1

q4e��q2=kTdq

R1
�1

e��q2=kTdq
¼ 3

kT

2�

� �2

(12:18)

The mean square energy is then

E2 ¼ �2q4 ¼ 3

4
ðkTÞ2 (12:19)

By subtracting E
2 ¼ ðkT=2Þ2 (from equipartition) we can calculate

the variance according to Eq. (12.1) as

�E2 ¼ ðkTÞ2

2
(12:20)

Equation (12.20) applies to each internal mode of a large molecule.
If a molecule has N atoms then each atom will contribute three
kinetic energy modes and three potential energy modes. As in
Eq. (12.3), the fluctuations add as squares, so the variance in the
total energy is the sum of the variances over all 6N modes of the
molecule. We therefore multiply Eq. (12.20) by 6N to obtain the energy
variance for the entire molecule

�E2 ¼ 3NðkTÞ2 (12:21)

Now we return to the mean energy. According to the equipartition
principle, the mean energy of each mode is kT/2. So the mean energy
of the whole molecule is 3NkT. The heat capacity, c, which is the
derivative of E with respect to T, is then 3Nk. Combining this result
with Eq. (12.21) leads to an important relation for energy fluctuations

�E2

kT2 ¼ c (12:22)

1 This is oversimplified, but the classical harmonic potential energy function can be

transformed to a set of coordinates for which the potential energy is a sum of terms of

the form �q2 (Section 2.12). The end result is still kT/2 of potential energy per degree

of freedom.
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This equation tells us that we can determine the energy fluctuat-
ions by measuring the heat capacity. The derivation of Eq. (12.22)
was not rigorous because equipartition does not hold for every
internal mode of a molecule. However, this derivation is instructive
because it shows how the relationship arises from the fact that both
the energy fluctuations and the heat capacity reflect the number of
energetic modes of a molecule.

It is possible to derive Eq. (12.22) much more rigorously, and
without resorting to the equipartition principle (Chapter 2 of Hill,
1960; Chapter 25 of Kittel, 1958). We start with the mean energy of a
system based on the Boltzmann distribution

E ¼

P
i

Eie�Ei=kT

P
i

e�Ei=kT
(12:23)

The expression is rewritten as

E
X

i

e�Ei=kT ¼
X

i

Eie
�Ei=kT (12:24)

Each side is then differentiated with respect to temperature

qE

qT

X
i

e�Ei=kT þ E
X

i

Ei

kT2 e�Ei=kT ¼
X

i

E2
i

kT2 e�Ei=kT (12:25)

We can see that the derivative in the term on the left is the heat
capacity, c. If we divide through by the sum

P
i

e�Ei=kT we see that the

other two terms are E
2
=kT2 and E2=kT2. Equation (12.25) can thus be

rewritten as

c ¼ E2

kT2 �
E

2

kT2 ¼
�E2

kT2 (12:26)

And once again we have Eq. (12.22).
This general result was discovered by Gibbs, and independently

many years later by Einstein. It relates the energy fluctuations of a
system to the energy absorbed during heating. It can be used in
conjunction with Eq. (12.21) to illustrate how the size of a system
influences its energy fluctuations. Heat capacity scales with size. If
each vibrating atom absorbs thermal energy independently then
the heat capacity is proportional to the number of atoms, N.
Equation (12.26) then tells us that the variance in energy is also
proportional to N, so the rms energy goes as

ffiffiffiffi
N
p

. The energy of the
system, like the heat capacity, is proportional to N, so the energy
fluctuations relative to the mean vary as 1=

ffiffiffiffi
N
p

. This illustrates the
general trend mentioned at the start of this chapter. As the system
gets larger, the fluctuations become harder to see. For a mole
of material, one needs a measurement sensitive to one part
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in 1012 (approximately the square root of Avogadro’s number) to see
the thermal energy fluctuations. We can improve our chances of
observing thermal fluctuations by looking at smaller systems.

Equation (12.26) has been used to study the energy fluctuations
of a protein (Cooper, 1976). The heat capacities of proteins fall in the
range 0.30–0.35 cal g�1 K�1. For a protein with a molecular weight of
25 000 Da, this gives a molar heat capacity of 7.5–8.75 kcal mole�1 K�1.

With the aid of Eq. (12.22) this gives
ffiffiffiffiffiffiffiffiffi
�E2

p
¼ 6:4� 10�20 calories

molecule�1. This works out to 38 kcal mole�1, which is within a
factor of about two of the �H for thermal denaturation for a protein
of this size (Section 1.4). Thus, a protein undergoes energy fluctua-
tions that are comparable to the energy that stabilizes its native
state.

With such large energy fluctuations, one might think that the
native state of a protein is in a precarious position. However, the
fluctuations are not confined to the internal modes that unfold
the protein, but are distributed over the entire molecule. In fact,
the energy fluctuations calculated from Eq. (12.26) are small com-
pared to the total thermal energy of the protein. The equipartition
principle gives a mean energy per atom of 3kT � 10�21 cal. For a
25-kDa protein with �5000 atoms we have �5� 10�18 calories. The
value of

ffiffiffiffiffiffiffiffiffi
�E2

p
¼ 6:4� 10�20 calories from Eq. (12.26) is �2 orders of

magnitude smaller. The energy fluctuations of a protein reflect the
independent jittering of its many atoms. Thus, a well-defined struc-
ture can still have energy fluctuations of the magnitude implied by
Eq. (12.26).

12.6 Fluctuations in protein ionization

Typical proteins have a large number of ionizable groups. Changing
the pH will change the mean charge on a protein as different groups
are titrated (Section 11.3). For a group with a pK equal to the pH,
there will be a 50% chance of being ionized. When the pH is held
constant, the charge on a protein will fluctuate as groups with pK
values near the pH change their ionization state. A theory developed
by Linderstrøm–Lang relates these charge fluctuations to the slope
of the titration curve. The derivation has an interesting parallel
with the derivation of Eq. (12.26) above.

We consider a sequence of ionization equilibria (Scheme (12A))
for a protein

P0

H+ H+ H+ H+

P1 Pn–1P2 Pn (12A)

First we work out an expression for the state of ionization as a
function of pH. This follows the analysis of binding site saturation
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models treated in Chapter 4. For each ionization step, an equili-
brium binding relation holds

K1 ¼
½P1�
½P0�½Hþ�

; K2 ¼
½P2�
½P1�½Hþ�

� � � Kn ¼
½Pn�

½Pn�1�½Hþ�
(12:27)

or

½P1� ¼ K1½P0�½Hþ�; ½P2� ¼ K2½P1�½Hþ� � � � ½Pn� ¼ Kn½Pn�1�½Hþ� (12:28)

Successive substitutions with these equations lead to an expression
for the concentration of a protein with m sites protonated

½Pm� ¼ ½P0�½Hþ�m
Ym
i¼ 1

Ki (12:29)

For the sake of simplicity we replace the product of Kis by a new
constant, Jm ¼

Qm
i¼1 Ki, as follows

½Pm� ¼ ½P0�½Hþ�mJm (12:30)

Now we write the equilibrium fraction of sites protonated as the
number of protonated sites over the total number of sites

m ¼

Pn
m¼ 0

m½Pm�

Pn
m¼0
½Pm�

(12:31)

Substituting a relation of the form of Eq. (12.30) for each Pm, and
canceling out factors of P0 from the numerator and denominator
gives

m ¼

Pn
m¼ 0

mJm½Hþ�
m

Pn
m¼ 0

Jm½Hþ�
m

(12:32)

This expression tells us how the mean number of protonated
sites on the protein varies as a function of [Hþ]. To see how the value
fluctuates around this mean, we multiply through by the denomin-
ator and differentiate with respect to [Hþ]

qm

q½Hþ�
Xn

m¼0

Jm½Hþ�
m þm

Xn

m¼ 0

mJm½Hþ�
m� 1 ¼

Xn

m¼0

m2Jm½Hþ�
m�1 (12:33)

This is then multiplied on both sides by [Hþ]. In the first term we can
reexpress the derivative

½Hþ� qm

q½Hþ�
¼ qm

q log½Hþ�
¼ � qm

qpH
(12:34)

Dividing Eq. (12.33) through by the sum on the left leaves the first
term on the right as m2 and the second term as m2. With the aid of
Eq. (12.1) we have an expression for the fluctuations in m
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� qm

qpH
¼ m2 �m2 ¼ �m2 (12:35)

Thus, a protein’s charge will fluctuate the most at a pH where the
titration curve is steepest. This usually occurs near the isoelectric
point. Equation (12.35) was used to estimate the fluctuations in
charge of hemoglobin, giving an rms charge at the isoelectric
point of about 1.85 (Cohn and Edsall, 1943). For ribonuclease a
value of 3.65 was obtained (Tanford, 1961, p. 573).

12.7 Fluctuations in a two-state system

The two-state model was examined in earlier chapters to under-
stand protein conformational transitions (Scheme (12B))

A
��! �
�

B (12B)

At equilibrium we have

½B�
½A� ¼ Keq (12:36)

The equilibrium constant can also be expressed in terms of the rate
constants as Keq ¼�/� (Section 7.3). If the total protein concentra-
tion is T, with [A]þ [B] ¼T, then at equilibrium the number of
molecules of B and A will be fractions of T. Replacing Keq in
Eq. (12.36) with �/� and rearranging gives

½A� ¼ T
�

�þ � (12:37a)

½B� ¼ T
�

�þ � (12:37b)

Note that [A] and [B] in these two expressions are actually average
concentrations. At any instant in time there will be fluctuations as
small excesses of A or B appear. These fluctuations dissipate and
reappear as a result of the stochastic behavior arising from the
independent conformational transitions of each protein. We will
first evaluate the magnitude of these fluctuations, and then in
Section 12.9 we will examine their dynamics.

From Eqs. (12.37a) and (12.37b) we write the equilibrium prob-
ability of a protein molecule being in conformation A or B as

pa ¼
�

�þ � (12:38a)

pb ¼
�

�þ � (12:38b)
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Since each protein molecule is independent, we can use the bino-
mial distribution to express the probabilities of finding a certain
number of molecules in one conformation or the other. Take Nt as
the total number of protein molecules. The probability of finding Na

molecules in conformation A is

PðNaÞ ¼
Nt!

Na!ðNt � NaÞ!
p Na

a ð1� paÞ
Nt�Na (12:39)

A corresponding expression can be written for P(Nb).
The situation is now mathematically equivalent to the random

walk of Chapter 6, where the binomial distribution was used to
calculate the probability of a particular number of steps to the
right or left. We can thus use Eq. (6.37) to obtain the mean number
of molecules of A or B. This analysis leads back to Eqs. (12.37a) and
(12.37b). For A we have

Na ¼
XNt

Na ¼ 0

Na
Nt!

Na!ðNt � NaÞ!
p Na

a ð1� paÞ
Nt �Na ¼ Ntpa ¼ Nt

�

�þ �

(12:40)

where Eq. (12.38a) was used to replace pa.
For the fluctuations we need to know the mean square as well, so

we use Eq. (6.42) to give

N 2
a ¼

XNt

Na ¼ 0

N 2
a

Nt!

Na!ðNt � NaÞ!
p Na

a ð1� paÞ
Nt �Na ¼ ðNtpaÞ

2 þ Ntpað1� paÞ

(12:41)

Combining Eqs. (12.40) and (12.41) gives the fluctuations in number
of molecules of A around the mean

�N 2
a ¼ N 2

a � N
2

a ¼ Ntpað1� paÞ ¼ Nt
��

ð�þ �Þ2
(12:42)

Once again we see that the mean-square fluctuations scale as N.
Thus, the rms fluctuations, as a fraction of the average number of
molecules of A can be expressed asffiffiffiffiffiffiffiffiffiffiffiffi

�N 2
a

q
Na

¼
ffiffiffiffiffiffiffiffiffi
�

�Np

r
(12:43)

and the fluctuations relative to the mean decrease with size, scaling
as N�½.

12.8 Single-channel current

Fluctuation analysis has been used to study ion channels. As ion
channels open and close the current through the cell membrane
fluctuates. Analysis of these fluctuations provided some of the first
estimates of unitary channel properties. Although this method has
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been largely superceded by direct measurements of single-channel
currents with the patch clamp, there are still situations where the
analysis of channel noise can be useful. The results from the pre-
ceding section will be used to determine the single-channel current
from fluctuations in membrane current.

The gating of a channel is treated as an equilibrium between
closed an d ope n states (Scheme (12C))

C
��! �
�

O (12C)

Only the open channel conducts ions. If there are N channels and No

of them are open, then the current is simply iNo, where i is the
single-channel current. The mean number of open channels, No, is
equal to the total number of channels times the open probability po.
We can therefore express the mean current as

I ¼ ipo Nt (12:44)

with po take n from Eq. (12.38 b) as �/(�þ � ).
The current variance can be calculated from the variance in the

number of open channels, for which Eq. (12.42) can b e used

�I2 ¼ i2�N2
o ¼ i2Nt

��

ð�þ �Þ2
(12:45)

Dividing the variance by the mean eliminates Nt

�I2

I
¼ ið1� poÞ ¼ i

�

�þ � (12:46)

where po varies between zero and one. If it is close to zero then the
right-hand side of E q. (12 .46) reduces t o i . The ratio o f the var ia nce to
the mean can then be taken as an estimate of the single-channel
current.

mean

Var
ia

nce

ΔI 

2  = i I
ΔI 

2  = i I(1  –  po)

Fig: 12:5: Plot of variance versus

mean of membrane current as po

varies from zero to one. According

to Eq. (12.46) the limiting slope is

the single-channel current i (dotted

line).
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This is the basis of a basic method for studying ion channels
(DeFelice, 1981; Lecar and Sachs, 1981). It is important to ascertain
that po is in fact small. The common practice is to plot the variance
versus the mean and take the limiting slope at the zero current
intercept (Fig. 12.5). Note that this curve goes through a maximum
and then returns to zero as the mean current increases. These zeroes
at each end of the plot correspond to open probabilities of zero and
one. Clearly, there must be zero variance in the limiting cases of all
channels open or all closed.

12.9 The correlation function of a two-state system

So far we have considered only the magnitudes of fluctuations and
ignored the speed with which they occur. Speed is an important
aspect of fluctuations. As fluctuations occur in real time, they give
rise to noise in a measurement. This noise is usually a nuisance, but
it does contain information about the kinetics of the underlying
process that generates this noise.

One of the most important ways of analyzing noise in a signal S(t)
is through the correlation function, denoted as Fc(t)

FcðtÞ ¼ ðSð0Þ � SÞðSðtÞ � SÞ

¼ Sð0ÞSðtÞ � Sð0ÞS� SðtÞSþ S
2

¼ Sð0ÞSðtÞ � S
2

(12:47)

The correlation function is obtained by measuring S at time t ¼0,
and again at time t, multiplying the two measurements together,
and averaging over many such measurements. If the intervening
time interval is very large compared to the timescale of the fluctua-
tions, then there will be no correlation between S(0) and S(t). The
mean of the product S(0)S(t) will then be S

2
and Fc(t) will be zero.

If the intervening time interval is so short that S does not have
time to change, then Sð0ÞSðtÞ ¼ S2, and Fc(t) becomes �S2. The inter-
esting question is how Fc(t) gets from �S2 to zero as t increases.

We will illustrate this behavior using the example of a two-state
ion channel (Scheme (12C)) (Lecar and Sachs, 1981), expressing Fc(t)
in terms of the opening and closing rate constants, � and �. This
derivation can be seen as another twist on the analysis of the
kinetics of the two-state model in Chapter 7.

Assume that we are looking at the fluctuations in the current
through a single channel, so S(t) becomes I(t). When the channel is
closed I is zero, so the only way the product I(0)I(t) can be nonzero is
if the channel is open at both times. The probability that the channel
is open at t¼ 0 is �/(�þ�). The channel will be open at a later time t if
there is an even number of gating transitions in the time interval
between 0 and t. Thus,
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FcðtÞ ¼ i2
�

�þ � PeðtÞ � i2
�

�þ �

� �2

(12:48)

where Pe is defined as the probability of an even number of transi-
tions. The second term is the mean current squared, I

2
, correspond-

ing to S
2

in Eq. (12.47).

To obtain an expression for Pe(t) we use a method similar to that
used to derive the open-time distribution of a channel (Section 7.9).
We write down an expression for Pe(tþdt) in terms of Pe(t). One way
for the number of transitions to be even at tþdt is for the number to
be even at t, and for no transitions to occur in the intervening
interval dt. The only other way to get an even number is with an
odd number at t and a transition in the interval dt. For the first case
we need the probability of no transition when the channel is open.
The probability of closing is �dt, so the probability of not closing is
1 ��dt. For the second case the channel is closed so the probability
of a transition in the interval dt is �dt. Finally, we also need to note
that the probability of an odd number of transitions is equal to one
minus the probability of an even number of transitions. Putting this
all together gives

Peðtþ dtÞ ¼ PeðtÞð1� �dtÞ þ ð1� PeðtÞÞ�dt (12:49)

This is rearranged into a differential equation

dPe

dt
¼ �ð�þ �ÞPe þ � (12:50)

The general solution of this equation contains an exponential
e�ð�þ�Þt. With the initial condition that Pe(0) ¼1, the complete solu-
tion is

PeðtÞ ¼
�

�þ � þ
�e�ð�þ�Þt

�þ � (12:51)

Substituting this into Eq. (12.48) gives the correlation function

FcðtÞ ¼ i2
��

ð�þ �Þ2
e�ð�þ �Þt ¼ �I2e�ð�þ �Þt (12:52)

where the final simplification made use of Eq. (12.45), and the
assumption that the correlation function for N independent channels
should scale as N.

This function has the properties expected. It starts off at �I2 and
decays to zero. The most important point to be seen in this expression
is that the correlation function decays at the same rate as a response to
a macroscopic perturbation (e.g. Eq. (7.4)). Thus, the same fundamental
rate, �þ �, controls the dynamics at both the microscopic and macro-
scopic levels. This parallel between microscopic fluctuations and
macroscopic kinetics is a recurring theme in dynamic processes. In
the dynamics of channel noise, we will see how this can be used to
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investigate channel gating. But before we do, we need another tool for
noise analysis.

12.10 The Wiener–Khintchine theorem

Dynamic processes can be viewed either in real time or in terms of
their characteristic frequencies. The real-time perspective is more
direct; the correlation function of the preceding section is easily
visualized and an exponential time constant relates directly to the
time for a fluctuation to decay. In the frequency domain we imagine
the signal as a random oscillation characterized by a range of
frequencies. High-frequency oscillations correspond to short
correlation times. These two realms are related by the Wiener–
Khintchine theorem (Chapter 22 of McQuarrie, 1976; part 2 of
Kittel, 1958), which will be proved here after introducing the idea
of the Fourier transform of a random signal.

The frequency approach to fluctuations is based on the Fourier
transform, in which a signal is decomposed into a sum of sine or cosine
functions (Appendix 3). A more rapidly varying signal has higher
frequency components. This is illustrated in Fig. 12.6, where noisy
signals are shown with different frequencies filtered out. The top trace
has contributions<200 Hz, and the noise looks slower. The traces
below have more high-frequency components and the noise looks
faster. The Fourier transform is a mathematical technique for deter-
mining the contribution of each frequency.

A random signal, S(t), might look like one of the traces in
Fig. 12.6. We can express S(t) as an integral in which many sine or
cosine waves of different frequencies are combined in just the right
proportion. This Fourier integral takes the form

SðtÞ ¼ 1

2p

Z1
�1

Að!Þei!td! (12:53)

200 Hz

500 Hz

1000 Hz

0.080.060.04
Time (s)

0.020.00

Fig: 12:6: Noise recorded

by an amplifier with different

high-frequency cut-offs.
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We use the complex expression, with ei!t ¼ cos(!t)þ i sin(!t)
and i ¼

ffiffiffiffiffiffiffi
�1
p

, because subsequent manipulations are simpler in
this form. The function A(!) is the contribution to the signal of
fluctuations with a frequency of !. For example, in the top trace of
Fig. 12.6, A(!) is very small for f ¼!/2p>200 Hz but large for lower
frequencies.2 The function A(!) is determined from S(t) by taking its
Fourier transform

Að!Þ ¼ 1

T

ZT

�T

SðtÞe�i!tdt (12:54)

where �T is the interval in which the signal is examined.3 We can
think of A(!) as a time average of S(t)e�i!t (times two). This interval
must be longer than several periods of the slowest relevant fre-
quency. The actual value of T often does not matter. However, it
must be taken into account if you are analyzing experimental data
and want to write a computer program to perform the integration
numerically.

We can make use of the Fourier transform of S(t) to show how
noise with different frequencies adds together. Consider an integral
over A(!)2. We can replace one of the factors of A(!) by its represen-
tation as a Fourier transform of S(t) (Eq. (12.54))

Z1
�1

Að!Þ2d! ¼ 1

T

Z1
�1

Að!Þ
ZT

�T

SðtÞe�i!tdtd! (12:55)

Combining the remaining A(!) with ei!t and integrating over !

yields 2pS(t) by Eq. (12.53). The right-hand side then becomes an
integral over S(t)2 as follows

Z1
�1

Að!Þ2d! ¼ 2p
T

ZT

�T

SðtÞ2dt (12:56)

We now realize that the time average of S2 can be written as

1

2T

ZT

�T

SðtÞ2dt ¼ S2 (12:57)

So Eq. (12.56) becomes

S2 ¼ 1

4p

Z1
�1

Að!Þ2d! (12:58)

2 Note that ! is in radian s�1 and f is in cycle s�1 so !¼ 2pf.
3 Normally the interval for a Fourier transform is �p. Because the magnitude of the

integral is proportional to the interval length we must divide by T.
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Equation (12.58) is known as Parseval’s theorem. It states the
intuitively reasonable result that if we add up the noise over all
frequencies we get the mean-square fluctuations in the signal. So
A(!)2d! represents the fraction of the total noise contributed by that
particular frequency. It is significant that the frequency compo-
nents add as squares. This is another example of the property
embodied by Eq. (12.3); different frequencies act as independent
sources of fluctuations. Figure 12.6 shows that including higher
frequencies increases the overall amplitude of the noise.

The quantity A(!)2/(4p) is encountered a great deal in fluctuation
analysis and is denoted as P(!). It has two commonly used names,
power spectrum and spectral density.

Let us now apply the Fourier transform to the correlation func-
tion of S(t). To avoid the term S

2
in Eq. (12.47), we subtract out the

mean so that the signal fluctuates around zero. Our correlation
function can now be written as a time average by taking an integral
over time and dividing by the duration of the interval

FcðsÞ ¼ SðtÞSðtþ sÞ ¼ 1

2T

ZT

�T

SðtÞSðtþ sÞdt (12:59)

As above in Eq. (12.54), T is long enough to give a good average.
Because Fc(s) has the same basic properties as S(t), we can Fourier

transform Eq. (12.59) in the same way as in Eq. (12.54)

1

T

ZT

�T

FcðsÞe�i!sds ¼ 1

2T2

ZT

�T

ZT

�T

e�i! sSðtÞSðtþ sÞdtds (12:60)

Inserting 1 ¼ e�i!tei!t on the right-hand side gives

1

T

ZT

�T

FcðsÞe�i!sds ¼ 1

2T2

ZT

�T

ZT

�T

e�i!ðtþ sÞei!tSðtÞSðtþ sÞdtds (12:61)

We can now separate the right-hand side into two Fourier
transforms

1

T

ZT

�T

FcðsÞe�i!sds ¼ 1

2T2

ZT

�T

SðtÞei!tdt

ZT

�T

e�i!ðtþ sÞSðtþ sÞds (12:62)

where 1/T times the first integral gives A(!) (Eq. (12.54)). The second
integral is performed by replacing tþ s with a new variable to give
another factor of A(!). The result is

1

T

ZT

�T

FcðsÞe�i!sds ¼ 1

2
Að!Þ2 ¼ 2pPð!Þ (12:63)

with P(!) as defined above (following Eq. (12.58)).
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Equation (12.63) is the Wiener–Khintchine theorem. It states
that the correlation function and the power spectrum of a signal
are related by Fourier transformation. With an inverse Fourier
transform of the spectral density one can return to Fc(s). This pro-
vides a direct route back and forth between the time and frequency
representations of dynamic fluctuations. We will now use the
Wiener–Khintchine theorem to look at the power spectrum of a
fluctuating two-state system.

12.11 Channel noise

Section 12.9 developed the correlation function of a two-state sys-
tem, and Section 12.10 related the correlation function to the power
spectrum. The natural step to take at this point is to put these two
results together. We will use the Wiener–Khintchine theorem to
derive the power spectrum of a two-state system. Equation (12.63)
with Fc(t) taken from Eq. (12.52) gives

Pð!Þ ¼ 1

2p

Z1
�1

FcðtÞe�i!tdt ¼ 1

2p

Z1
�1

�I2e�ð�þ�Þte�i!tdt (12:64)

Since our integral includes negative values of t we have to revise the
expression for Fc(t) to use the absolute value of t in the exponential.
Changing the sign of t in Fc(t) should not change its value since
averaging over I(s)I(sþ t) should give the same result as averaging
over I(s)I(s � t). The integral above then becomes twice the integral
over [0,1]

Pð!Þ ¼ 1

p

Z1
0

�I2e�ð�þ �þ i!Þtdt ¼ �I2

p
1

�þ � þ i!
(12:65)

This is a complex expression from which the real part must be
extracted. The imaginary part can be ignored because the signal
I(t) is real

Pð!Þ ¼ �I2

p
1

�þ � þ i!

�þ � � i!

�þ � � i!

� �

¼ �I2

p
�þ � � i!

ð�þ �Þ2 þ !2
(12:66)

Throwing away the imaginary part with i! in the numerator, and
factoring (�þ�)2 from the denominator, we have

Preð!Þ ¼
�I2

pð�þ �Þ
1

1þ !=ð�þ �Þð Þ2
(12:67)

Finally, we note that ! is in units of radian s�1. The more familiar
experimental units of cycle s�1 introduces a factor of 2p. We then
have 2pf/(�þ�) in place of !/(�þ �). The quantity (�þ �)/2p is called
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the corner frequency, fc, for reasons that are easily seen when you
look at a plot of this function (Fig. 12.7). In terms of f the power
spectrum is then

Preðf Þ ¼ �I2
2

fc

1

1þ f =fcð Þ2
(12:68)

Note that a factor of 2p has been incorporated because as a density,
P(!) has an implicit d!, which must be replaced by 2pdf. Note also
that this power spectrum is for the range of frequencies [�1, 1].
It is common to define the power spectrum density for positive
frequencies only, and then the result is multiplied by 2.

The functional form of Eq. (12.68) is known as a Lorentzian, and
is seen in many applications. The Lorentzian is important because it
is the Fourier transform of the ubiquitous exponential function. It is
plotted for a few values of fc in Fig. 12.7, along with plots of Fc(t) to
show how the two vary in an inverse manner: longer times go with
lower frequencies. The value of fc is marked in the plot of P( f ), and
it can be seen to lie at the ‘‘corner’’ of the curve, where P( f ) starts to
fall off rapidly with increasing f.

The curves in Fig. 12.7 can be viewed in terms of the sequence of
noisy traces in Fig. 12.6. The top trace of Fig. 12.6, with a cutoff at
200 Hz, gives a power spectrum with fc ¼ 200 Hz. The lower traces in
Fig. 12.6 give higher corner frequencies.

The analysis of the power spectrum in ion channel fluctuations has
received wide use, primarily to measure the time constant of channel
gating. DeFelice (1981) and Lecar and Sachs (1981) summarize some of
the important applications. Single-channel analysis (Chapters 7 and 9)
is generally more powerful than noise analysis, but when single-
molecule events are too small to see, investigators can still use the
power spectrum of the channel noise to estimate the rate constants.
Most channels show multistate kinetic behavior and so the two-state
model is not applicable. Extensions of noise theory to multi-state
kinetic systems were developed by Chen and Hill (1973).

t
1010.10.01

f
1001010.1

0.01

Fc( t )
P ( f )

1E  –  3

1E  –  4

0.1 α +  β α +  β α +  β
=1=10=100

1

0.01

1E  –  3

1E  –  4

0.1
fc =  1/2 π fc =  10/2 π fc =  100/2 π

1

Fig: 12:7: Plots of P(f ) from

Eq. (12.68) and Fc(t) from

Eq. (12.52), with fc¼ (�þ�)/2p.

328 FLUCTUATIONS



12.12 Circuit noise

Fluctuations arise in an electrical circuit as electrons undergo
random thermal motion. These fluctuations are the basis of noise
in electrical measurements. This noise will now be analyzed, and
the benefit will be two-fold. We will get a practical understanding of
the smallest signals that can be seen with electronic instruments,
and we will learn another important basic approach to the study of
fluctuations.

Our starting point is a circuit containing a resistor and capacitor
in parallel (Fig. 12.8). If a sensitive voltmeter is used to read the
voltage between the two leads at the top and the bottom, we would
observe a signal that fluctuates around an average voltage of zero.
These fluctuations reflect momentary excursions of the net electro-
static potential from its equilibrium value at V ¼0. The deviations in
voltage drive current through the resistor to bring the system back
to equilibrium. A voltage fluctuation, V, corresponds to a charge
fluctuation, q, and these are in a ratio set by the capacitance of the
circuit

C ¼ q

V
(12:69)

Moving a small amount of additional charge �q through a potential
difference V changes the energy of the system by an amount �qV.
The potential energy of the system with a total charge imbalance of
q is then an integral reflecting the electrostatic work done to get to
that point

E ¼
Zq

q0¼ 0

Vdq0 ¼
Zq

q0¼0

q0

C
dq0 ¼ q2

2C
¼ CV2

2
(12:70)

Since the energy goes as V2, we can use the equipartition principle
(Section 12.4) to obtain the mean energy in this mode as kT/2. The
mean-square voltage follows directly

V2 ¼ kT

C
(12:71)

Note that the resistance does not appear in this expression. It will
enter shortly as soon as we consider the time scale of the
fluctuations.

Treating the time scale of the fluctuations requires a differential
equation to express the change in voltage. The starting point is the
standard analysis of the dynamic response of an RC circuit. From
Eq. (12.69) we have V ¼ q/C, which we differentiate with respect to
time. Note that dq/dt ¼�I because positive current through the
resistor in Fig. 12.8 reduces the charge on the capacitor

R C

Fig: 12:8: A resistor and

capacitor in parallel form a model

circuit for noise calculations.
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dV

dt
¼ �I

C
(12:72)

Replacing I with V/R (Ohm’s law) gives a first order differential
equation in V

dV

dt
¼ �V

RC
(12:73)

For an initial value V(0) the solution is

V ¼ Vð0Þe�t=RC (12:74)

Equation (12.74) does not help us understand fluctuations
because it gives the response of the circuit to a macroscopic pertur-
bation. To understand fluctuations we take Eq. (12.73) and add a
noise term, �

dV

dt
¼ �V

RC
þ �ðtÞ (12:75)

The variable �(t) is an electrical noise that fluctuates randomly
with time and moves the voltage away from zero with small unpre-
dictable lurches. We will now see that if it has the property that
fluctuations in the positive and negative directions have
equal probability, then we can derive a useful expression for the
correlation function of V.

We can solve Eq. (12.75) by bringing �V/RC to the left-hand side
and combining these two terms as the derivative of a product

e�t=RC dVet=RC

dt
¼ �ðtÞ (12:76)

Multiplying Eq. (12.76) through by et/RC and integrating from 0 to
t leads to

VðtÞet=RC � Vð0Þ ¼
Z t

0

et=RC�ðtÞdt (12:77)

We then obtain

VðtÞ ¼ Vð0Þe�t=RC þ e�t=RC

Z t

0

et=RC�ðtÞdt (12:78)

If further progress depended on being able to evaluate the integral
explicitly we would have a problem. Instead, we take an ensemble
average. Because positive values of � are as likely as negative values,
the ensemble average of the integral is zero. Thus, we can reach our
goal of the correlation function of V by multiplying Eq. (12.78) by V(0)
and taking the ensemble average
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FcðtÞ ¼ VðtÞVð0Þ ¼ V2e�t=RC

¼ kT

C
e�t=RC (12:79)

The final step made use of Eq. (12.71).

This is an important result because it shows that microscopic
fluctuations have the same dynamic character as responses to
macroscopic perturbations (Eq. (12.74)). Either way, the system
decays exponentially with a time constant of RC. This was also
seen for the correlation function of the two-state model
(Eq. (12.52), Section 12.9).

To complete the dynamic description of circuit noise we use the
Wiener–Khintchine theorem to obtain the power spectrum of the
noise from the correlation function. Using Eq. (12.79) for Fc(t) in
Eq. (12.64) gives

Pð!Þ ¼ kT

2pC

Z1
�1

e�t=RCe�i!tdt (12:80)

This integral can be evaluated, and by the same process that lead
from Eq. (12.64) to Eq. (12.68) we have

Pð!Þ ¼ kT

Cp
RC

1

1þ ðRC!Þ2

¼ kTR

p
1

1þ ðRC!Þ2

¼ 2kTR
1

1þ ð2pRCf Þ2
(12:81)

where the second step was a change of variable to f ¼!/2p (with the
implicit change to df ¼d!/2p). This has the same Lorentzian form as
the two-state system result (Eq. (12.68)).

We might wonder what would happen if we simplified our
circuit of Fig. 12.8 by removing the capacitor so that it contained
only a resistor. The resistor would still have a small stray capaci-
tance, so the above analysis would still be appropriate. But the
consequence is that RC is tiny, allowing us to drop the (2pf RC)2

term in the denominator. Finally, if we decide to use this expression
for only positive frequencies (see comment following Eq. (12.68)),
we must double the expression for P( f ) to obtain

Pðf Þdf ¼ 4kTRdf (12:82)

This is a well known result known as Nyquist’s theorem (Kittel,
1958). It makes the point that the rms voltage noise in a resistor
increases as

ffiffiffi
R
p

, and this is a well established experimental result.
The thermal noise in a resistor is known as Johnson noise, and
Nyquist’s theorem is of great value in assessing noise in electrical
instrumentation.
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12.13 Fluorescence correlation spectroscopy

The amplitudes of concentration fluctuations were discussed in
Section 12.2. Such fluctuations also have dynamic properties.
They develop and decay with a time course that reflects some
underlying kinetic process. The kinetic process could include diffu-
sion into and out of a small volume element, or a chemical reaction.
By measuring the fluctuations we can probe these processes.
Fluorescence measurement provides a particularly good way to
study these fluctuations because lasers can be focused down to
isolate a small region within a much larger volume (Fig. 12.9).
Fluorescent molecules diffuse in and out of the path of the laser
beam, giving rise to fluctuations. We will analyze the dynamics of
these fluctuations to see how the noise in a fluorescence signal can
provide useful information (Elson and Magde, 1974).

First we define the fluctuations in concentration of the fluoro-
phore as �C(r, t) ¼C(r, t)�C, where C is the mean. The concentration
obeys the diffusion equation (Eq. (6.7)). If we replace C with �C, the
derivatives of C are zero so we are left with

q�C
qt
¼ Dr2�C (12:83)

According to Fig. 12.9, molecules diffuse radially in and out of the
laser beam, so we focus on the x–y plane perpendicular to the beam.
For an initial fluctuation of magnitude �C(x0, y0, 0), we can write
down Eq. (6.8) for x and y, and multiply them together

�Cðx; y; tÞ ¼ �Cðx0; y0; 0Þ
1ffiffiffiffiffiffiffiffiffiffiffi

4pDt
p e�ðx� x0Þ2=4Dt 1ffiffiffiffiffiffiffiffiffiffiffi

4pDt
p e�ðy� y0Þ2=4Dt

(12:84)

Now we must relate �C to the fluorescence signal. The laser beam
is not uniform but varies, decreasing in intensity as the distance
from the beam center increases. This variation is approximately
Gaussian so the light intensity is

Iðx; yÞ ¼ I0e�2ðx2 þ y2Þ=w2

(12:85)

where I0 is intensity at the center and w is a parameter for the width
of the beam (typically �1 mm). The measured signal is the total

Laser

Fig: 12:9: A laser excites

fluorescence from molecules

in the path of the light beam.
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fluorescence excited by the beam, and this can be expressed as an
integral in the x–y plane

SðtÞ ¼ A

Z1
0

Z1
0

Iðx; yÞCðx; yÞdxdy (12:86)

where A is a factor that takes into account the experimental aspects
of detection and path length as well as the extinction coefficient
and quantum yield of the fluorescent molecule.

To derive the correlation function of this signal we average over
the product S(0)S(t)

Sð0ÞSðtÞh i ¼ A2

Z1
�1

Z1
�1

Z1
�1

Z1
�1

Iðx0; y0ÞCðx0; y0; 0Þ Iðx; yÞCðx; y; tÞdx0 dxdy0 dy

* +

(12:87)

The bracket denotes an average over the initial fluctuation �C(x0, y0, 0).
With any value for C¼Cþ �C the product of C(x0, y0, 0) and C(x, y, t) will
produce four terms. The first is a time-independent term that gives the
square of the mean signal. The second two terms are proportional to
�C(x0, y0, 0) and �C(x, y, t), both of which average out to zero. The fourth
term, �C(x0, y0, 0) �C(x, y, t), is the key time varying part that requires
attention. As defined in Eq. (12.47), the correlation function of the
fluorescence signal is then the integral

FeðtÞ ¼ A2

Z1
�1

Z1
�1

Z1
�1

Z1
�1

Iðx0; y0Þ �Cðx0; y0; 0Þ Iðx; yÞ �Cðx; y; tÞdx0 dxdy0dy

* +

(12:88)

Using Eq. (12.84) for �C(x, y, t) and Eq. (12.85) for I(x0, y0) and I(x, y) gives

FcðtÞ ¼ A2I 2
0

�C 2
0

4pDt

�
Z1
�1

Z1
�1

Z1
�1

Z1
�1

e�2ðx2 þ x2
0Þ=w2

e�ðx� x0Þ2=4Dte�2ðy2 þ y2
0Þ=w2

e�ðy� y0Þ2=4Dt dx0 dxdy0 dy ð12:89Þ

Averaging over initial fluctuations at t ¼0 yields a factor

h�Cðx0; y0; 0Þ2i, which is simply denoted as �C 2
0 . It can be estimated

from the Poisson distribution (Section 12.2).
The integrals in Eq. (12.89) can be factored into two identical

double integrals, one over x and x0 and the other over y and y0. We
can therefore focus on one of them

# ¼
Z1
�1

Z1
�1

e�2ðx2 þ x2
0Þ=w2

e�ðx� x0Þ2=4Dt dx0 dx (12:90)

To evaluate this double integral we might try to separate the two
variables into different integrals. However, this does not work.
Instead, we can rearrange the exponentials to give
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# ¼
Z1
�1

Z1
�1

e�ðxþ x0Þ2=w2
e�ðx� x0Þ2 1

w2 þ 1
4Dt

� �
dx0dx (12:91)

Now a change of variables to xþ x0 ¼ u and x � x0 ¼ v gives

# ¼ 2

Z1
�1

Z1
�1

e�u2=w2
e
�v2 1

w2 þ 1
4Dt

� �
dudv (12:92)

where the 2 arises because the change of variables gives dx0dx¼2 dudv.
Now we have two Guassian integrals (Appendix 4). The first gives

w
ffiffiffi
p
p

and the second gives
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p= 1

w2þ 1
4Dt

� �q
. Putting these results

together in Eq. (12.89) squares # to give

FcðtÞ ¼ 4A2I 2
0

�C 2
0

4pDt
w
ffiffiffi
p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
1

w2 þ 1
4Dt

r !2

¼ 4pA2I 2
0 �C

2
0 w2 1

1 þ 4Dt
w2

 !

(12:93)

This is often rewritten as

FcðtÞ ¼
B

1þ ðt=�Þ (12:94)

where B lumps all the intensity parameters together, and � is

� ¼ w2=4D (12:95)

This correlation function decays to zero with time, as it should.
But unlike the other correlation functions of this chapter, this decay
is not exponential. In fact, the precise mathematical form of the
decay depends on the shape of the laser beam. We assumed it to be
Gaussian (Eq. (12.85)), and the final result, Eq. (12.94), was quite
simple. If we had assumed that the laser illuminates a cylindrical
volume uniformly, the mathematical result would have been more
complicated. However, when this more complicated expression is
plotted it looks very much like Eq. (12.94) (Elson and Magde, 1974).
It should be evident from the way the integrals were factored in the
derivation that each spatial dimension introduces a factor of the
form (1þ t/� )�1/2 (Problem 2).

The special advantage of fluctuation correlation spectroscopy is
that a laser beam can be focused into a cell to study kinetic pro-
cesses in vivo. Thus, if fluorescent proteins can be introduced, their
mobilities in different cellular compartments can be assessed.
Figure 12.10 shows examples of fluorescent-labeled proteins
injected into the squid giant axon (Terada et al., 2000). One of
these proteins, creatine kinase, is an enzyme, and as a globular
protein it is not expected to interact with other proteins. The
other protein, tubulin, is a cytoskeletal constituent, capable of
oligomerizing and interacting with many other proteins. The fluor-
escence signals (upper part of Fig. 12.10) are noisy, and the
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timescales of the fluctuations are characterized by evaluating the
correlation function (lower part of Fig. 12.10) with a computer. The
correlation functions are fitted to a version of Eq. (12.94) modified
for a focused beam (with corrections for fluctuations due to mole-
cules entering the triplet state during excitation). These fits yield
the key parameter, � , which in turn can be used to evaluate the
diffusion coefficient with Eq. (12.95).

The diffusion constant for creatine kinase is about what one
would expect from the Stokes–Einstein relation (Eq. (6.66)), except
with a viscosity for cytoplasm that is 2–3 times higher than that of
water. Creatine kinase does not aggregate or interact strongly with
other proteins, so it is a good probe of the fluid properties of
cytoplasm. By contrast, � for tubulin was more than 10 times longer
than for creatine kinase. Creatine kinase has a higher molecular
weight, and thus should have a lower diffusion constant. Thus,
diffusion of tubulin inside the squid axon is much slower than
predicted by the Stokes–Einstein relation. To explain this result
requires that tubulin forms large aggregates or is tethered to a
large slow-moving complex. Fluorescence correlation spectroscopy
can be applied to a wide range of interesting biological problems
(Rigler and Elson, 2001). The technique is not limited to diffusion.
When applied to chemical kinetics, the fluctuations in fluorescence
can be used to determine the rate constants.

Creatine kinase Tubulin

0 1 0 2 0 3 0
Time (s) Time (s)

40 50 60 0 10 20 30 40 50 60

1E  –  3 0.01 0.1 1 10 100 1000 1E  –  3 0.01 0.1 1
∆t (s)∆t (s)

Fc( ∆t )

Fluorescence

10 100 1000

Fig: 12:10: Fluorescence signals

(above) from fluorescent-labeled

creatine kinase and tubulin injected

into the squid giant axon. The

computed correlation functions

(below) yielded � ¼ 0.845 ms for

tubulin and 0.075 ms for creatine

kinase (Terada et al., 2000 data

provided by Dr. Terada).
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12.14 Friction and the fluctuation–dissipation
theorem

In liquids, molecular fluctuations are the cause of friction. The final
section of this chapter will show how the study of fluctuations
provides a deeper understanding of friction, and transport processes
in general. One normally thinks of friction as something that resists
motion and slows things down. But this oversimplifies what goes on at
the molecular level in liquids. If a molecule happens to have a velocity
of zero, then the molecules around it will collide with it to set it into
motion. Eventually the molecule will have an rms velocity offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3kT=2mÞ

p
. On the other hand, if the molecule has a velocity greater

than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3kT=2mÞ

p
, then the same collisions will slow it down. No matter

what the initial velocity of a molecule is, after the collisions have
done their work the rms velocity will be the same. These same fluctua-
tions underlie Brownian motion and cause diffusion. Chapter 6 drew
attention to how the diffusion and friction coefficients are related;
D¼ kT/f (Eq. (6.62)). We now return to this subject.

If we have a liquid with a high viscosity, we might think that the
molecule will move less. Actually, the rms velocity is independent
of viscosity. The effect of viscosity is on the time scale of the velocity
fluctuations, i.e. how rapidly the velocity changes. This can be seen
with the aid of the Langevin equation, which is a form of Newton’s
law of motion (F ¼ma) in which the molecule comes under the
influence of two forces, friction and a randomly varying force
uncorrelated with velocity. Since the acceleration is the derivative
of velocity, we can express the law of motion as a first order differ-
ential equation in velocity

dv

dt
¼ � fv

m
þ �ðtÞ (12:96)

where �fv/m is the effect of friction in slowing down a moving mole-
cule. As in Eq. (6.62), f is the coefficient of friction. The function �(t) is a
random force that bats the molecule around, and it is closely related to
the noise term in Eq. (12.75). The same symbol is used because it has
the same essential mathematical properties. The parallel between
Eq. (12.96) and Eq. (12.75) implies a parallel between the resistance
in a circuit and the friction on a moving particle.

Multiplying both sides of Eq. (12.96) by v gives

1

2

dv2

dt
¼ � fv2

m
þ�ðtÞv (12:97)

This equation is then averaged to give a differential equation in v2

dv2

dt
¼ � 2f

m
v2 (12:98)
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Averaging the product �(t)v from Eq. (12.97) gave zero because both
v and � average to zero, and they are uncorrelated. If the molecule
starts off with an initial velocity v0 and ends up with v2 ¼ ð3kT=2mÞ,
the solution to Eq. (12.98) is

v2 ¼ 3kT

m
þ ðv 2

0 �
3kT

m
Þe�2ft=m (12:99)

So by appearing in the exponential, friction determines the time-
scale for the decay of velocity fluctuations.

An explicit relation can be derived between the friction coefficient
and the fluctuating force by solving Eq. (12.96) (McQuarrie, 1976,
Chapter 20). We begin by writing the solution to Eq. (12.96), obtained
in the same way that Eq. (12.77) was obtained as a solution of
Eq. (12.75)

vðtÞ � vð0Þe�tf =m ¼ e�tf =m

Z t

0

etf =m�ðtÞdt (12:100)

Squaring both sides gives

vðtÞ2 � 2vðtÞvð0Þe�tf =m þ vð0Þ2e�2tf =m ¼ e�2tf =m

Z t

0

Z t

0

eðtþ t0Þf =m�ðtÞ�ðt0Þdtdt0

(12:101)

First we look at the right-hand side and realize that the product
�(t)�(t0) is a function only of the difference t � t0. We transform the
double integral to the variables q ¼ t � t0 and s ¼ tþ t0

vðtÞ2 � 2vðtÞvð0Þe�tf =m þ vð0Þ2e�2tf =m¼ e�2tf =m

Z2t

0

esf =mds

Z1
0

�ðqÞ�ð0Þdq

¼ ð1� e�2tf =mÞm
f

Z1
0

�ðqÞ�ð0Þdq

(12:102)

where the first integral was evaluated as (e2tf/m �1)(m/f ). We next let
t!1, and take the ensemble average. The mean-square velocity is
all that remains on the left, and it can be replaced by 3kT/2m. We
thus have

3ktf

2m2 ¼
Z1
0

�ðqÞ�ð0Þdq (12:103)

Thus, the coefficient of friction is related to the correlation
function of the fluctuating force used to represent the random
collisions with other molecules. Equation 12.103 is an example of
the fluctuation–dissipation theorem. It is conceptually important in
showing directly the relation between the friction coefficient and
the random fluctuations arising from thermal motions in a liquid.
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The fluctuation–dissipation theorem is a very general result.
Whenever an equation such as Eq. (12.75) or Eq. (12.96) can be
written down for a time varying function, the response coefficient
can be expressed in terms of the integral of a correlation function of
an appropriate fluctuating quantity.

Problems for Chapter 12

1. In a solution with a single fluorescent species you have measured
the rms fluctuations in fluorescence in a volume of 10�15 liters as
3% of the mean fluorescence. What is the concentration of the
fluorescent molecule?

2. Write an equation corresponding to Eq. (12.94) for a laser beam
focused to a small spot with a radial width of wb and an axial width
of wa.

3. At what value of po is the channel noise largest (Eq. (12.45))?
4. Calculate the rms voltage fluctuations in a 1 M� resistor for a

frequency band defined by f<1000 Hz and T¼298 K.
5. Calculate the rms voltage fluctuations in a 1 M� resistor with a

10 nF capacitor in parallel, for f< 1000 Hz and T¼298 K.
6. Calculate the power spectrum for a three-state system where the

correlation function is a sum of two exponentials of the form
x1e�t/�1þ x2e�t/�2.

7. Calculate the rms fluctuations in the length of a hydrogen bond
using a force constant of 30 kcal ¯�2 mole�1 (Section 2.12).
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Chapter 13

Ion permeation and membrane
potential

A cell expends metabolic energy to transport ions, accumulating
some and expelling others so that the concentrations differ between
the cell’s inside and outside. The cell membrane is more permeable
to some of these ions than to others, so ions will move passively
down their concentration gradients at different rates. The resulting
separation of charge generates a voltage difference. Essentially
every cell has a membrane potential arising from ion movement.
The movement of different ions across the cell membrane produces
a broad spectrum of electrical behavior and makes it possible for
cells to communicate by electrical signaling. Electrical potentials
also appear across the membranes of organelles, and across layers of
cells such as epithelia. The common theme with all these pheno-
mena is the selective permeability of a membrane to different ions.
Here we will examine the relation between membrane permeabil-
ity, ion flux, and membrane potential. We will not worry about the
precise mechanism of ion permeation here. That is a subject for the
next chapter.

13.1 Nernst potentials

Consider two compartments separated by a membrane, with a higher
concentration of salt on one side than on the other (Fig. 13.1). If only
one ion is permeant, then that ion will diffuse across the membrane
down its concentration gradient, but the other ions will remain
behind. This produces a charge imbalance and therefore a membrane
potential. The membrane potential that develops opposes the flow of
that ion, and ultimately an equilibrium will be reached where the
difference in electrical potential perfectly balances the difference in
chemical potential.

If the concentration of the permeant ion in compartment a is ca

and the concentration in compartment b is cb, then we have

�G ¼ RT ln
cb

ca
(13:1)



for the change in free energy for transferring one mole from a to b.
The free energy change per mole due to the electrostatic energy
change is1

�U ¼ zFðVb � VaÞ ¼ zF�V (13:2)

When the two solutions reach equilibrium, there is zero net change
in energy for ion movement across the membrane. Setting
�Gþ�U ¼0 leads to

�V ¼ �RT

zF
ln

cb

ca
(13:3)

This is the Nernst equation, and the potential, �V, defined by this
equation is referred to as the Nernst potential for that particular
ion. Walther Nernst derived this equation in 1890, and Katz (1966)
has described it as ‘‘the best known and most frequently cited
equation in the biological literature.’’ That is somewhat overstated,
but this relation between ion concentration and membrane poten-
tial is extremely important in the study of cellular physiology and
membrane biophysics.

If the permeant ion is a cation, then z ¼1. And if ca > cb, then the
loss of cations from compartment a and their accumulation in
compartment b makes compartment a more negative. The Nernst
equation gives Vb >Va, so �V is positive. If the permeant ion is an
anion, then z ¼ �1 and the situation is reversed.

The quantity RT/F that appears in Eq. (13.3) has units of volts and
is equal to 25.6 mV at room temperature.2 This quantity is of great
importance and appears in most of the equations in this chapter. It
plays a fundamental role in relating thermodynamic forms of free
energy to electrical energy; RT/F is the increment in membrane
potential for an e-fold change in concentration ratio. With
ln 10¼ 2.3, a 10-fold change in concentration ratio produces a 58 mV

a b

Ion diffusion

Fig: 13:1: Two compartments,

a and b, with different salt

concentrations are separated by

a membrane that is permeable

to only one ion.

1 At this point it becomes very inconvenient to continue using cgs units (Chapter 2),

where charge was in esu and energy was in ergs. Electrophysiologists employ

Coulombs as units of charge. The energy unit is 1 Coulomb-Volt¼ 1 Joule¼ 0.2389

calories. For monovalent ions, conversion from Coulombs to moles is achieved by

multiplying by Faraday’s constant (96 480 Coulomb mole�1).
2 R¼1.98 cal mole�1 K�1 and T¼ 298 K, so RT¼ 590 cal mole�1. Also, F¼ 96 480 C

mole�1¼ 96 480 J V�1 mole�1¼23 050 cal V�1 mole�1 (using 0.2389 to convert J to cal,

see footnote 1 of this chapter). Therefore, RT/F¼ (590 cal mole�1)/(23 050 cal V�1

mole�1)¼0.0256 V.
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change in membrane potential. These numbers are worth
remembering.

Most vertebrate cells have an intracellular [Kþ] of� 130 mM and an
external [Kþ] of� 4 mM. Equation (13.3) then gives �V��87 mV as the
Nernst potential for Kþ. This gives a very rough accounting for
the membrane potential of most excitable cells, which typically falls
in the range of�60 to�90 mV. A quantitative understanding requires
treatment of other ions, a subject that will be dealt with shortly.

The Nernst potential describes a thermodynamic equilibrium.
The force of the concentration gradient is balanced by the voltage
drop. So ions do not move from one side to the other and the system
will be stable for an indefinite period of time. As will be illustrated
below, with multiple permeant ions, the membrane potential repre-
sents a steady state rather than an equilibrium (except for the
Donnan potential). In this steady state ions flow continually, but
the fluxes balance out to give zero net current.

It is important to bear in mind that ion concentrations change
very little during ion movements that change the voltage. If we look
at the initial concentrations of ca and cb before the ions are allowed
to diffuse across the membrane, and the final concentrations after
the Nernst potential has been established, we would find that these
concentrations are almost the same. To see this, consider a spherical
cell with a radius of 100 mm. The capacitance of this cell’s membrane
is 4p�10�10 F (1 cm2 of membrane has a capacitance of �1 mF; see
Section 15.2). It takes 12.6�10�11 Coulombs to change the voltage
across this membrane by 100 mV. Dividing by Faraday’s constant
converts this charge to 1.3�10�15 moles of monovalent ion. The
volume of the cell is 4.2�10�6 cm3 or 4.2�10�9 liters. So the ion
concentration changes by only 0.3 mM. Since concentrations are
usually in the millimolar range, the change is relatively small.

Note that the capacitance goes as area and the concentration as
inverse volume. Thus, in smaller cells the same voltage change will
require a greater change in ion concentration. For a tiny 1 mm cell
we get 1.3�10�19 moles and 4.2�10�15 liters, so the concentration
increases by 0.03 mM for 100 mV. For calcium the intracellular free
ion concentration is<1 mM, so calcium currents can change the
intracellular calcium concentration quite dramatically. This allows
calcium to serve as powerful chemical signal. But for the more
abundant ions such as Naþ, Kþ, and Cl�, it is usually reasonable to
ignore the concentration changes that occur when their flow across
the cell membrane makes the voltage change.

13.2 Donnan potentials

For Nernst potentials, only one ion was allowed to diffuse across the
membrane. The Donnan potential is the other extreme in which all of
the ions but one can diffuse across the membrane. The impermeant
species is typically viewed as a large polyanion, like the nucleic acids
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within cells. The situation is illustrated in Fig. 13.2, with N�w repre-
senting a large molecule with a net charge of�w.

The small anions and cations, B� and Aþ, can flow across the
membrane but the large anions, N�w are trapped on the compart-
ment a side. Without this polyanion the equilibrium situation
would be equal concentrations of the salt AB on both sides of the
membrane. However, with N�w providing an excess negative charge
in compartment a, the anions B� are pushed to the right and the
cations Aþ are pulled to the left (Fig. 13.2). Eventually, an equili-
brium is reached in which a voltage difference is balanced by diffu-
sive forces. The build up of Aþ in compartment a and B� in
compartment b makes �V ¼Vb �Va negative.

The balance of diffusive and electrical forces on Aþ and B�

means that these ion concentrations satisfy the Nernst equation

�V ¼ �RT

F
ln
½Aþ�b
½Aþ�a

(13:4a)

�V ¼ RT

F
ln
½B��b
½B��a

(13:4b)

where z ¼1 for the cations in Eq. (13.4a) and z ¼ �1 for the anions in
Eq. (13.4b). Equating these two gives

½Aþ�b½B��a ¼ ½Aþ�a½B��b (13:5)

This relation can be used to test for the presence of a Donnan
potential without measuring voltage. If values of [Aþ] and [B�]
measured in both compartments obey Eq. (13.5), then it is likely to
reflect a Donnan potential.

Equations (13.4a), (13.4b), and (13.5) cannot be used to solve for
the concentrations and �V; more information is needed. We have to
take into account the constraint that the total charge in each com-
partment is close to zero. This follows from the examples discussed
at the end of the preceding section that illustrate how for typical
voltage differences the excess amounts of ions are minor compared
to their concentrations. So we can ignore the micromolar changes
as small fractions of the existing millimolar concentrations. The
condition of zero total charge is referred to as electroneutrality, and
for compartment a this condition is expressed as

½Aþ�a � ½B��a � w½N�w� ¼ 0 (13:6)

a b

A + A +

N – w

B –B –

Fig: 13:2: The presence of an

impermeant polyanion, N�w, drives

a redistribution of the permeant

anions, B�, and cations, Aþ, leading

to a Donnan equilibrium.
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In compartment b, electroneutrality dictates that [Aþ]b¼ [B� ]b. Since
they are equal we can replace them both with salt concentration in b, cb.

To proceed, we rearrange Eqs. (13.4a) and (13.4b), using cb for
[Aþ]b and [Bþ]b as follows

cb

½Aþ�a
¼ e�F�V=RT (13:7a)

cb

½B��a
¼ eF�V=RT (13:7b)

Using these expressions to solve for [Aþ ]a and [B� ]a, and substituting
into Eq. (13.6) gives

cbeF�V=RT � cbe�F�V=RT � w½N�w� ¼ 0 (13:8)

Multiplying by eF�V/RT and dividing by cb gives

e2F�V=RT � w½N�w�
cb

eF�V=RT � 1 ¼ 0 (13:9)

This is a quadratic equation in eF�V/RT. The quadratic formula then
gives the solution

eF�V=RT ¼
w½N�w�

cb
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w½N�w �

cb

� �2
þ4

r
2

¼ w½N�w�
2cb

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w½N�w�

2cb

� �2

þ1

s
(13:10)

Of the two roots to Eq. (13.9), only the positive one has physical
meaning. The membrane potential is

�V ¼ RT

F
ln

w½N�w�
2cb

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w½N�w�

2cb

� �2

þ 1

s0
@

1
A (13:11)

Thus, we can calculate the membrane potential in terms of the
two concentrations [N�w] and cb. An important difference between
this situation and that described by the Nernst equation is that a
substantial amount of ion flow occurs in order to reach this equili-
brium. When ions flow to establish a Nernst potential, the concen-
trations hardly change at all. By contrast, the establishment of a
Donnan potential produces substantial changes in ion concentra-
tion. Electroneutrality is preserved as this happens because the
different ions maintain a charge balance as they flow.

13.3 Membrane potentials of cells

Most excitable cells have what is referred to as a resting potential,
a stable membrane potential seen in the absence of stimulation.
Resting potentials are generally negative, that is, the inside of the
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cell is negative relative to the outside. The theories just presented
for Nernst and Donnan potentials offer alternative ways to account
for a resting potential. If a cell membrane allows only one ion
(a cation) to permeate, then the cell can concentrate that ion by
active transport, and then allow it to diffuse back out to create a
negative Nernst potential. Pumping a permeant anion out and
allowing it to diffuse back in would also work. Alternatively, a cell
could make a large amount of polyanion and allow other ions to
redistribute to form a Donnan potential. We will examine neurons
and muscle fibers as examples of applications of these theories.
Neurons use Kþ ions as the primary determinant of their resting
potentials; the Nernst potential for Kþ approximates this quantity
reasonably well. Skeletal muscle of vertebrates uses both Kþ and
Cl�. The two ions move together in a manner well described by a
Donnan potential.

The study of resting potentials begins with calculations of the
Nernst potential for each ion. Figure 13.3 provides this information
for the squid axon and frog skeletal muscle. There are some qualitative
similarities. Each of the ions has an unequal distribution across the
membrane, with higher Kþ inside and higher Naþ and Cl� outside. The
unequal distribution of Naþ and Kþ is created by the pumping action
of the Naþ/Kþ ATPase (Section 13.8). This ubiquitous membrane
protein uses the energy released in the hydrolysis of ATP to pump
Naþ out and Kþ in. However, the membranes of the squid axon and
frog muscle fiber differ in their ion permeabilities, and so the resting
potential arises through different mechanisms.

Squid axon

Frog muscle

[Na + ]  =  50 [Na + ]  =  440

60 mV

–103 mV

–101 mV

56 mV

–77 mV

–34 to 68 mV

[Na + ]  =  109[Na + ]  =  10.4

[K + ]  =  2.25[K + ]  =  124

[Cl – ]  =  77.5[Cl – ]  =  1.5

[K + ]  =  400 [K + ]  =  20

[Cl – ]  =  40–150 [Cl – ]  =  560

Resting potential  =  –  60 mV

Resting potential  =  –  90 mV

[N – ]  =  360

[N – ]  ~  74 [N – ]  ~  13

Nernst potentialExtracellularIntracellularFig: 13:3: Intracellular and

extracellular ion concentrations,

Nernst potentials, and resting

membrane potentials for two

types of cell (Aidley, 1978).

344 ION PERMEATION AND MEMBRANE POTENTIAL



13.3.1 Neurons
The resting potential of the squid axon does not equal the Nernst
potential for any ion, but it is close to the Nernst potentials for Cl�

and Kþ, and that is an important clue. To explore this connection
one must measure the membrane potential and then vary the con-
centrations of the different ions. If the permeability for one of those
ions is important, then the membrane potential will change loga-
rithmically, as predicted by Eq. (13.3). The result of this experiment
is shown in Fig. 13.4. We see that varying extracellular [Kþ] produces
the expected change in membrane potential. Above 30 mM, the
change is nearly 58 mV per 10-fold change in [Kþ], and the resting
potential falls close to the line drawn for the Kþ Nernst potential.
Varying [Cl�] has essentially no effect. Thus, the membrane poten-
tial of the squid axon is essentially a Nernst potential for Kþ until
[Kþ] falls below around 30 mM.

The Nernst equation fails to account for the data at low [Kþ]. The
main reason for this is that other ions permeate the membrane and
make their own contribution to the membrane potential. Naþ and
Cl� are much less permeant, but their contributions are measur-
able, particularly when Kþ is scarce. We therefore need to under-
stand membrane potentials with multiple permeant ions. This will
be taken up shortly, but first we look at muscle fibers.

13.3.2 Vertebrate skeletal muscle
As with the squid axon, the resting potential of a muscle fiber is
close to the Nernst potentials for Cl� and Kþ (Fig. 13.3). However, in
contrast to the squid axon, the resting potential of a muscle fiber is
strongly influenced by changing the extracellular concentrations of
either Kþ or Cl�. In a classical study by Boyle and Conway (1941),
frog muscle was equilibrated in various solutions and the intracel-
lular and extracellular ion concentrations were measured. [Kþ] and
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[Cl�] consistently obeyed Eq. (13.5), indicating that these two ions
were part of a Donnan system. The very similar Nernst potentials for
these two ions, and their similarity to the resting potential
(Fig. 13.3) fits with another prediction of the Donnan theory
(Eqs. (13.4a) and (13.4b)).

Changing either extracellular [Kþ] or [Cl�] altered the membrane
potential of frog skeletal muscle (Hodgkin and Horowicz, 1959).
Raising extracellular [Kþ ] from 2.5 mM to 10 mM produced a rapid
rise in potential of 16 mV, and a slower rise taking several minutes,
of another 10 mV. Reducing extracellular [Cl� ] by a factor of 4 raised
the potential by about 20 mV, but after a few minutes, the mem-
brane potential returned to its original value. According to the
Nernst equation, a 4-fold change in concentration should change
the membrane potential by 35 mV, so the Nernst equation cannot
apply for either ion.

The observations of Hodgkin and Horowicz can be broken into
immediate and delayed changes in potential. At the start, the mem-
brane was close to the Nernst potentials for both Kþ and Cl� , as
already mentioned (Fig. 13.3). Raising extracellular [Kþ ] or reducing
extracellular [Cl� ] moved the Nernst potential for that ion in the
positive direction, so that the two Nernst potentials were no longer
equal. The immediate effect is that the voltage rose to some inter-
mediate value between the Nernst potentials for Kþ and Cl� (how
to calculate the exact value will be explained in Section 13.7). After
this rapid change, the ion concentrations changed slowly to form a
new Donnan potential. Raising extracellular [Kþ ] caused the flux of
Kþ and Cl� into the cell in exactly equal numbers (preserving
electroneutrality). The Nernst potential for Cl� went up much
more than the Nernst potential for Kþ because with only 1.5 mM

Cl�, the fractional change in intracellular [Cl�] was much greater.
The migration of KCl continued until the two Nernst potentials
were equal, at which point the Donnan equilibrium had been re-
established. The response to raising extracellular [Cl�] follows the
same logic. Once again the potential rose, but then KCl went out to
reduce the Cl� Nernst potential.

Skeletal muscle fibers of vertebrates generally follow this pat-
tern (Aidley, 1978; Aickin, 1990). The membranes are very perme-
able to both Kþ and Cl�, although the permeability of Cl�

is generally 2–20 times higher. Naþ permeability is generally not
a factor because Naþ does not easily pass across the membrane
at rest. This serves two purposes. First, the high intracellular con-
centration of impermeant organic anions requires an impermeant
extracellular ion to maintain osmotic balance. Otherwise, water
would flow into the cell and dilute the ions. High extracellular
[Naþ] keeps the osmolarity outside the cell equal to the osmolarity
inside the cell. Further, the Naþ concentration gradient is held
in reserve to drive the rapid changes in membrane potential,
the action potentials, used in electrical signaling processes
(Chapter 16).
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13.4 A membrane permeable to Naþand Kþ

When more than one ion can cross a membrane, the observed
potential reflects the relative strength with which the movement
of each ion pulls the voltage toward its own Nernst potential. We
will now treat the case of two permeant ions of the same charge.
This derivation introduces some important ideas, and the result
improves the interpretation of the data in Fig. 13.4.

Consider two compartments with mixtures of NaCl and KCl in
different proportions but with the same total salt concentration
on each side (Fig. 13.5). Naþ is higher on the left side and will
diffuse to the right to make the left side negative. Kþ moving to
the left will tend to make the right side more negative. Which ion
wins will obviously depend on which one diffuses most easily
through the membrane. But the diffusion constant does not
appear in the Nernst equation. The Nernst equation applies to
equilibria, and equilibria generally do not depend on transport
coefficients.

The general approach to membrane potentials with multiple
ions is to write down the equation for the current of each ion, add
these currents together to obtain the total, set this total current
equal to zero, and solve for V. The rationale for this is that if the
net ion current is zero, then the membrane potential is at a
stable value.

Ion flux through a membrane is treated as diffusion under the
influence of the same two forces used to derive the Nernst equation:
these are voltage and the ion’s concentration gradient. The com-
bined action of these two forces has come up already in the treat-
ment of diffusion and kinetics in Chapters 6 and 7. The flux
produced by the concentration gradient is �D(dc/dx), where D is
the diffusion coefficient of the ion within the membrane. The flux
produced by voltage is � (zFc/f)(dV/dx), where f is the coefficient of
friction for the ion within the membrane. Adding up these
responses to the two forces and using the Einstein relation, f¼ kT/D
(Eq. (6.62)) gives a total flux, as in Eq. (6.64), of

J ¼ �D
zFc

RT

dV

dx
þ dc

dx

� �
(13:12)

a b

High NaCl
Low KCl

Na +

K +

High KCl
Low NaCl

Fig: 13:5: Two compartments

separated by a membrane

permeable to both Naþ and Kþ.
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The switch from kT to RT reflects the macroscopic units of moles
employed here. We do not need to use partial derivatives b ecause
we are only d iff erentiating with respect to x . This expression can b e
shown t o be consistent w ith the Nernst equation (Problem 2).

The current is obtained from Eq. (13.12) by multiplying by the
charge per mole. Recall that F, Faraday’s constant, is the conversion
factor between moles and Coulombs (see footnote 1 in this chapter).
Thus, if we multiply J, in units of mole s�1 by zF, we have Coulomb s�1,
which is current in units of Amperes

I ¼ �zFD
zFc

RT

dV

dx
þ dc

dx

� �
(13:13)

Before proceeding with the derivation of an expression for �V, it is
worth noting that when the concentration gradient is zero, Eq. (13.13)
gives a simple linear relationship between current and voltage

I ¼ � z2F2cD

RT

dV

dx
(13:14)

We can integrate this equation across the membrane. The value of I
is constant so the left side becomes I�, where � is the membrane
thickness. With c constant within the membrane, integration of the
derivative on the right gives �V

I� ¼ z2F2cD

RT
�V (13:15)

We can now divide through by � and replace D/� with a new symbol,
P, which will be called the permeability

I ¼ z2F2cP

RT
�V (13:16)

This is essentially Ohm’s law. From the proportionality factor we
obtain the following expression for the membrane conductance

G ¼ z2F2cP

RT
(13:17)

Thus, we see that the conductance, a number that characterizes
the ion current that flows in response to a voltage, is directly
proportional to the permeability, a number that characterizes the
ion flux driven by a concentration gradient. It makes sense that the
two are related. The property of a membrane to resist ion flow
induced by one of these driving forces is fundamentally the same
as that to resist the other driving force.

It must be emphasized that Eqs. (13.16) and (13.17) are valid
only for the case where the concentrations are very similar on
both sides of the membrane (i.e. dc/dx � 0). When the concentra-
tions are different we do not know what to use for c. We will see how
this is resolved with Goldman–Hodgkin–Katz current equation
(Section 13.10).
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Returning to the problem of deriving the steady-state membrane
potential for two permeant cations, we rearrange Eq. (13.13), take
z ¼ 1, and write down separate expressions for Naþ and Kþ, as
follows

INa ¼ �FDNae�FV=RT dð½Naþ�e FV=RTÞ
dx

(13:18a)

IK ¼ �FDKe�FV=RT dð½Kþ�e FV=RTÞ
dx

(13:18b)

where DNa and DK are the diffusion constants of Naþ and Kþ, respec-
tively. The same mathematical manipulation to get these equations
from Eq. (13.13) was employed in deriving Eq. (7.28). The result is
easily checked by applying the product rule to the derivative on the
right-hand side.

At steady state the Naþ and Kþ currents add up to zero

FDNae�FV=RT dð½Naþ�eFV=RTÞ
dx

þ FDKe�FV=RT dð½Kþ�eFV=RTÞ
dx

¼ 0 (13:19)

The factor Fe�FV/RT in front of each term can now be dropped,
leaving derivatives that are easily integrated from the left side of
the membrane (a) to the right side (b), as follows

DNað½Naþ�beFVb=RT � ½Naþ�aeFVa=RTÞ þ DKð½Kþ�beFVb=RT � ½Kþ�aeFVa=RTÞ ¼
DNað½Naþ�beF�V=RT � ½Naþ�aÞ þ DKð½Kþ�beF�V=RT � ½Kþ�aÞ ¼ 0

(13:20)

where in the second step eFVa=RT was factored out, leaving
eFðVb�VaÞ=RT ¼ eF�V=RT . This expression is then solved for �V

�V ¼ �RT

F
ln

DNa½Naþ�b þ DK½Kþ�b
DNa½Naþ�a þ DK½Kþ�a

� �
(13:21)

This is an example of the Goldman–Hodgkin–Katz voltage equa-
tion, which will be derived more generally for ions of different
charge below (Sections 13.7 and 13.11). The derivation of
Eq. (13.21) depends only on the independence of the fluxes of the
two ions, and on the homogeneity of DNa and DK within the mem-
brane (Hille, 1991). Note that if DNa >>DK, �V goes to the Nernst
potential for Naþ, and vice versa for Kþ.

The Ds in Eq. (13.21) are generally replaced by permeability
coefficients P (we defined P as D/� so they are proportional). It is
clear that scaling all the Ds by a common factor does not
change anything. Note that �V depends on the ratios of the perme-
abilities rather than the actual values, so when we use Eq. (13.21),
it does not matter whether we use D or P. The convention is to use
P in applications of Eq. (13.21) to experimental membrane
potential data.
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13.5 Membrane potentials of neurons again

Equation (13.21) dramatically improves our understanding of neu-
ronal membrane potential data such as that in Fig. 13.4. First, we
rewrite Eq. (13.21) in terms of the permeability ratio, RK/Na ¼
PK/PNa ¼DK/DNa, as follows

�V ¼ �RT

F
ln
½Naþ�b þ RK=Na½Kþ�b
½Naþ�a þ RK=Na½Kþ�a

 !
(13:22)

In this form there is only one unknown parameter, RK/Na. Using the
numbers from Fig. 13.3 for [Naþ]a, [Naþ]b, and [Kþ]b of the squid
axon, and taking [Kþ]a as the experimental variable, we can describe
the variation in membrane potential with extracellular [Kþ] very
well by setting RK/Na ¼ 19 (see Fig. 13.6). For many cells, Eq. (13.22)
gives a good quantitative description of the membrane potential,
with RK/Na in the range 10–100. So the deviations of the resting
potential from the Nernst potential for Kþ can be accounted for by
adding in a low permeability to Naþ. This analysis makes the import-
ant point that membrane permeation by another ion, in this case
Naþ, substantially improves the comparison between experiment
and theory. However, the actual mechanism for this variation in
resting potential is more complicated and may involve a small con-
tribution from Cl�, as well as permeabilities that vary with mem-
brane potential (Hille, 1977).

Kþ channels are the main players in determining the resting
potentials of neurons. There are many types of Kþ channels with
diverse roles in regulating excitability. Many of these exhibit a
complex dependence on voltage (Chapter 16), but in frog ganglion
neurons the Kþ channel that contributes the most Kþ permeability
at rest has very little voltage dependence and appears to be uniquely
dedicated to this function (Jones, 1989). Different Kþ channels are
responsible for the resting potential in other cells. In cerebellar
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granule neurons a Kþ channel with two pore-domains is responsible
for the high resting Kþ permeability (Millar et al., 2000). In midbrain
neurons an inward rectifier Kþ channel performs this function, and
the closure of this channel by neurotransmitter partially collapses
the membrane potential (Nakajima et al., 1988). As noted above
(Section 13.3.2), the skeletal muscle resting potential is determined
by both Kþ and Cl�, and the Cl� channel responsible was identified
as ClC-1 (Jentsch et al., 2002).

13.6 The Ussing flux ratio and active transport

How do we generalize Eq. (13.21) to handle additional ions? We need
a better mathematical analysis of how fluxes are generated by the
combination of electrical and chemical forces. An important ele-
ment of this theory was introduced by Ussing (1949) in a classical
study of the active transport of ions.

Taking Eqs. (13.18a) or (13.18b) for any arbitrary ionic species,
denoted by the subscript i, we go back from current to flux (from I to J),
and multiply through by the exponential factor.

Jie
ziFV=RT ¼ �Di

d

dx
cie

ziFV=RT (13:23)

Taking a steady state with Ji constant, and integrating both sides of
Eq. (13.23) from one side of the membrane to the other gives

Ji

Zb

a

eziFV=RTdx ¼ �DiðcibeziFVb=RT � ciaeziFVa=RTÞ (13:24)

The integral on the left cannot be evaluated explicitly without
knowing what V(x) looks like within the membrane. However,
that does not matter for now because the integral drops out in the
following calculation.

Now we use Eq. (13.24) to write the unidirectional flux that
would be seen if one added an isotope tracer to one side of the
membrane and monitored its appearance on the other side. If tracer
is added only to compartment a, then the tracer concentration in
compartment b is zero, so Eq. (13.24) gives the flux from a to b as

Jiða!bÞ ¼ �iciaeziFVa=RT (13:25)

where the symbol �i denotes Di divided by the integral multiplying
Ji on the left-hand side of Eq. (13.24). A similar equation can be
derived for the tracer flux in the opposite direction

Jiðb!aÞ ¼ �icibeziFVb=RT (13:26)

where �i is the same in Eqs. (13.25) and (13.26), so taking the ratio of
the two fluxes leads to

Jiða!bÞ
Jiðb!aÞ

¼ cia

cib
e�ziF�V=RT (13:27)
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This is the Ussing flux ratio. It provided a valuable tool in the
interpretation of tracer flux measurements in terms of passive and
active transport. Experimental measurements by Ussing of tracer
flux across frog skin gave a ratio that differed by a factor of several
hundred from that predicted by Eq. (13.27), indicating that active
transport must be at work. The dependence of ion flux on meta-
bolic energy was verified by adding a metabolic poison. Within a
few minutes the fluxes changed to values that were in agreement
with Eq. (13.27).

13.7 The Goldman–Hodgkin–Katz voltage
equation

Now we will generalize Eq. (13.21) to obtain an expression for the
membrane potential as a function of the concentrations and perme-
ability ratios of all the monovalent ions (Patlak, 1960). We start by
writing down the condition of zero net current (as we did for two
ions in Section 13.4), but we view each net flux as the difference
between the rightward and leftward unidirectional fluxes of the
preceding section. The cation fluxes are perfectly balanced by the
anion fluxes, so we have

X
cations

ð Jiðb!aÞ � Jiða!bÞÞ �
X

anions

ð Jiðb!aÞ � Jiða!bÞÞ ¼ 0 (13:28)

Now use the Ussing flux ratio, Eq. (13.27), to eliminate Ji(a!b) for
cations and Ji(b!a) for anions

X
cations

Jiðb!aÞ 1� ciae�F�V=RT

cib

� �
�
X

anions

Jiða!bÞ
cibe�F�V=RT

cia
� 1

� �
¼ 0

(13:29)

The flux from compartment b to compartment a should be propor-
tional to cb, and the proportionality constant between concentra-
tion and flux is the permeability. So Ji(b!a) ¼ Picib; likewise,
Ji(a!b) ¼ Picia. With these substitutions we have

X
cations

Piðcib � ciae�F�V=RTÞ �
X

anions

Piðcibe�F�V=RT � ciaÞ ¼ 0 (13:30)

X
cations

Picib � e�F�V=RT
X

cations

Picia � e�F�V=RT
X

anions

Picib þ
X

anions

Picia ¼ 0

(13:31)

We can now solve for e�F�V/RT and take the logarithm

�V ¼ �RT

F
ln

P
cations

Picib þ
P

anions

PiciaP
cations

Picia þ
P

anions
Picib

0
B@

1
CA (13:32)
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This is a more general form of the Goldman–Hodgkin–Katz
voltage equation (Eq. (13.21)). It expresses the membrane potential
as a function of the concentrations and permeabilities of all the
monovalent ions. This equation was originally derived by assuming
that the electric field is constant within the membrane, so that the
voltage drops linearly from one side to the other. Because of this
assumption this relation has been referred to as the constant-field
equation. The constant-field assumption will be examined shortly,
but the derivation presented here shows that Eq. (13.32) is more
general than originally thought. It does not depend on assuming
that the field in the membrane is constant.

A more critical assumption that goes into the derivation of
Eq. (13.32) is that the flux of each ion is independent of the
other ion fluxes. It is easy to imagine that a channel may have
ion fluxes that interact with one another and violate independence.
For example, ions can saturate binding sites in channels and block
the binding of other ions. The rich literature on how ion channels
fail to obey the independence principle is reviewed in chapter 14 of
Hille (1991), and some specific models will be studied in the follow-
ing chapter. In spite of this issue, Eq. (13.32) is very widely used to
determine permeability ratios from the voltage for which current is
zero. Note that the ratios are the critical quantities rather than the
absolute values of the permeabilities. Like Eq. (13.22), Eq. (13.32) can
be rewritten in terms of permeability ratios.

It is instructive to look at how the permeabilities for various ions
influence the observed value of �V. In most cells the monovalent
ions that need to be accounted for are Naþ, Kþ, and Cl� (Fig. 13.3).
Equation (13.32) then becomes

�V ¼ �RT

F
ln

PNa½Naþ�b þ PK½Kþ�b þ PCl½Cl��a
PNa½Naþ�a þ PK½Kþ�a þ PCl½Cl��b

� �
(13:33)

Figure 13.7 shows how the membrane potential varies with [Kþ]b for
different values of PCl, using the concentrations given for the squid
axon in Fig. 13.3. Here PK is taken as 20� PNa, and a few different
values of PCl are tested. When PK >> PCl the plot is similar to
Fig. 13.4, where the Nernst potential for Kþ dominates at high
[Kþ]. As PCl increases, [Kþ] has a weaker effect. The product of the
concentration and permeability determines the impact of an ion
on the potential and as PCl goes up it pulls the membrane closer to
the Cl� Nernst potential (�88 mV in this case). Mathematically, the
effect is to make the [Cl�] term in the numerator and the denomi-
nator of the fraction in Eq. (13.33) larger so that the ratio becomes
insensitive to variations in other ions.

It is worth commenting here about ion activities. The expression
for the free energy change (Eq. (13.1)), depends on the solution being
ideal. Deviations from ideality often have to be considered in quan-
titative studies, and this is done by replacing ion concentrations
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with activities. The molar free energy is then Goþ RT ln a, where a is
the activity. We saw in Chapter 11 that at physiological concentra-
tions of NaCl and KCl of �100 mM, deviations from ideality are
appreciable. It is commonly assumed that the ionic strengths,
and therefore the activity coefficients, are the same both inside
the cell and outside the cell. This leads to a cancellation of this
factor from the numerator and denominator of the logarithmic
term in the Goldman–Hodgkin–Katz voltage equation. Solution
nonideality then has no consequence. When the solutions have
different ionic strengths, the activities will make a difference and
taking this into account often improves the accuracy of this kind
of analysis.

13.8 Membrane pumps and potentials

One would think that with expressions for the membrane potential
in terms of the permeabilities and concentrations of all the mono-
valent ions, we should be able to describe the resting membrane
potential of any cell. Equation (13.33) does account for many of
the effects of passive ion permeation, but there is an additional
contribution made by active transport. All cell membranes contain
pump proteins that harness chemical energy to drive ions against
their concentration gradients. These pumps create the ion gradi-
ents that are responsible for the membrane potentials already
discussed. So they are ultimately, if indirectly, responsible for the
resting potential. But many active membrane pumps, most notably
the Naþ/Kþ ATPase, are electrogenic, and generate a current by
pumping more ions in one direction than the other. These pumps
contribute directly to the membrane potential.

To understand the effect of pump current on membrane poten-
tial we start with the sum of all the passive ion fluxes in Eq. (13.28)
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and add the flux of pumped ions Jpump (this might be a measured
flux or a measured pump current divided by zF ). The same analysis
that gave Eq. (13.32) now gives

�V ¼ �RT

F
ln

P
cations

Picib þ
P

anions

Picia þ JpumpP
cations

Picia þ
P

anions
Picib

0
B@

1
CA (13:34)

In most cells, poisoning the Naþ/Kþ ATPase by an inhibitor such
as ouabain depolarizes the membrane potential very quickly by
10–15 mV (see Jones, 1989). This change in �V results from reducing
Jpump in Eq. (13.34) from its normal value to zero. A slower drop in
potential occurs over a time course of hours. This slower change
reflects the gradual collapse of the concentration gradients in the
absence of pump activity.

The extent to which an electrogenic pump contributes to the rest-
ing potential of a cell can vary quite a bit. In neutrophils (a kind of
white blood cell) the membrane potential appears to be generated
entirely by a pump (Bashford and Pasternak, 1986). The ion gradients
play a much smaller role so changing the extracellular [Kþ] makes little
difference. In these cells, poisoning the pump reduces the membrane
potential to zero. Such cells are a bit of an oddity, but the phenomenon
itself is not; mitochondria also have very large membrane potentials
on the order of�100 to�200 mV, and these are generated entirely by
an electrogenic proton pump.

13.9 Transporters and potentials

A large group of transport proteins couples the movement of two or
more molecules across a membrane in a stoichiometric combina-
tion. For example, red blood cells have an anion exchange protein
that couples the movement of Cl� to the movement of HCO3

� in the
opposite direction. This transport process can run in either direc-
tion depending on the gradients, and in fact, the red blood cell
anion exchanger reverses its direction of activity as the addition
of CO2 in the tissues and removal in the lungs leads to opposite
transmembrane HCO3

� gradients (CO2 and HCO3
� interconvert

through the action of carbonic anhydrase; see Section 10.15).
Another transporter exchanges Naþ for Ca2þ. This protein harnesses
the Naþ gradient created by the Naþ/Kþ ATPase to extrude Ca2þ and
help maintain a low cytosolic free Ca2þ concentration. An exchanger
in neuronal membranes utilizes the driving forces for Naþ, Kþ, and
Hþ to recover the neurotransmitter glutamate released during synap-
tic transmission (Zerangue and Kavanaugh, 1996). An enormous
variety of membrane transport proteins use this principle to trans-
port metabolites in an indirect or secondary form of active transport.
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They do not hydrolyze ATP themselves but they feed off the gradi-
ents created by the pump proteins that do. When the transport
operation results in no net charge movement, then the membrane
potential is unaffected. However, when the transport operation
produces a net charge flux, then a membrane potential can influ-
ence the transport process, and the transport process can contri-
bute to a cell’s membrane potential.

Consider a transport protein that moves n molecules of an anion
A� from compartment a to compartment b, with the countertran-
sport of m molecules of a cation Bþ from compartment b to com-
partment a. This exchange process can be represented by a reaction
scheme (Scheme (13A))

nA�a þ mBþb
�! � nA�b þ mBþa (13A)

There are three forces that can drive this reaction. Two of these are the
concentration gradients for A� and Bþ. The other is the membrane
potential. The membrane potential will then be determined by balanc-
ing out all the forces for a system at thermodynamic equilibrium.

The concentrations specify the free energy change for the
exchange process, which according to Scheme (13A) is

�G ¼ RT ln
½A��b

n½Bþ�a
m

½A��a
n½Bþ�b

m

 !
(13:35)

Scheme (13A) also tells us how much charge is moved during the
reaction. The movement of n anions one way and m cations the
other way is equivalent to a net charge movement of nþm. And if
there is a membrane potential, �V, then the electrostatic energy is

�U ¼ F�VðnþmÞ (13:36)

Equations (13.35) and (13.36) parallel Eqs. (13.1) and (13.2) used to
derive the Nernst equation.

Equation (13.35) can be rewritten as

�G ¼ RT ln
½A��b

n

½A��a
n

� �
þ RT ln

½Bþ�a
m

½Bþ�b
m

 !

¼ nRT ln
½A��b
½A��a

� �
�mRT ln

½Bþ�b
½Bþ�a

� �
(13:37)

These are now so close to the form of the Nernst equation (Eq. (13.3))
that we can express �G in terms of the Nernst potentials for A� and
Bþ, which are, respectively, EA and EB

�G ¼ nF EA þmF EB (13:38)

Care must be taken to keep track of the value of z¼�1 for the two ions.
Balancing out the forces at equilibrium means equating Eqs.

(13.36) and (13.38)

�VðnþmÞ ¼ nEA þmEB (13:39)
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The membrane potential is thus the average of the two Nernst
potentials, weighted according to the stoichiometric coefficients
of the two ions

�V ¼ nEA þmEB

nþm
(13:40)

Like the Nernst potential, a membrane potential set by a counter-
transport process will vary as the logarithm of the concentration
ratio. But changing one of the concentrations will change the mem-
brane potential by less than the Nernst potential because of the
weighting in Eq. (13.40).

This relation was used to interpret experiments on a bacterial
protein that is homologous to eukaryotic Cl� channels (Accardi and
Miller, 2004). When this protein was reconstituted into lipid bilayers
it passed a Cl� current. Imposing a Cl� gradient moved the reversal
potential away from zero, but the reversal potential was less than
the Nernst potential for Cl�. Efforts to find another permeant
ion were futile. The behavior could not be explained with the
Goldman–Hodgkin–Katz voltage equation (Eq. (13.32)) using any com-
bination of Cl� and some other ion. An important clue was found by
noting that a pH gradient moved the reversal potential away from
zero, even though the Cl� concentration was the same on both sides.
This suggested that the movement of Cl� and Hþ were coupled, and
systematic variations of both ions confirmed this. For variations in Cl�

concentration and pH, Eq. (13.40) predicted the reversal potential very
well, with the ratio of m/n set to �0.5 (assigning m to Hþ and n to Cl�)
(Fig. 13.8). This means that two Cl� ions move with each proton.

Performing an experiment with one ion symmetrically distrib-
uted simplifies things by making one of the Nernst potentials equal
to zero. Then �V follows the Nernst potential for the other ion, but
reduced by the factor n/(nþm) or m/(nþm). Recall that the Nernst
potential varies with the logarithm of the concentration ratio, with
a 58 mV change for a 10-fold change in concentration. If we make
the same plot for a countertransport protein, then the plot of �V
versus the logarithm of the concentration will still be linear but
with a lower slope. Figure 13.8 illustrates this behavior, and the
plots of the Nernst equation drawn in highlight the lower slope of
the experimental data. This analysis established that the bacterial
protein was not a Cl� channel, as originally surmised based on its
homology with vertebrate proteins known to be Cl� channels.
Additional experiments demonstrated directly that a gradient for
Cl� drives Hþ and a gradient for Hþ drives Cl�.

13.10 The Goldman–Hodgkin–Katz current
equation

So far we have focused on situations defined by a stable voltage
where no current flows. Now we ask what happens if a voltage is
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imposed on an ion permeable membrane. This will cause current to
flow and we would like to relate the magnitude of the current to the
properties of the membrane. We return to Eq. (13.18a), dispense
with the subscript for Naþ, and rearrange to give

IezF V=RT ¼ �zFD
dðce zF V=RTÞ

dx
(13:41)

As before, a steady state is assumed with constant current indepen-
dent of x. We can then integrate with respect to x from one side of
the membrane to the other. The integral on the right, like those
evaluated in going from Eq. (13.19) to (13.20), is easy because it is
already expressed as a derivative

� zFD

Zb

a

dðce zF V=RTÞ
dx

dx ¼ �zFDðcbezFVb =RT � caezF Va =RTÞ (13:42)
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It was already noted in the analysis of the Ussing flux equations
that in order to integrate an expression like that on the left-hand
side of Eq. (13.41), something must be known about the nature of
V(x) within the membrane. There is very little charge in the mem-
brane interior, so the Poisson equation (Eq. (11.2)) becomes approxi-
mately �2’(r) ¼0. For one dimension the solution is simply
’(x) ¼ Ex (where we ignore the irrelevant constant of integration).
The variable E is the electric field, and is constant. This allows us to
evaluate the integral arising from the left-hand side of Eq. (13.41)

Zb

a

ezFEx=RTdx ¼ RT

zFE
ðezFVb =RT � ezFVa =RTÞ (13:43)

With these two results, the integration of Eq. (13.41) is complete, so
the current can be written as the quotient of these two solved integrals

I ¼ � z2F2DE

RT

cbezF�V=RT � ca

ezF�V=RT � 1

� �
(13:44)

where ea
zF Va/RT was factored out and Vb �Va was replaced by �V.

Recall that D/� ¼ P and E� ¼�V (Section 13.4), so DE ¼ P�V, giving

I ¼ � z2F2P�V

RT

cbezF�V=RT � ca

ezF�V=RT � 1

� �
(13:45)

This is the Goldman–Hodgkin–Katz current equation. It gives cur-
rent versus voltage for a particular ion with different concentrations
on each side of the membrane. It is a big improvement over Ohm’s law,
which states a simple linear relation, I¼G�V (Eq. (13.16)). Equation
(13.45) is not linear for ca 6¼ cb. Figure 13.9 shows this for cb¼10ca.

Consider what happens with either large positive or negative
values of �V. For positive �V the exponential is so large it dominates,
and with the resulting cancellation Eq. (13.45) goes to a line with a
slope given by Eq. (13.16) with cb. For negative �V the exponential
becomes negligible and we get a slope from Eq. (13.16) with ca. Thus,

Current

Voltage

Fig: 13:9: Plot of Eq. (13.45)

with cb¼ 10ca. The dotted lines

represent the limiting slopes.
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Eq. (13.45) has two limiting slopes representing the extremes of beha-
vior when the charge flows entirely in one direction (dotted lines in
Fig. 13.9). By measuring these slopes, Eq. (13.45) can be used to deter-
mine the actual permeability of an ion. By contrast, measuring reversal
potentials and using the Goldman–Hodgkin–Katz voltage equation,
limits one to determining the ratios of permeabilities.

Like Eq. (13.32), Eq. (13.45) is often referred to as a constant-field
equation because in the derivation we used V(x) ¼ Ex, and set the
field as constant. This was justified by noting that the charge density
in the membrane is very low. However, there are a variety of forces
acting on an ion in a membrane, and we will soon see how such
forces can influence permeation (Section 13.13). Chapter 14 takes
up this topic in much greater detail.

13.11 Divalent ions

The Goldman–Hodgkin–Katz voltage equation (Eq. (13.32)) applies
only to monovalent ions. There is no place in this equation for an
ion with z 6¼ �1. Multivalent ions make solving for �V a bit more
difficult. The common general approach is to write down the
Goldman–Hodgkin–Katz current equation for all the ions including
divalents

X
i

z2
i F2Pi�V

RT

cbieziF�V=RT � cai

eziF�V=RT � 1

� �
¼ 0 (13:46)

One can then use a computer to obtain the root of this equation, �V,
for a particular set of permeability ratios (Adams et al., 1980).

Analytical solutions are also known. Here we will derive an
expression for the membrane potential for an arbitrary number of
monovalent cations, together with a single divalent cation. All of
the ionic currents are added together to give a total of zero

4F2Pdc�V

RT

cbdce2F�V=RT � cadc

e2F�V=RT � 1

� �
þ
X

i

F2Pi�V

RT

cbieF�V=RT � cai

eF�V=RT � 1

� �
¼ 0

(13:47)

The sum on the right contains terms of the form of Eq. (13.45),
where the index i indicates each monovalent cation; z ¼1 for each
term of this sum. The other term in Eq. (13.47) is Eq. (13.45) with
z ¼ 2. This represents the current of the divalent cation, denoted
by the subscript dc. Dividing through by common factors
(F2�V/RT), multiplying by e2F�V/RT�1, and noting that
e2F�V/RT� 1 ¼ (eF�V/RT� 1)(eF�V/RTþ1) gives

ðeF�V=RT þ 1Þ
X

i

Piðcbie
F�V=RT � caiÞ þ 4Pdcðcbdce2F�V=RT � cadcÞ ¼ 0

(13:48)
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This can be rewritten as a quadratic equation in eF�V/RT as follows

e2F�V=RT 4Pdccadc þ
X

i

Picai

 !
þ eF�V=RT

X
i

Piðcai � cbiÞ
 !

� 4Pdccbdc

�
X

i

Picbi ¼ 0 ð13:49Þ

We now use the quadratic formula, and take the positive root,3 as
follows

eF�V=RT ¼ �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

(13:50)

so �V ¼ RT

F
ln
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

 !
(13:51)

where a ¼ 4Pdccadc þ
X

i

Picai (13:52a)

b ¼
X

i

Piðcai � cbiÞ (13:52b)

c ¼ �4Pdccbdc �
X

i

Picbi (13:52c)

This expression for the membrane potential (Eq. (13.51)) is
referred to as the extended constant-field equation (Piek, 1975). It
depends on the constant field assumption used to derive the
Goldman–Hodgkin–Katz current equation. The derivation can be gen-
eralized to include anions and other divalents. This equation is most
often used in the analysis of Ca2þ permeability of ion channels, which
is especially important because of the signaling functions of Ca2þ.

13.12 Surface charge and membrane potentials

Surface potentials can have a strong impact on a membrane potential.
Fluxes are sensitive to the surface potential, so if the surface potential
affects the flux of different ions to different degrees, the reversal
potential will be altered. To understand this effect we combine the
results of this chapter with surface charge theory from Section 11.4.

To see a surface charge effect, we need two permeant ions with
different charge, so we take Eq. (13.32) for Kþ and Cl�

�V ¼ �RT

F
ln

PK½Kþ�b þ PCl½Cl��a
PK½Kþ�a þ PCl½Cl��b

� �
(13:53)

3 The quantity ac in Eq. (13.50) is negative as can be seen by examining Eqs. (13.52a) and

(13.52c), so the expression in the radical is >b2.
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Now add a surface potential ’0 to both surfaces. The Boltzmann
distribution gives the concentration of an ion at the membrane
surface, c0, as (Eq. (11.48))

c0 ¼ cð1Þe�zF’0=RT (13:54)

where zF/RT replaced e/kT to keep with the molar units of this chapter.
Normally, we calculate a reversal potential with the bulk concentra-
tion, c(1). But c0 is the concentration relevant to the flux across the
membrane, so it belongs in Eq. (13.53). This substitution gives

�V ¼ �RT

F
ln

PK½Kþ�be�F’0=RT þ PCl½Cl��aeF’0=RT

PK½Kþ�ae�F’0=RT þ PCl½Cl��beF’0=RT

� �
(13:55)

In effect, the permeabilities are multiplied by a surface potential
factor. If the permeability ratio in the absence of a surface potential
is RK/Cl ¼ PK/PCl, then the surface potential gives us a new effective
permeability ratio of RK=Cle

�2F’0=RT .
This apparent permeability ratio can differ from the true perme-

ability ratio by quite a bit. Surface potentials of �25 mV are com-
mon, so the surface potential factor in the permeability ratio,
RK=Cle

�2F’0=RT, is e�2’0=25 ¼ 1=e2 ¼ 0:135. Thus, by concentrating
ions of one sign and depleting ions of another, a surface potential
can alter the observed permeation properties of a membrane.
Surface potential effects have been evaluated for the acetylcholine
receptor channel, where increasing extracellular Ca2þ or Mg2þ

shifted the reversal potential in the positive direction (Lewis,
1979). The general impact of these effects has been emphasized by
Miedema (2002), who noted that the apparent selectivity of an ion
channel can be switched between cation selective and anion selec-
tive as a result of the surface potential.

13.13 Rate theory and membrane potentials

An ion’s flux actually depends on how its potential energy varies
inside the membrane. Up to this point, this fundamental relation
was sidestepped by simply assigning values for permeabilities and
deriving the membrane potential. The only mention so far of the
relation between ion flux and the potential energy inside the mem-
brane was the assumption of a constant field to derive the
Goldman–Hodgkin–Katz current equation (Eq. (13.45)). The idea of
a constant field can be justified with a simple electrostatics argu-
ment (Section 13.10). A quantitative treatment of the electrostatics
in an ion channel (Levitt, 1978a) and an analysis that includes the
distribution of ions (Jordan et al., 1989) show the approximation to
be good. However, the electric field across the membrane is not the
only force that affects ion movement. The drop in voltage across
the membrane must be added to other forces that act on an ion.
These other forces reflect the interaction between the ion and the
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membrane, which varies dramatically with position. In Chapter 14 we
will discuss these forces in detail, and we will make use of the method
employed here of relating an ion’s flux to its potential energy in a
membrane. However, here the analysis is motivated by an interest in
understanding how ion fluxes determined by these forces can contri-
bute to the membrane potential.

When an ion enters the hydrophobic interior of a lipid bilayer, the
potential energy will be very high because of the low dielectric constant
of the hydrocarbon chains of the lipids. An image force pulls ions out of
the membrane interior and into the water (Section 2.3). The potential
energy function is sketched in Fig. 13.10. The peak in the middle
represents the image potential, Umax. A voltage drop across the mem-
brane, �V, is then the difference between the far right and far left limits.

The high potential energy of an ion in the middle of the mem-
brane acts as a kinetic barrier to permeation. The rate theories of
Chapter 7 were based on barrier crossing, and one of these will now
be applied to the kinetics of ions moving through a membrane.

We start with the derivation of the Goldman–Hodgkin–Katz
current equation, and focus on the point just before introducing
the constant-field assumption. Without this assumption the inte-
gral in Eq. (13.43) must be evaluated in another way. Here, we will
evaluate the integral by treating the potential energy in the expo-
nential as a voltage drop added to a potential energy barrier. So we
add a term U(x) to zFV(x), where U represents the peaked function
sketched in Fig. 13.10. The current obtained as the ratio of two
integrals (Eq. (13.44)) now has in the denominator an integral over
the exponential of this energy function, instead of Eq. (13.43)

I ¼ �zFD
cbezF�V=RT � caRb

a
eðzFVðxÞþUðxÞÞ=RTdx

(13:56)

Since U(x) peaks in the middle of the membrane, we can try the
same technique used in Section 7.8, and approximate U(x) as
Umax �w(x � xmax)2. The voltage can still be taken as linear,
V(x) ¼ x�V. Now the integral in the denominator of Eq. (13.56) is

Umax

∆V 

Fig: 13:10: Potential energy for

the interaction between an ion

and a lipid bilayer.
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Z b

a

eð zFx�VþU max�wð x�xmaxÞ 2Þ= RT d x ¼ eð U max�wx max 
2Þ=RT

Z b

a

eð� wx 2 þð2 wx max þ zF �VÞ xÞ= RT d x

(13: 57)

Acco rding t o Fig. 13. 10 the energy should  be small  at  x ¼ a and  b,
so we can let the li m its o f t he integral go to �1 . Now  we  can use
Eq. ( A4.7 ) to give

¼ eð U max � wx max 
2Þ=RT eð2 wxmax þ zF �VÞ  2 = 4wRT

ffiffiffiffiffiffiffiffiffi
pRT

w

r
(13: 58)

Letting xmax ¼ 1/2 ( the maximum in U is at the center o f the mem-
brane) simpl ifies the exp ression to

¼ eU max = RT eð 2zF � V =þðzF �VÞ2 =wÞ=4 RT

ffiffiffiffiffiffiffiffiffi
p RT

w

r
(13: 59)

Finally, t he quadratic t erm ( zF �V ) 2 /(4wRT) is small and can be
ignored. Using Eq. (13.59) for the integral in t he d enominat o r o f
Eq. ( 13. 56) g ives the c urrent as

I ¼ �zFD

ffiffiffiffiffiffiffiffiffi
w

pRT

r
e�U max =RT e�zF �V = 2RTðcb e zF �V = RT � c aÞ (13: 60)

We can collect the v oltage and concentrat ion indep enden t factors
together and define a permeabil ity

P ¼
ffiffiffiffiffiffiffiffiffi
w

pRT

r
De�U max = RT (13: 61)

The c ur rent can now be expressed m or e s im ply

I ¼ �zFPðcb e zF � V=2 RT � c a e
�zF �V= 2RTÞ (13: 62)

This expression is zero at the Nernst potential for the ion (as
expected). Furthermore, taking a sum of monovalent ion currents
described by this equation, and setting this sum equal to zero leads
to Eq. (13 .32 ) (see Problem 12). Equation (13 .62 ) is plotted  in  Fig.  13.11,

Current

Voltage

Eq. (13.62)

Eq. (13.45)

Fig: 13:11: The current–voltage

curve derived from rate theory

(Eq. (13.62)) is compared with the

Goldman–Hodgkin–Katz current

equation (Eq. (13.45)). Both have

ca¼ 10cb. Note that both cross

the zero current axis at the

same voltage.
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along with the Goldman–Hodgkin–Katz current equation (Eq. (13 .45 )).
The plot becomes steeper as the driving force becomes stronger
in either the positive or negative direction. This is an important
hallmark of a kinetic process involving an energy barrier, and
this will be examined in greater depth in the next chapter. It is
actually quite common for current–voltage plots to deviate from
the predictions of Eq. ( 13.45), and more complex permeation
mechanisms involving energy barriers are invoked to explain such
behavior.

Problems for Chapter 13

1. Derive the Donnan potential for Nw where the impermeant spe-
cies is polycationic. Show that the result is equal to that in
Eq. (13.11) for polyanions, but opposite in sign.

2. Derive the Nernst equation from the flux equation (Eq. (13.12)) by
assuming that at equilibrium the flux is zero.

3. Use the Goldman–Hodgkin–Katz current equation (Eq. (13.45)) to
derive the Goldman–Hodgkin–Katz voltage equation (Eq. (13.32)).

4. Extend the derivation of Eq. (13.21) to obtain a more general
expression that includes any number of monovalent cations.
Write the corresponding equation for anions. Compare these
two equations with Eq. (13.32).

5. For the situation with NaCl on one side of a membrane and KCl
on the other, at equal concentrations, use Eq. (13.33 ) to solve for
the permeability ratio in terms of the ‘‘bionic potential’’ that
prevails when only cations are permeant.

6. Equation (13.45) does not give zero current at � V¼ 0 when ca 6¼ cb

(Fig. 13.10). What is the current at �V¼ 0?
7. Derive the Nernst equation from Eq. (13.45) by setting I¼ 0.
8. Equation (13.16) was derived with the assumption of zero

concentration gradient. This result is sometimes extended to a
membrane with a concentration gradient by writing Ii¼ Gi(�V�Ei),
where Ei is the Nernst potential for ion i. What is the major
qualitative difference between this equation and the
Goldman–Hodgkin–Katz current equation (Eq. (13.45)).

9. With the current equation from Problem 8 (Ii¼ Gi (� V�Ei)) derive
a general expression for the zero-current membrane potential in
terms of Gi and Ei.

10 . Derive Eq. (13.55 ) for two monovalent cations and show that
surface potentials are irrelevant in this case.

11 . Extend Eq. (13.55) to the case of unequal surface potentials on the
different faces of the membrane (Miedema, 2002).

12. Derive Eq. (13.32) from Eq. (13.62).
13. Derive the counterpart to Eq. (13.40) for cotransport of m cations

and n anions, i.e. transport of both ions in the same direction
across the membrane.
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14. The neuronal glutamate transporter transports 3 Naþ, 1 Hþ, and
1 glutamate� into a cell in exchange for 1 Kþ out (Zerangue and
Kavanaugh, 1996). Derive the equilibrium potential for this
transporter as a function of concentrations of these ions. Then
express the result in terms of the four relevant Nernst
potentials.
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Chapter 14

Ion permeation and channel
structure

Pure lipid bilayers have extremely low permeabilities to inorganic
ions. Adding proteinaceous ion channels can increase the perme-
ability by a factor of more than 108, allowing ions to flow across
membranes and produce rapid changes in voltage. One can draw a
strong analogy with enzymes. Both ion flow and the chemical
reaction catalyzed by an enzyme have a favorable free energy that
enables each to proceed in the absence of its respective catalyst,
but at a very slow rate. Ion channels and enzymes both enhance
these rates dramatically, and this enhancement is highly specific.
In the case of an enzyme, small differences in the structure of a
substrate can make a huge difference in catalytic efficiency.
Likewise, ion channels can discriminate very effectively between
different ions.

At first glance, an ion channel appears to have an easier task
than an enzyme. It simply forms a water-filled pore so that ions
see a continuous aqueous path through the membrane. However, a
simple aqueous pore will not be specific for one particular ion.
The diameter of Kþ is 1.33 ¯ and the diameter of Naþ is 0.95 ¯.
Although this difference is small, some channels show selectivities
between Naþ and Kþ of more than 1000. Understanding this specifi-
city is the real challenge in the study of ion channel permeation. Ion
permeation depends not just on the water filling the pore but also on
the detailed molecular structure of the protein that forms the
channel.

14.1 Permeation without channels

To gain an appreciation of how essential channels are to ion per-
meation, we first examine permeation (not necessarily of ions)
through a membrane when there are no channels. The earliest
insight into membrane permeation dates back to the nineteenth
century. The theory of Overton relates the permeability of a sub-
stance to its tendency to partition between water and hydrophobic
solvents. Since the interior of a membrane is hydrophobic,



hydrophobic substances partition into the oily interior of a mem-
brane and cross more easily.

To develop this idea we make use of the partition coefficient, �,
which is the ratio of concentrations of a dissolved substance in
water and a hydrophobic solvent, when the two solvents are in
contact and at equilibrium. Taking these concentrations as cw and
ch, respectively, we have

� ¼ ch

cw
(14:1)

Partition coefficients such as these allow one to estimate the free
energy of transfer of a substance between the two environments.
This was used to quantitate the hydrophobic effect (Section 2.8). If a
solute dissolves in water and then equilibrates at each face of a
membrane, then a concentration gradient between the two aqueous
solutions will produce a proportional gradient inside the membrane
between its two surfaces. Equation (14.1) thus implies that a concen-
tration difference within the membrane is proportional to the differ-
ence in the two aqueous concentrations; �cm¼ ��cw. If the flux
through the membrane is proportional to the internal driving
force, �cm, then the flux will be proportional to ��cw.

Thus, a membrane’s permeability to a substance is directly
related to the substance’s partition coefficient. Experiments have
confirmed this relation for organic molecules. To take into account
a molecule’s mobility, a diffusion coefficient, D, can be factored in.
For 16 substances a log–log plot of �D versus permeability is linear
over a six-order of magnitude range, and the slope is close to one
(Finkelstein, 1987).

Inorganic ions generally have extremely low values of �; they are
essentially insoluble in hydrophobic solvents. Thus, we can account
for the low permeability of inorganic ions through lipid bilayer
membranes within the framework of Overton’s simple theory.
The free energy difference of an ion in water versus the membrane
interior is accounted for through the self energy and the difference
in dielectric constant (Section 2.2). A calculation of the image force
gives the following result for the work necessary to move a charge
from water, with its high dielectric constant of "w� 80 to the middle
of a membrane, where the dielectric constant is much lower, "h � 2
(Eq. (2.6); see Fig. 2.3a)

�G ¼ q2

2a

1

"h
� 1

"w

� �
� q2

"hl
ln

2"w

"w þ "h

� �
(14:2)

where l is the thickness of the membrane, a is the radius of the ion,
and q is the charge.

The variable �G in Eq. (14.2) is the height of an energy barrier
seen by an ion as it crosses the membrane. If we envision the flux of
the ion through a membrane as a barrier crossing process, then the
rate will be proportional to an exponential factor (Chapter 7)

J / e��G=KT (14:3)
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Anything that reduces �G will increase the flux across the membrane.
This theory makes two clear predictions: (1) for ions of the same

charge, the larger ones cross the membrane more rapidly (by reducing
the first term of Eq. (14.2)); and (2) thinner membranes are easier to
cross than thicker membranes (by making the second term more
negative).

Both of these predictions are testable. The first prediction was
confirmed by the demonstration that large organic ions such as
tetraphenylphosphonium, tetraphenylboron, and dipicrylamine
cross much more rapidly than small inorganic ions. These are all
monovalent ions with effective radii several times larger than those
of monovalent inorganic ions such as Naþ and Cl�.

The second prediction of how flux changes with membrane
thickness has also been tested. The thickness of an artificial bilayer
membrane can be varied by forming membranes from lipids with
different chain lengths. Furthermore, for reasons that are not clear,
when the lipids are dissolved in alkanes with longer chains, the
bilayers formed from these solutions are thicker. The thickness was
determined by measuring the capacitance, which is inversely pro-
portional to thickness. In studies of the large organic cation dipi-
crylamine, the barrier-crossing rate was measured from current
relaxation experiments. A plot of rate versus thickness agreed
well with Eqs. (14.2) and (14.3) (Fig. 14.1).

These experiments illustrate the electrostatic nature of the bar-
rier to ion flux across the hydrophobic core of a membrane. As the
radius of the ion gets smaller, the first term of Eq. (14.2) becomes
very large; so the major biological ions such as Naþ, Kþ, Cl�, and
Ca2þ see insurmountable energy barriers. One essential function of
ion channels is to reduce this energy.
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14.2 The Ohmic channel

If a channel eliminates the image force then we might expect its
aqueous lumen to perform like a piece of bulk electrolyte scaled
down to the molecular dimensions of the channel. The bulk electrical
resistivity of physiological saline, denoted as �, is typically about 100
�-cm. So a 1-cm cube has a resistance of 100 � for a voltage applied to
two opposing faces. Whittling this cube down to the size of an ion
channel would give a resistance proportional to the length, l, and
inversely proportional to the area, A. This scaling gives a single-
channel conductance of

� ¼ A

�l
(14:4)

where � denotes the single-channel conductance and is expressed in
units of Siemens (S ¼Ohm�1). When referring to membrane con-
ductance, the symbol G is used. In comparing these two quantities,
G varies quite a bit because it scales with cell size and membrane
area. By contrast, � is a molecular property that tells us something
about a channel’s structure.

Take a cylindrical channel, with a length equal to the thickness
of the membrane, and an area A¼pr2 (Fig. 14.2). This Ohmic channel
is considered the most elementary model for an ion channel (Hille,
1991). Aside from ignoring the image force, this model assumes
macroscopic behavior in a structure with microscopic dimensions.
As a channel gets smaller, the water and ions interact with the
channel walls, so bulk electrolyte properties become irrelevant.
Both the image force and the microscopic factors become more
important as channels get narrower. So Eq. (14.4) provides a test for
both of these conditions.

When we know something about a channel’s structure, we
can estimate the conductance with Eq. (14.4) and then compare
with experiments. Table 14.1 shows the results for two very large
channels (the bacterial mechanosensitive channels MscL and MscS)
and two intermediate sized channels (the acetylcholine receptor
and gramicidin A). The smallest channels are not included because
for them the Ohmic channel model is meaningless.

Comparing the theoretical and experimental conductances in
Table 14.1 shows a clear trend. The larger the channel, the better the
agreement with Eq. (14.4). This means that larger channels have
more macroscopic character and weaker image forces. Bearing in
mind that a water molecule is about 2.5 ¯ long, the larger channels
are wide enough for several water molecules to fit side by side. So
macroscopic behavior is not surprising for these channels. On the
other hand, a water molecule inside an intermediate channel is
likely to be in contact with the channel walls, and will behave

r

l 

Fig: 14:2: A cylinder of

electrolyte as the simplest model

of an ion channel.
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differently from bulk water. For these channels the conductance
was �10-fold below the prediction of Eq. (14.4).

The smallest channels constitute a distinct class that was
omitted from Table 14.1. Structural studies indicate that they have
diameters of �3 ¯. These channels have very high selectivity, and
the conductance varies enormously depending on which ions are
available in solution. Indeed, one such channel, aquaporin, only lets
water through; ions of either sign are excluded and the conductance
is several orders of magnitude lower than predicted by Eq. (14.4).
Small channels are also sometimes referred to as ‘‘single-file
channels’’ (Latorre et al., 1992) for reasons that will become clear
later in this chapter. Although the Ohmic channel only gives reason-
able numbers for the largest channels, it serves as a useful gauge for
the breakdown in microscopic character of intermediate and small
channels.

14.3 Energy barriers and channel properties

Energy barriers such as the image force become a major factor as ion
channels get smaller. Information about a channel’s energy barrier
can be gained by studying how the current varies with voltage.
Naturally, the Ohmic channel obeys Ohm’s law and produces current
that is a linear function of voltage. A barrier changes that and pro-
duces nonlinear behavior. In Section 13.13 a relevant problem of
diffusion over a membrane barrier was solved, giving Eq. (13.62) (a
review of this section is recommended). For the same concentration, c,
of salt on each side, this equation simplifies to

I ¼ zFcPðezF�V=2RT � e�zF�V=2RTÞ ¼ 2zFcPsinh
zF�V

2RT

� �
(14:5)

where P is the permeability. The minus sign can be dropped because
we no longer need to keep the ionic gradients in view. Now a
positive voltage produces a positive current.

Table 14.1. Structural parameters and conductances for various channels

Channel A (¯2) l(¯)
Theoretical �th
(nS) from Eq. (14.4)

Experimental �exp (nS)
([KCl] (M))

�exp
�th

MscLa 707 40 4.4 2.5 (0.2) 0.57

MscSb 95 15 1.6 0.6 (0.2) 0.37

Acetylcholine receptor c 28 6 0.59 0.08 (0.1) 0.14
Gramicidind 19 26 0.45 0.014 (0.1) 0.031

Conductance units: 1 nS¼ 10�9 S.
a Sukharev et al., 1997, 2001.
bBass et al., 2002; Sukharev et al., 1997.
cO’Mara et al., 2003; Imoto et al., 1988.
dWallace, 1990; Andersen, 1983.
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This current–voltage relation is plotted in Fig. 14.3a. The con-
ductance is the derivative of Eq. (14.5), and is proportional to
cosh zF�V=2RTð Þ (Fig. 14.3b). This nonlinear shape is a direct conse-
quence of the exponential dependence of the rate of barrier cross-
ing on barrier height. Experimental current–voltage plots that
resemble Fig. 14.3a are used to infer the existence of a barrier
(Hall et al., 1973).

When a current–voltage plot has the kind of nonlinearity shown
in Fig. 14.3a, we can be reasonably sure that permeation entails
surmounting an energy barrier that lies within the membrane field.
We can sometimes learn a bit more, but most of the details about
the barrier are absorbed into the integral in the denominator of
Eq. (13.56). The barrier height thus has no direct influence on the
shape of the voltage dependence. One might expect a smaller bar-
rier to make the nonlinearity weaker. But as the barrier becomes
small, the approximations used to derive this result lose their
validity. When the barrier is small enough to ignore, the derivation
leads to the Goldman–Hodgkin–Katz current equation (Eq. (13.45)).
With the same salt concentrations on each side, this equation is
linear.

Conductance(b)

–4 –2 0 2 4
Voltage

Current

Voltage
–  4

(a)

–  2 0 2 4

Fig: 14:3: (a) Current versus

voltage according to Eq. (14.5).

The units of voltage are zF/2RT.

(b) Conductance versus voltage

(derivative of Eq. (14.5)).
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One aspect of the barrier that produces an experimentally obser-
vable result is its position relative to the middle of the membrane. If
a barrier is off-center, the current–voltage plot becomes asymmetric.
Equation (14.5) serves as a starting point to understand this relation.
Since the derivation of this equation in Section 13.13 absorbed the
exponential term e�Umax=RT into the permeability, we can put this
term back to give

I ¼ zFcP 0
�

e
�UmaxþzF�V=2

RT �e
�Umax�zF�V=2

RT

�
(14:6)

where P 0 ¼ PeUmax=RT. In this form we see that the positive exponential
is the rate of crossing in the positive direction, and the barrier seen by
the ion is Umax� zF�V/2. The negative exponential is the rate in the
opposite direction, and this barrier is Umaxþ zF�V/2. This equation
thus has the form of a linear free energy relation (Section 7.4). In
Eq. (14.6) the barrier is exactly in the middle of the membrane, so half
the voltage difference is added to the barrier height for one direction
of flux and subtracted for the other. Extending the logic of a linear
free energy relation to the present situation, we assign the fraction of
a voltage drop, �, to the position corresponding to the top of the
barrier

I ¼ zFcP0 eð�UmaxþzF��VÞ=RT � eð�Umax�zFð1��Þ�VÞ=RT
� �

(14:7)

where � ranges from 0 to 1, and when it is 0.5, we revert back to
Eq. (14.6).

Now that the analogy with the linear free energy relation has
been made, we can reabsorb e�Umax=RT back into P to put the equation
into the same form as Eq. (14.5)

I ¼ zFcP ezF��V=RT � e�zFð1��Þ�V=RT
� �

(14:8)

This equation gives asymmetric current–voltage plots when � 6¼ 1/2
(Fig. 14.4), and when this is observed experimentally, it can tell us
the approximate position of the barrier.

Asymmetry in current–voltage plots as shown in Fig. 14.4 is
referred to as rectification. In electronics, a rectifier is a device that
passes current only in one direction. Channels with off-center barriers
approach this behavior. This is a common property in semiconductors
and serves as the starting point in the development of transistors, but
semiconductor rectification arises through a fundamentally different
physical mechanism. Rectification is a very common property in bio-
logical membranes, although the most common cause is voltage-
dependent gating (Section 1.8) rather than barrier position. Blockade
by ions binding to one side of the channel can give rise to asymmetric
current-voltage plots as well (see Chapter 18 of Hille, 1991). When
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these alternatives can be ruled out, then rectification is likely to reflect
an asymmetrically situated barrier.

14.4 Eisenman selectivity sequences

So far nothing has been said about how channels select between
different ions. There are two basic levels of selectivity. A coarse form
discriminates charge, with channels preferring either cations or
anions. For example, gramicidin and the acetylcholine receptor
form channels selective for cations and the GABAA and glycine
receptors form channels selective for anions. These channels
show a weak preference between monovalent ions of the same
charge. Charge selectivity is accomplished by fixed charges within
the channel, or by dipoles oriented to favor one charge or the other.
The second level of selectivity discriminates different ions with the
same charge. Explaining this form of selectivity is comparatively
difficult and involves more complicated interactions. We will now
develop one of the earliest theories that attempted to explain this
important property.

A popular way to classify higher order selectivity is to measure
the permeabilities of several related ions and rank them in a
sequence. The five commonly studied monovalent cations Liþ,
Naþ, Kþ, Rbþ, and Csþ can be combined into a total of 5! ¼120
possible sequences. However, in practice only 11 sequences are
observed (Eisenman and Horn, 1983). Eisenman developed a simple
explanation for the pattern of observed sequences. Although the
physical model it is based on is not very sophisticated, it provides
some useful qualitative insights into how channels can preferen-
tially pass different ions.

The Eisenman theory begins by assuming that permeation is
controlled by a selectivity filter, which is here envisioned as a site
within the channel with a charge opposite to that of the permeating
ions. The energy of an ion’s interaction with this site determines the

Current
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δ = 0.15 0.3 0.5Fig: 14:4: Plots of Eq. (14.8) for

the indicated values of �, with

voltage in units of zF/RT.
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flux of that ion. The Coulomb potential (Eq. (2.1)) gives that inter-
action energy, Esite, for the distance of closest approach

Esite ¼
qsiteqion

"ðrsite þ rionÞ
(14:9)

where r represents radius and q represents charge, with the sub-
scripts indicating the site or ion. Add to this a hydration energy, Ehyd

(which we note also depends on the ionic radius, Section 2.2), and
take this sum as the energy change for moving an ion from the bulk
water to the selectivity filter

�E ¼ Ehyd � Esite ¼ Ehyd �
qsiteqion

"ðrsite þ rionÞ
(14:10)

Since the flux will be proportional to e��E/RT, permeabilities
for different ions should follow the inverse of the �E sequence.
Figure 14.5 shows how �E for each ion varies with rsite. The depend-
ences vary so that at different values of rsite the energies will fall into
a different sequence. A selectivity sequence is defined by the order
of energies along a vertical line for a particular value of rsite.

Each plot in Fig. 14.5 crosses every other plot only once. Each
crossing exchanges two ions in their rank order of energy. The total
number of crossings is 10 (this is fixed by topology), so the total
number of sequences is 11. It is remarkable that the 11 experimentally
observed sequences were generated by varying a single channel-
specific parameter, rsite. This represents a striking success for the
theory. Similar agreement has been found for anion selective channels
(Eisenman and Horn, 1983).

Figure 14.5 makes some useful points about how channels work.
The right-most sequence represents the case where the interaction
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between the ion and the channel is small and the hydration
energies dominate. Hydration energies fall in the sequence
Liþ>Naþ>Kþ>Rbþ>Csþ, with the smaller ions being the most
difficult to dehydrate. Thus, when a selectivity sequence is the
inverse of the hydration energy sequence, the implication is that
the electrostatic interactions between the channel and the ion are
less important and the primary obstacle to permeation is dehydra-
tion. On the other hand, when electrostatic interactions with the
channel dominate, the smaller ions, which can get closer to the site,
will be favored. This corresponds to the sequence on the left side of
Fig. 14.5. The intermediate sequences reflect the interplay between
these two forces.

There is no doubt that the physical model of the Eisenman
theory is an oversimplification. Interactions between ions and chan-
nels are more complicated, and deeper examination of these inter-
actions will occupy much of this chapter. A paradox in the theory is
that dehydrating an ion requires a great deal of energy, which
means that the ion must interact very strongly with the channel.
Yet the theory gives the sequence as the inverse of the hydration
energies only when the term representing interactions with the
selectivity filter is small (large rsite in Eq. (14.10)).

Nevertheless, the generation of the correct selectivity sequences
indicates that this simple picture has an important message. In general,
ion permeation reflects a balance between a number of large energies.
When two of these energies vary monotonically with ionic radius, the
crossovers generate 11 sequences for 5 ions. The hydration and electro-
static interactions of the Eisenman theory are just two such contribu-
tions, and the sections that follow will examine these and others.

14.5 Forces inside an ion channel

As discussed earlier, an ion in a channel is subject to a large image
force due to the low polarizability of the membrane compared with
that of water. The magnitude of this force increases as the channel
radius gets smaller, and this is a major factor in the breakdown of the
Ohmic channel model (Section 14.2). A theoretical calculation of this
force can be made using electrostatics, treating the water and mem-
brane as continuous media with different dielectric constants. This
sort of problem was discussed in Section 2.3. The potential energy is
obtained by solving the Laplace equation of electrostatics for an ion
positioned within the channel. In the simplest case, the channel is
assumed to be a cylindrical hole through a planar slab (Fig. 14.6).

This problem was first considered for an infinite cylinder
(Parsegian, 1969). For this case the energy difference between an
ion in bulk water and a channel takes the form

�E ¼ q2

2"hr
F

"h

"w

� �
(14:11)

εh
εw

r

l

Fig: 14:6: A cylindrical hole

containing water ("w¼ 80)

embedded in a hydrophobic

slab ("h¼ 2).
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where r is the radius of the channel, and F is a mathematical func-
tion that must be evaluated with a computer. For "w ¼80 and "h ¼2,
Eq. (14.11) works out to

�E ¼ 28:4

r
kcal mole�1 (14:12)

when r is in angströms. For r ¼3 ¯, we get 9.8 kcal mole�1 or 16 RT.
A barrier of this magnitude is far too high to allow ion flux to

occur at the rates observed for most channels. More realistic calcu-
lations performed on channels with a finite length indicated that
the energy is very sensitive to channel length and that for lengths
comparable to the thickness of a membrane the energy could be
reduced by a factor of 2 or 3 (Levitt, 1978a). With barrier heights so
sensitive to channel dimensions a critical test of the role of image
forces in ion permeation requires working with specific channels of
known structure.

Many ion channels bind ions. This cannot be explained by the
image force, which is purely repulsive. Thus, an additional attractive
force is necessary to draw ions into the channel. The attractive force
is often pictured as a short-range interaction between the ion and
pore-lining amino acids of the channel. Since it is short range it acts
on ions as soon as they enter and is roughly constant through the
length of the channel protein. Such an attractive force is drawn in
Fig. 14.7. When this attractive force is added to the image force,
potential energy wells, which can serve as ion binding sites, appear
at each end. The central energy barrier limits the rate of ion flux
through the channel. This turns out to be a generic feature of ion
channel potential energy profiles and a great deal of effort has gone
into the interpretation of permeation and conductance data in terms
of barriers and binding sites. A potential energy function with the
same features captures the essential elements of ion permeation in
gramicidin A channels (Section 14.6).

Rate theory provides a method for calculating the rate of ion
movement between the two energy wells of an ion channel
(Levitt, 1978b). We take Eq. (13.56) as the starting point, with U(x)
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Fig: 14:7: The image force and a

short-range attractive force sum

to give a potential energy function

with wells at each end. These

wells serve as ion binding sites (see

Levitt, 1978b).
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representing the summed energy of the ion interaction with the
channel and membrane (Fig. 14.7) and V(x) representing the mem-
brane potential

I ¼ �zFD
pbezF�V=RT � paRb

a
eðzFVðxÞþUðxÞÞ=RTdx

(14:13)

Here, the points a and b refer to the two energy minima on either
side of the channel, and pa and pb are the probabilities of an ion
being at those points. Taking symmetrical ionic conditions (pa ¼ pb)
and small voltage differences, we can expand the exponential in the
numerator as 1þ zF�V/RT. We then have

I ¼ �Dz2 F2�Vpa

RT

1Rb
a

eðzFVðxÞþUðxÞÞ=RTdx

(14:14)

The conductance of the channel varies with ion concentration.
We assume that at the concentration where the conductance is
maximal, the channel contains one ion. The probability of that
ion being at a position x is given by the Boltzmann distribution, so

pa ¼ e�ðzFVðaÞþUðaÞÞ=RT=
Rb
a

e�ðzFVðxÞþUðxÞÞ=RTdx. Offsetting the energy to

make it zero at x ¼ a makes the numerator equal to 1. Using this
expression for pa in Eq. (14.14) and dividing through by �V gives the
maximal conductance

�max ¼
Dz2 F2

RT

1Rb
a

eðzFVðxÞþUðxÞÞ=RTdx
Rb
a

e�ðzFVðxÞþUðxÞÞ=RTdx

(14:15)

Evaluating the integrals in Eq. (14.15) yields the maximum single-
channel conductance, providing a way to connect a theoretical
energy profile to a readily measurable quantity.

14.6 Gramicidin A

Gramicidin A is an antibiotic that forms a cation selective channel
in lipid bilayers. This 15-amino acid peptide has an unusual
composition of alternating D and L amino acids. Its small size
makes it amenable to structural studies (Wallace, 1990). The peptide
rolls up into an unusual barrel-shaped helix. Two such barrels
dimerize in a bilayer to form a channel �26 ¯ long and 4–5 ¯ in
diameter. With its structural simplicity, gramicidin provides an
important testing ground for physical models of ion permeation.

Studies with NMR have shown that cations bind at the ends of
the gramicidin channel (Tian and Cross, 1999). These sites fill as the
ion concentration is raised. The conductance reaches a maximum
when there is on average one ion in a channel, and as both sites start
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to fill the conductance begins to decline. The attractive interaction
that drives this binding is an example of the kind of interaction
depicted in Fig. 14.7. In gramicidin A, peptide backbone carbonyls
line the pore with the electronegative oxygen atoms facing inward.
These oxygen atoms attract cations and this attraction is invoked to
account for the selectivity of gramicidin for cations over anions
(Jordan, 1990; Roux et al., 2000; Kuyucak et al., 2001).

Analysis of realistic potential energy functions for gramicidin A
yielded a large central energy barrier and conductances a few orders of
magnitude below those observed, raising serious questions about the
energetics of ion permeation in this channel (Jordan, 1990, Kuyucak
et al., 2001). A large part of the difficulty arises from the sensitivity to
errors in two large opposing contributions. The image force is large
and repulsive and the ion–peptide interaction energy is large and
attractive. The small difference is especially sensitive to errors.

Although quantitative calculations of these energies have been
difficult, qualitative ideas about the ion selectivity of the gramicidin
channel are still instructive (Edwards et al., 2002). The energy from
the image force is proportional to z2 (Eq. (14.2)), where z is the valence
of the ion. The ion–dipole interaction energy is proportional to z
(Eq. (2.9)). Thus, we can express the energy barrier as a sum,
z2Uimþ zUdi, representing the image force and ion–dipole energies,
respectively. If we let Uim¼U and Udi¼�U, so they are approximately
equal in magnitude and opposite in sign, then for a monovalent cation
with z¼1, the barrier is z2U� zU¼0. Monovalent cations see no
energy barrier and thus permeate readily. On the other hand, for
monovalent anions z¼�1. The terms now add instead of subtract
to give 2U. This large energy accounts for gramicidin’s low anion
permeability. Finally, divalent cations are also impermeant, and this
reflects the dependence on z2. For a divalent cation, z¼ 2 and we have
z2U� zU¼ 2U. The image force thus wins out to produce a barrier that
is comparable to that seen by anions.

The difficulty in achieving quantitative agreement between
theory and experiment with gramicidin A has been examined in
depth (Edwards et al., 2002). Reproducing the observed conductance
and concentration dependence requires 8 kT energy wells at the
channel ends and a 5 kT barrier in the middle. Such an energy profile
cannot be obtained by adding a detailed ion-peptide potential
energy function and an image force. The problem arises from treating
the water in the gramicidin channel as a continuous medium.
Gramicidin contains �6 water molecules lined up end-to-end
(Finkelstein and Andersen, 1981). The polarization and orientation
of these water molecules is not a simple linear response to the field of
an ion, so quantitative calculations of ion interactions in gramicidin
A require using a molecular theory for the water. Recent progress
along those lines indicated that the linear arrangement of waters in
gramicidin A is surprisingly effective in stabilizing the ion within the
channel (Allen et al., 2004). This study developed a detailed potential
energy function, which when used in an equation closely related to
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Eq. (14.15) yielded a maximum conductance within a factor of 25 of
the experimental value.

14.7 Rate theory for multibarrier channels

Binding sites separated by an energy barrier are a generic feature of
the potential energy function of an ion in a channel (Fig. 14.7). These
basic features have been inferred again and again in studies of ion
permeation. We can thus envision ion movement within a channel
as a series of hops over barriers (Fig. 14.8). A voltage drop across the
membrane can then be superimposed to bias the jumps in one
direction or the other.

For now we will take a simple approach and assume that the
barriers and sites are all the same. Focusing on one barrier and the
two adjacent sites, the rate of crossing to the right is taken as � and
the rate of crossing to the left is taken as �. Rate theory gives these
rates as exponential functions of the barrier height

� ¼ !e�ðEþ
zF�V

2n Þ=RT (14:16a)

� ¼ !e�ðE�
zF�V

2n Þ=RT (14:16b)

Note that ! is a preexponential factor, which can be calculated from
the potential energy function around the minimum (Section 7.8),
but need not be written out here; and E is the height of the energy
barrier when �V ¼0. Figure 14.8 indicates that a fraction of the
voltage drop must be included in each energy barrier. The voltage
difference between two adjacent sites is given by �V/n, and the top
of the barrier is half way in between, so the voltage drop between a
site and an adjacent barrier is �V/2n. As in Section 14.3, this quan-
tity is added to the energy barrier for transitions to the right and
subtracted for transitions to the left.

The ion concentration on each side of the membrane is under
experimental control, but the probability of an ion occupying a site

p 1

pi

pi +1

p 2

pn

p 0
....

....
∆V 

∆V/ n

βαFig: 14:8: A series of energy

barriers and wells encountered by

an ion passing through a channel.

The variables � and � represent

the forward and reverse barrier

crossing rates. The voltage drop

across the membrane is �V and

the voltage drop across one barrier

is �V / n.
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within the channel is unknown and must be derived from the
model. We denote these probabilities as pi and use them to express
the net flux over a barrier as the difference in frequency of right-
ward and leftward transitions

Ji ¼ �pi � �piþ1

¼ !e�E=RTðpie
�zF�V=2nRT � piþ1ezF�V=2nRTÞ (14:17)

where the second step made use of Eqs. (14.16a) and (14.16b).
We take the system at steady state, so the pis are time independent.

That makes Ji the same for each barrier, so we can drop the subscript
and use the same J everywhere. For small voltage drops across the
barrier, F�V/n< RT, we can expand the exponentials

J ¼ !e�E=RT pi 1� zF�V

2nRT

� �
� piþ1 1þ zF�V

2nRT

� �� �

¼ !e�E=RT ðpi � piþ1Þ � ðpi þ piþ1Þ
zF�V

2nRT

� �
(14:18)

A simple result can be obtained for the case of equal concentration
on both sides of the membrane because pi and piþ 1 will then also be
equal. Multiplying J by zF to convert flux to current, and dividing by
�V gives the channel conductance

� ¼ ! zFpi

nRT
e�E=RT (14:19)

This result indicates that the conductance is inversely proportional
to the number of barriers. The barriers thus act like resistors in
series, with the resistance of each barrier summing to give the
resistance of the entire transmembrane pathway.

The above result was for small voltage changes where current
varies linearly. For larger voltages the expansion of the exponential
to get Eq. (14.18) is no longer valid; current ceases to be a linear
function of voltage when �V approaches nRT / zF. We saw earlier
how a single barrier model gives a highly nonlinear voltage depend-
ence (Fig. 14.3). Now we will explore this nonlinearity for a multi-
barrier model.

The procedure is to start from the left and write the flux over
each barrier. For the first barrier we use Eq. (14.17), with i ¼0

J ¼ � vca��p1 (14:20)

where vca replaces p0. The probability of being at the foot of the
first barrier at the channel entrance is proportional to ca, the bulk
concentration on that side. The variable v is a proportionality constant
with dimensions of volume. It can be envisioned as a small volume
element at the entry to the channel. Solving Eq. (14.20) for p1 gives

p1 ¼ � vca�
J

�
(14:21)

where � was introduced for �/�. Note that by Eqs. (14.16a) and
(14.16b) � ¼ e�zF�V / nRT.
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The flux over the second barrier is

J ¼ �p1 � �p2 (14:22)

As noted above, J is the same for each barrier due to steady state.
Solving for p2 gives

p2 ¼ �p1 �
J

�
(14:23)

Substituting Eq. (14.21) eliminates p1, as follows

p2 ¼ �2 vca�ð1þ �Þ
J

�
(14:24)

Repeating this process for the third barrier gives

p3 ¼ �3 vca�ð1þ �þ �2Þ J

�
(14:25)

The trend is now clear, so we can write the general result

pi ¼ �i vca�
J

�

Xi�1

j¼0

� j (14:26)

The sum on the right is a geometric series, which is easily evaluated
(Eq. (A1.9))

pi ¼ �i vca�
Jð�i � 1Þ
�ð�� 1Þ (14:27)

At the right side of the channel pn ¼ vcb (just as p0 = vca in
Eq. (14.20)). We then take the expression for pn from Eq. (14.27)
and equate it with vcb as follows

vcb ¼ �n vca�
Jð�n � 1Þ
�ð�� 1Þ (14:28)

This is solved for J. We then use � = ezF�V/nRT, �n = ezF�V / RT, and
Eq. (14.16b) to express �

J ¼ v!e
� E�ðzF�V=2nÞð Þ

RT
ðcaezF�V=RT � cbÞðezF�V=nRT � 1Þ

ezF�V=RT � 1
(14:29)

When ca ¼ cb ¼ c the result simplifies to

I ¼ zFv! ce�E=RTðezF�V=2nRT � e�zF�V=2nRTÞ ¼ zFv! ce�E=RT sinh
zF�V

2nRT

� �
(14:30)

where multiplication by zF converted flux to current.
Thus, we have a hyperbolic sine function like Eq. (14.5). When

n ¼1 this equation reverts to Eq. (14.5) for a single barrier, as it
should. Recall that the plot of Eq. (14.5) showed a steeply rising
conductance with voltage (Fig. 14.3). When there are n barriers
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instead of one, the nonlinearity becomes noticeable as �V
approaches 2nRT / zF rather than 2RT / zF. Thus, adding barriers
spreads out the current–voltage curve, pushing the nonlinearity
out to larger and less accessible voltages (Fig. 14.9a, b). This illus-
trates a fundamental relation between the energy profile for an ion
in a channel and the nonlinearity of the current–voltage plot. The
more barriers, the weaker the nonlinearity. Fig. 14.9 also illustrates
the point made above with Eq. (14.19a) that adding barriers reduces
the conductance.

The derivation here was for a channel with identical barriers but
it can be extended to nonidentical barriers, as will be seen in the
following section. A full treatment of barrier models by Läuger
(1973) illuminated many interesting properties of ion channels. In
addition to the nature of the nonlinearity in the current–voltage
plot, this study showed that when the barriers at the channel
entrances are larger than those within the channel, the nonlinearity
has the opposite form. The conductance decreases as the voltage
increases.

The multi-barrier model can also be used to derive the flux in
response to a concentration gradient and thus give us the channel
permeability. Start with Eq. (14.29), and let �V!0. The limit of

Current(a)

Voltage

n =  2

n =  3

n =1

420–4 –2

Fig: 14:9: (a) Current versus

voltage according to Eq. (14.30).

The units of voltage are zF / 2RT.

(b) The plots in (a) were scaled to

give equal slopes at �V¼ 0. This

highlights the nonlinearity.

Current
(scaled)

Voltage
420

(b)

–2– 4

n =  1

n  =  2

n  =  3
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the ratio ðezF�V=nRT�1Þ=ðezF�V=RT�1Þ in Eq. (14.29) is 1/n after taking
the first order expansions of the exponentials, so we end up with

J ¼ v!e�E=RT

n
ðca � cbÞ (14:31)

The permeability is the proportionality constant between J and
ca � cb

P ¼ v!e�E=RT

n
(14:32)

The conductance can also be obtained from Eq. (14.30). Let
�V!0 and multiply by zF to turn flux into current. The conduc-
tance is the proportionality constant between current and voltage

� ¼ v! cz2 F2e�E=RT

nRT
(14:33)

Comparing Eqs. (14.32) and (14.33) leads directly to a relation
between permeability and conductance identical to Eq. (13.17).

14.8 Single-ion channels

The Ohmic channel gives a conductance that is inversely proportional
to the medium resistivity, � (Eq. 14.4). The value of � decreases with
ion concentration and so the conductance will increase. However,
channels often reach a maximum conductance as the ion concentration
increases, and in fact many channels have an optimal concentration,
above which conductance starts to fall. Gramicidin A provided an
example of this behavior (Section 14.6). This is clearly inconsistent
with an Ohmic channel, but barrier models can explain it.

One way to incorporate saturation into a model is to assume that
only one ion can occupy the channel at a time. This is based on the
idea that electrostatic repulsion prevents ions of the same charge
from being near each other. Once one ion is in the channel, it keeps
others out. Clearly, this assumption is violated by gramicidin; ions
can occupy each end. But for some other channels the single-ion
assumption holds, and theoretical predictions of single-ion models
have proven useful in this assessment.

Here, a model for a single-ion channel will be developed for an
arbitrary collection of sites and barriers with different heights and
depths (Fig. 14.10). This makes the present analysis more general
than that of the preceding section, where all sites and barriers were
identical. This section will thus build on the preceding section both
with the single-ion occupancy assumption and the generalization to
heterogeneous structure.

The single-ion assumption is incorporated by modifying
Eq. (14.20). The flux over the first barrier, the rate of entry into the
channel, is reduced by the factor 1� p (Läuger, 1973), where p is the
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probability that an ion resides in any of the sites within the channel

ðp ¼
Pn�1

i ¼ 1 piÞ. Thus, the entry step can only occur when the channel

is empty

J ¼ �1vcað1� pÞ � �1p1 (14:34)

For the second barrier we have

J ¼ �2p1 � �2p2 (14:35)

The general expression for pi corresponding to Eq. (14.26) can be
developed by successive solutions for p1, p2, etc. The result is a more
general version of Eq. (14.26)

pi ¼ cavð1� pÞ
Yi

j ¼ 1

�j � J

Yi

j ¼ 2

�j

�1
þ

Yi

j¼ 3

�j

�2
þ � � � þ �i

�i�1
þ 1

�i

0
BBBB@

1
CCCCA (14:36)

where �i ¼�i/�i.
This daunting expression simplifies quite nicely when we use

rate theory

�i ¼ !e�ðEi �Wi�1Þ=RT (14:37a)

�i ¼ !e�ðEi �WiÞ=RT (14:37b)

The Es and Ws are as indicated in Fig. 14.10. Equations (14.37a)
and (14.37b) are generalizations of Eqs. (14.16a) and (14.16b). This
gives

�i ¼
�i

�i
¼ e�ðWi �Wi�1Þ=RT (14:38)

The barrier energies in these equations (the Es) have the form
Eþ �zF�V, where E is the energy in the absence of a membrane
potential and � is the fraction of membrane potential traversed to
reach the top of the barrier. The well energies depend on voltage in
the same way; Wþ �zF�V.

W1

W2

E1

E2

β1α1

W0

.........

Fig: 14:10: The first barrier has a

height, E1, and the first well has a

depth, W1. The rate for transitions

to the right across the first barrier is

�1, and the rate to the left is �1. The

model has a total of n barriers, each

with its own energy and rates.
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When the �s are multiplied together, the Ws in successive terms
cancel out. This gives a general expression for the products

Yi

k¼ j

�k ¼ e�ðWi �Wj�1Þ=RT (14:39)

With the energy on the left side of the channel taken as a reference
value of zero (W0¼ 0), use of these expressions simplifies Eq. (14.36) to

pi ¼ cavð1� pÞe�Wi=RT � Je�Wi=RT
Xi

j¼ 1

eWj=RT

�j

¼ cavð1� pÞe�Wi=RT � J

!
e�Wi=RT

Xi

j¼ 1

eEj=RT
(14:40)

where the second step made use of Eq. (14.37b) in the second term
on the right.

The flux over the last barrier on the right side of the channel is

J ¼ �npn�1 � �ncbvð1� pÞ (14:41)

Including 1� p here reflects the inability of an ion to enter an
occupied channel from the right side of the membrane. Equation
(14.41) is in a sense a mirror image of Eq. (14.34). Using Eq. (14.40) to
replace pn�1 in Eq. (14.41) and dividing through by �n gives

J

�n
¼ cavð1� pÞ�ne�Wn�1=RT � J

!
�ne�Wn�1=RT

Xn�1

j¼1

eEj=RT � cbvð1� pÞ (14:42)

This can be simplified by noting that �ne�Wn�1=RT ¼
e�ðWn�Wn�1Þ=RTe�wn�1=RT ¼ e�wn=RT. Here Wn reflects the energy after
the final barrier on the right side of the channel. It is thus the energy
of an ion that has passed through the membrane potential, or
�zF�V. Taking J / �n over to the right side, and using Eq. (14.37b)
for �n gives a result that can be recognized as an nth term to be
incorporated into the sum in Eq. (14.42). Now the sum extends to n
instead of n � 1, as follows

0 ¼ cavð1� pÞezF�V=RT � J

!
ezF�V=RT

Xn

j¼ 1

eEi=RT � cbvð1� pÞ (14:43)

Solving for J gives

J ¼ !vð1� pÞðca � cbe�zF�V=RTÞPn
j¼ 1

eEj=RT

(14:44)

Although something sensible is starting to take shape, it is not a
complete result yet because we do not know p. However, Eq. (14.44)
still provides an important insight into reversal potentials. Take two
permeant ions A and B, with fluxes JA and JB. At the reversal poten-
tial the two fluxes must add up to zero. When this is written out, the
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factor ! v(1 � p), which is the same for the two fluxes, can be dropped
to leave (Läuger, 1973)

cAa � cAbe �zF �V=RT

Pn
j ¼ 1

e E jA= RT

þ cBa � cBbe� zF �V= RT

Pn
j ¼ 1

eE jB= RT

¼ 0 (14:45)

This equation cannot be solved for �V because the barrier ener-
gies, the EjAs and E jBs, depend on voltage. Even if a linear depen-
dence of these energies on voltage is assumed, as in Fig. 14.8,
Eq. (14.45) cannot be solved for arbitrary barriers. Without solving
for the voltage, we can still see that if the concentrations of both
ions are multiplied by the same factor, this will not alter the value of
�V that satisfies this equation. The scaling factor for concentration
cancels out to leave the equation unchanged. The linear depend-
ence on concentration thus insures that the reversal potential is
independent of concentrations as long as they remain in a fixed
ratio. This statement is valid in spite of the fact that we cannot
explicitly solve for � V. Thus, Eq. (14.45) provides us with an important
and experimentally testable prediction that is demonstrated in
Fig. 14.11 below.

The Goldman–Hodgkin–Katz voltage equation (Eq. (13.32)) gave
the reversal potential in terms of concentrations and permeabilities,
but the permeabilities were taken as fixed quantities that do
not depend on voltage. In fact, if the sums in the denominator on
each side of Eq. (14.45) are assigned symbols corresponding to the
reciprocals of the permeabilities, and their voltage dependence is
ignored, the Goldman–Hodgkin–Katz equation can be derived
(Problem 3). Thus, these sums are effective permeabilities, even
though they depend on voltage. If concentrations are changed asym-
metrically, the reversal potential will change, but so will the perme-
ability ratio. This represents a clear departure from the classical
Goldman–Hodgkin–Katz theory of Chapter 13. There are many exam-
ples of channels showing this kind of behavior, and barrier models
have proven very useful in interpreting such results, providing
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Fig: 14:11: The permeability

ratio (PK / PNa) is independent of

concentration, and is equal to the

conductance ratio (GK / GNa) in the

limit of zero concentration. The

curve for GK / GNa is based on

Eq. (14.49) with K¼ 60 mM (from

Coronado et al., 1980).
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insight into the energy profile for an ion in a channel (Eisenman and
Horn, 1983).

The constancy of the reversal potential and permeability ratio
when all of the concentrations are scaled together can be contrasted
with other properties that change. In particular, the channel conduct-
ance varies with ion concentration, and the ratio of the conductances
of two different ions can change as the concentrations are scaled up
or down in parallel. Thus, the permeability, which is the coefficient
relating ion flux to the concentration gradient, shows fundamentally
different behavior from the conductance, which is the coefficient
relating ion flux to voltage.

To understand this different behavior of conductance ratios we
must pick up where we left off after Eq. (14.44), and derive an
expression for p, the probability that a channel is occupied. We
can get a reasonable picture of how p behaves by taking J ¼0 and
ca ¼ cb ¼ c. Equation (14.36) then simplifies to

pi ¼ vcð1� pÞ
Yi

j¼1

�j ¼ vcð1� pÞe�ðWi�W0Þ=RT (14:46)

where the second step made use of Eq. (14.38). Summing terms from
Eq. (14.46) gives p as

p ¼
Xn�1

i¼ 1

pi ¼ vcð1� pÞ
Xn�1

i¼ 1

e�Wi=RT (14:47)

where eW0=RT ¼ 1 because W0 ¼0. Now we can solve for p

p ¼
vc
Pn�1

i¼ 1
e�Wi=RT

1þ vc
Pn�1

i¼ 1
e�Wi=RT

(14:48)

This expresses the saturation of the channel with increasing ion
concentration. The value of p reaches a plateau as c exceeds

1= v
Pn�1

i¼1 e�Wi=RT
� �

. In fact,
Pn�1

i¼ 1 e�Wi=RT is actually a binding con-

stant, so we will call it 1/K. (The resemblance between this sum and
a partition function is significant.) Keep in mind as we continue that
K depends on the Wis, the energies of the wells in the channel
(Fig. 14.10).

We can now obtain the current by substituting p from Eq. (14.48)
into Eq. (14.44). Again, taking ca¼ cb¼ c, and multiplying by zF leads to

I ¼ zF!vcPn
j¼ 1

eEj=RT

1� e�zF�V=RT

1þ ðc=KÞ

� �
(14:49)

The concentration dependence has the standard single-site satura-
tion behavior discussed in Chapter 4. At low concentrations, c/K is
small and can be omitted from the denominator, to give

388 ION PERMEATION AND CHANNEL STRUCTURE



I ¼ zF!vcPn
j¼ 1

eEj=RT

ð1� e�zF�V=RTÞ (14:50)

Note that K, which depends on the energies of the wells, is absent.
Thus, at low concentrations I does not depend on the wells, only on
the barriers.

For small voltages we can take 1 � e�zF�V / RT �zF�V/RT. Equation
(14.50) then becomes

I ¼ z2F2!vc�V

RT
Pn
j¼1

eEj=RT

(14:51)

The conductance is the proportionality constant between I and �V.
A ratio of the conductances for two different ions would depend on
the sums in the denominator. These sums depend only on the
barriers, and not on the wells that form the binding sites. The
permeabilities (the denominator in Eq. (14.45)) have the same
dependence on barriers. Thus, the conductance ratios and perme-
ability ratios are equal at low ion concentrations.

As c increases, I reaches a limit where the channel is always
occupied. In this limit of large c and small �V, Eq. (14.49) becomes

I ¼ z2F2!vK�V

RT
Pn
j¼1

eEj=RT

(14:52)

Now the conductance depends on K, and thus on the Wis that
represent well energies. The situation at low concentrations was
very different (Eq. (14.50)). Symmetric increases in the concentrations
do not alter the permeabilities determined from the reversal potential
(Eq. (14.45)), but do change the conductances. This means that when
one measures the conductance of a series of ions, the ratios of these
conductances can vary. Indeed, the conductance sequence can be
switched by changing concentration.

These ideas have been nicely illustrated with a cation selective
channel of sarcoplasmic reticulum (Coronado et al., 1980). The
permeability ratio was measured from the reversal potential with
Naþ on one side and Kþ on the other. Single channel conductance
was measured for symmetrical Kþ and Naþ. The permeability ratio
PK/PNa was close to 2, and there was no change over a wide range of
concentrations (Fig. 14.11), as predicted by Eq. (14.45). The conductance
ratio went to the permeability ratio at low concentrations, as predicted
by Eq. (14.50). But at higher concentrations the conductance ratio
increased to about 3. Thus, the energy wells come into play as the
channel becomes saturated. The wells would appear to select Kþ to a
greater degree than the barriers, and so the conductance ratio is higher
than the permeability ratio.
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The single-channel conductance saturated as the concentrations
increased, and this behavior was similar to that of the conductance
ratio plotted in Fig. 14.11. This saturation behavior fits with the
basic assumption that no more than one ion can occupy the channel
at a time. Relatively few channels show this behavior, and most
channels hold more than one ion. It takes a different kind of model
to address this feature, and one important example is the single-file
model to be examined next.

14.9 Single-file channels

The term single file describes a class of models in which ions form a
linear chain through a channel that is so narrow that ions cannot
get past one another. Since one ion cannot move without forcing
others to move, they move together. If they do not move as a perfect
unit, then they move in a sequence of hops, with each ion moving
into a vacancy created when its neighboring ion moves. Single-file
models are especially well suited for highly selective channels that
have strong and specific ion binding sites.

The single-file model originated in a classical study by Hodgkin
and Keynes (1955). It is a remarkable outcome of recent structural
advances that the key features of the single-file model have been
verified. Hodgkin and Keynes examined Kþ flux in the squid axon
after blocking active transport. With the pumps shut down Kþ only
flowed down its electrochemical gradient. The inward and outward
fluxes were measured with isotope tracers to determine the Ussing
flux ratio (Section 13.6). According to this theory the unidirectional
flux ratio is given by (Eq. (13.27))

Jiða!bÞ
Jiðb!aÞ

¼ cia

cib
e�ziF�V=RT (14:53)

The flux data of Hodgkin and Keynes did not obey this relation.
Although the fluxes were still equal at the Nernst potential (where
the right-hand side of Eq. (14.53) equals one), Hodgkin and Keynes
found that to fit the rest of the data they had to raise the right side of
the equation to a higher power than one. The exponent they
obtained was 3.5. This result did not negate the basic premise of
passive transport, because the fluxes were balanced at the Nernst
potential. However, the derivation of the Ussing flux ratio was also
based on the assumption that inward and outward fluxes are inde-
pendent, so Hodgkin and Keynes sought to explain their result with
a theory in which inward and outward fluxes are strongly coupled.
This led to the single-file model.

Figure (14.12) shows a single-file channel filled with ions. There
are Kþ ions on both sides of the membrane. The ones on the left are
labeled A and the ones on the right are labeled B. A channel has
n sites that are occupied by either As or Bs. A sharp boundary
separates the As and Bs in the channel because a sequence of the

[A] [B]

AAA . . . . . . . . BBB

Fig: 14:12: A single-file channel.

Kþ ions are labeled ‘A’ on the left

and ‘B’ on the right.
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form ABA or BAB requires an ion to enter from a side where all of
the ions have the other label. This cannot happen because a radio-
active tracer is instantly diluted after it reaches the other side. So all
of the occupancy states of a single-file channel have the form
AA . . . AB . . . BB.

At this point a distinction is drawn between isotope tracer
fluxes, where the labels are key, and net ion flux or current,
where the labels do not matter. A tracer transfer event occurs
after there have been nþ1 more single-file hops in one direction
than in the other direction, but a charge transfer event occurs with
just one hop. We denote the rate of right and left charge transfer
events as r and s, respectively. The Nernst potential indicates that
these rates are in the ratio

r

s
¼ ½A�½B� e

�zF�V=RT (14:54)

This way r ¼ s when �V ¼ �RT

zF
ln
½B�
½A� (Eq. (13.3)).

Each charge movement event, or hop, shifts the single-file line of
ions in the channel by one position. If we start with a channel with
all n sites occupied by As, and denote this as species An, it will be
converted to a single-file line of the form An � 1 B with a rate s. The
reverse process occurs with a rate r. This specifies a differential
equation for the rate of change of [An]

d½An�
dt
¼ �s½An� þ r½An�1B� (14:55)

At steady state the rate of change is zero, so

r

s
¼ ½An�
½An�1B� (14:56)

The single-file complex [An�1B] can go to either [An] or [An�2B2], and
can be created from these species by the reverse processes. Thus, the
rate of change of [An�1B] is

d½An�1B�
dt

¼ �ðsþ rÞ½An�1B� þ r½An�2B2� þ s½An� (14:57)

Again with a steady state, we set this expression equal to zero,
rearrange, and make use of Eq. (14.56) to obtain

r

s

� �2
¼ ½An�
½An�2B2�

(14:58)

This can be continued for [An�2B2] and [An�3B3], etc., so we have a
general relation

r

s

� �j
¼ ½An�
½An� jBj�

(14:59)

Tracer flux events only occur from the states An and Bn.
Movement of an A into the solution on the right in Fig. 14.12 occurs
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with a rate r[An] and movement of a B into the solution on the
left occurs with a rate s[Bn]. Dividing these two gives the tracer
flux ratio as

Jiða!bÞ
Jiðb!aÞ

¼ r½An�
s½Bn�

¼ r

s

� �nþ 1
(14:60)

where the second step made use of Eq. (14.59) with j ¼ n. Combining
this with Eq. (14.54) gives the final result

Jiða!bÞ
Jiðb!aÞ

¼ ½A�
½B� e

�zF�V
RT

� �nþ 1

(14:61)

As noted above, Hodgkin and Keynes fitted this equation to their
experimental data on tracer flux and obtained an exponent of 3.5, so
n ¼2.5. They therefore concluded that the single-file line of Kþ ions
in the channel is 2–3 ions long.

A key feature of this model, the concerted hopping of all the ions
together, is not very realistic. A more plausible picture of single-file
movement has been developed with multiple barriers and sites.
When all but one of the sites are occupied, then there is a single
vacancy. As an ion hops to fill the vacancy, the vacancy appears to
move in the opposite direction. We can picture a single-vacancy
model, which might be described by very similar equations as the
single-ion model of the preceding section. The mapping of one of
these problems to the other has been formally carried out by
Schumaker and MacKinnon (1990), who showed how to obtain a
hyperbolic sine function for the current–voltage relation that is
essentially the same as that for a multi-barrier model (Eq. (14.30)).

Barrier models for single-file channels tend to be mathematically
complex because multiple ion occupancy creates a proliferation of
states. The kinetic equations can be solved with a computer or by the
general methods employed in Chapter 9. A number of experimental
observations are recovered from these models (Hille and Schwarz,
1978), including the exponential form for the flux ratio (Eq. (14.61)).
Single-file models also give rise to a conductance–concentration plot
with a peak above which conductance declines. This happens when
the concentration is so high that a vacancy reaching the edge of a
channel is filled more rapidly by ions from solution than from the
neighboring site. Additional predictions of single-file models include
steeply voltage-dependent block by certain impermeant ions and
steeply voltage-dependent changes in conductance. The observation
of similar properties in many different Kþ channels indicates that the
single-file mechanism is widespread.

There are a number of interesting examples of single-file behavior
in membrane transport. A single-file model explained how Ca2þ

channels exclude monovalent cations such as Naþ so effectively.
The sites in a Ca2þ channel bind Ca2þ with a high affinity; the
dissociation constant for filling the first site is �1mM and the other
sites are occupied at somewhat higher concentrations. Naþ can also
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bind these sites, but weakly. At physiological Ca2þ concentrations of
�1 mM, Ca2þ channels are always filled with Ca2þ, which blocks the
entry of monovalent cations. If by chance a Naþ enters, its lower
charge provides a relatively weak electrical push, which is insuffi-
cient to drive the neighboring Ca2þ ion into a deeper site and engage
the single-file mechanism. When a Ca2þ ion enters, its electrostatic
repulsion is stronger, and forces a single-file motion of other Ca2þ

ions. Reducing the Ca2þ concentration below �100mM leaves only
one of the sites occupied. Conduction requires multiple ion occu-
pancy so the current goes to zero. Further reduction of the Ca2þ

concentration below 1 mM empties out the last remaining Ca2þ from
the channel, at which point Naþ readily flows through. Thus, com-
plete removal of Ca2þ converts the Ca2þ channel into a channel that is
selective for Naþ (Almers and McCleskey, 1984; Hess and Tsien, 1984).

Single-file models have been applied to the gramicidin channel to
analyze the flux of water (Finkelstein and Andersen, 1981). The water
flux is coupled to the ion flux, and an analysis of this coupling
produced an estimate of the number of water molecules in the
channel as �6. Computer simulations confirmed the single-file nat-
ure of water and ion movement, showing that the ions and water
molecules never passed one another inside the gramicidin A channel
(Edwards et al., 2002). Ion flux measurements showed that for ion
concentrations below�100 mM (depending on choice of ion) the ions
flow through the channel one at a time, with no single-file character.
However, as the concentration is raised the flux ratio exceeds one,
indicating that both of the sites in Fig. 14.7 can be occupied. When
this happens, an ion at one site must wait for the other site to empty
before it can cross to the other side. Tracer flux then becomes a two-
ion event so the exponent in Eq. (14.61) exceeds one.

Another interesting example of single-file behavior was found
for the protein that transports the neurotransmitter serotonin
across the membrane (Adams and DeFelice, 2002). The flux of
labeled serotonin varied as unlabeled serotonin was added, indicating
that molecules of serotonin interact as they cross the membrane.
Additional experiments suggested that the serotonin transporter is a
channel filled with both inorganic ions and serotonin. Ion gradients
can thus drive serotonin across the membrane by pushing the serot-
onin in a single-file line. This is likely to be a common mechanism by
which electrochemical gradients are harnessed to drive diverse sub-
strates across membranes (DeFelice, 2004).

The various models discussed in this and the two preceding
sections have enjoyed considerable success in accounting for a
wide range of ion permeation phenomena. The barriers and binding
sites of these models represent real features of channels. But the
energies obtained as parameters by applying barrier models to
experimental data have a rather fictional character. They generally
cannot be related explicitly to the channel structure. The problem is
not in the models but in the paucity of structural information
available when the studies were carried out. Recent advances
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in channel structure have dramatically changed this situation, provi-
ding proof for many of the features inferred from barrier models. We
will now see how crystal structure has provided clear answers
to some long-standing questions about ion permeation and has
spawned a transition from barrier models to detailed computational
theories.

14.10 The KcsA channel

The first selective ion channel for which a high resolution structure
was determined was the KcsA Kþ channel (Doyle et al., 1998). The
sequence of this bacterial channel contains many features that are
almost universal in Kþ channels, so the insights derived from this
structure can be applied broadly.

The KcsA channel consists of four subunits coming together in a
clover-leaf arrangement to form an aqueous pore down the middle
(Fig. 14.13a). The pore is lined partly by a membrane spanning a-helix,
and partly by a sequence of five amino acids in an extended config-
uration (Fig. 14.13b). This threonine–valine–glycine–tyrosine–glycine

(a)

(b)

TV
G

Y
G

cavity

gate

extracellular

intracellular

Fig: 14:13: The KcsA Kþ channel

(backbone structures). (a) Looking

into the plane of the membrane

shows the four-fold symmetry of

the channel and its central pore.

(b) Viewed from the side (a plane

perpendicular to that in (a)), the

two major membrane spanning

helices of two opposing subunits

form the channel walls. The TVGYG

segment forms the selectivity filter

at the extracellular face. The cavity

in the center is filled with water.

The gate of the channel lies on the

intracellular face. Three ions are

present, two in the selectivity filter

and one at the interface between

the selectivity filter and the cavity

(Doyle et al., 1998).
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(TVGYG) sequence is a signature of Kþ channels. These segments from
the four subunits come together to form the selectivity filter, which is
shaped like a 3 ¯ wide pipe. A large water filled cavity lies between the
selectivity filter and the channel gate. The solved structure contained
three ions, and this represented a remarkable confirmation of the
single-file model just discussed. The selectivity filter thus forms the
physical substrate for the classical single-file mechanism.

Many of these structural features are tailored for ion permea-
tion. The peptide backbone carbonyls of the selectivity filter extend
into the channel to form a series of binding sites that fit Kþ ions with
remarkable precision. The large cavity provides a means for
hydrated ions to approach the selectivity filter at minimal energy
cost (Problem 5). A short a-helix connecting one of the membrane
spanning helices to the TVGYG segment is oriented so that its dipole
moment favors cation entry and retards anion entry (Roux and
MacKinnon, 1999; Fig. 2.12). Additional polar groups form dipoles
that favor cation entry. Some of these are acidic amino acids that
can form negative charges, but the state of ionization of these
residues has been difficult to establish.

The selectivity filter is at the heart of the permeation process. It
contains four binding sites, which fill with two ions as the ion
concentration is raised (Morais-Cabral et al., 2001). The ions distri-
bute roughly evenly among the four sites, suggesting that the two
occupancy states, Kþ–W–Kþ–W and W–Kþ–W–Kþ (where W is a
water molecule) are present in equal proportions. Ion flow can be
pictured as transitions between these two configurations. Using a
theoretical force field based on the channel structure, and evaluat-
ing the energies of various configurations, it was found that the
Kþ–W–Kþ–W and W–Kþ–W–Kþ configurations were the two most
stable occupancy states (¯qvist and Luzhkov, 2000). With roughly
equal energies, they interconvert easily. Molecular dynamics simu-
lations show that water–Kþ complexes hop in just a few nanose-
conds in a concerted transition together with a third Kþ in the cavity
(Berniche and Roux, 2000).

The various energetic contributions to permeation can be esti-
mated by distilling the key electrostatic features from the KcsA
structure (Fig. 14.14a; Chung et al., 1999). These include a low
dielectric region surrounding the water-filled pore, selectivity filter
dipoles, a-helix dipoles, and dipoles at the channel mouth on each
side. The shape of the channel determines the image force, which
can be calculated for this particular structure by extending
the methods discussed in Section 14.6. For a single ion moving
down the axis of the channel, this energy is plotted as trace a in
Fig. 14.14b. It reaches a peak of about 20 kT near the center of the
selectivity filter.

The selectivity filter dipoles (Fig. 14.14b, trace b) and helix
dipoles (trace c) together with the mouth dipoles attract ions into
the channel. These attractive forces overcome the image force so
that the summed energy profile has a deep minimum in the
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selectivity filter (trace d). With a depth of more than 25 kT a single
ion will be bound very tightly. If this were the whole story then
there would be very little permeation. An ion would enter the
selectivity filter and stay there for a long time.

However, more ions enter the channel. A second ion sees all the
forces that the first ion sees, as well as a direct repulsion arising
from the first ion. The second ion also sees the medium polarization
induced by the first ion, and this part is attractive. The result is the
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Fig: 14:14: Energetics of ion

permeation in the KcsA channel.
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two-ion trace in Fig. 14.14c. The second ion falls into an energy
minimum near the end of the selectivity filter close to the cavity.
Even a third ion is drawn into the channel, but now the attractive
forces are balanced by the repulsion from the first two ions. This
third ion sees two energy minima, both in the cavity.

To relate these energy plots to permeation, the computational
method of Brownian dynamics was used to simulate the movement
of ions in the channel (Chung et al., 1999; Kuyucek et al., 2001). This
method starts with the equations of motion for the ions in a three-
dimensional version of the force field plotted in Fig. 14.14. A ran-
dom fluctuating force is added to represent thermal collisions with
the surrounding medium. For a system with many ions, the force on
the ith ion generates an acceleration according to Newton’s equa-
tion of motion.

mi
dvi

dt
¼ fvi�rU þ �ðtÞ (14:62)

where rU is the force field that includes the interactions enumer-
ated above, and �(t) is the fluctuating random force reflecting ther-
mal activity. This is the Langevin equation (Eq. (12.96)) in the
presence of an external force.

A computer then solves these equations numerically by calculat-
ing the changes in positions for steps of 10�13 s. Trajectories are
run for several microseconds. When a potential difference across
the membrane is incorporated into the equation by modifying the
potential energy function (U in Eq. (14.62)), a significant number of
ions pass through the channel in the time computed so that the
basic permeation process is effectively simulated. This is important
because it permits detailed comparisons between theory and
experiment.

An analysis of the ion trajectories from these simulations illumi-
nated the basic nature of the permeation process (Chung et al., 2002).
Contrary to expectations, the rate-limiting step was not movement
through the selectivity filter. For Kþ ions moving to the right (out of a
cell), the slowest step was the crossing of the barrier within the cavity
in the three-ion trace of Fig. 14.14c. Once this third ion reaches the
entrance to the selectivity filter, the ion lodged in the opposite side of
the selectivity filter is rapidly expelled to the right by the electrostatic
repulsion. The other ion in the selectivity filter assumes the position
previously occupied by the expelled ion and the ion in the cavity
enters the selectivity filter. These steps are quite rapid compared to
the approach of ions through the cavity. This whole process repeats
itself to generate a single-file permeation process.

This indicates that understanding the actual permeation rate
requires a shift in attention from the selectivity filter to the cavity.
The height of the cavity energy barrier was found to be very sensi-
tive to the cavity radius, so that variations in this region produce
dramatic changes in the channel conductance. The many Kþ

channels found in nature have conductances running from about
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1 to 250 pS (10�12 S). Variations in cavity dimensions over a reason-
able range of 4–10 ¯ can account for this diversity.

It is notable that the selectivity of the channel and the magni-
tude of the current are controlled by two different parts of the
protein. The selectivity filter forms sites that bind Kþ preferentially
over Naþ, and this selectivity is destroyed by mutations in the
TVGYG motif. Nature cannot tamper with this region without sacri-
ficing selectivity, so instead the cavity is molded to achieve a wide
range of structures without affecting selectivity. Likewise, channel
opening and closing do not involve the selectivity filter. Instead,
gating is accomplished by movements at the other end of the cavity
toward the intracellular side of the membrane (Fig. 14.13b).

The secret of the ion selectivity of Kþ channels lies in the physi-
cal performance of the selectivity filter and its TVGYG motif. Two
contrasting physical pictures have been developed. On the one
hand, a very rigid structure can discriminate. When the oxygen
atoms of the backbone carbonyls are held in place, a 1.33¯ Kþ fits
perfectly into the sites of the selectivity filter (Garofoli and Jordan,
2003). Putting in a smaller 0.95¯ Naþ stretches these bonds. If the
structure is rigid then the stretching requires quite a bit of work
because the force constants of covalent bonds are strong. Recall that
stretching bonds by as little as 0.1¯ raises the energy by �kT
(Section 2.12). Conversely, the filter excludes a larger Csþ (1.69¯)
because that ion distorts bonds in the other direction.

A soft selectivity filter cannot discriminate by this mechanism,
because then the carbonyl bonds move to accommodate ions of
different size. Stretching is no longer necessary. Doubts about the
rigidity of this part of the channel motivated an effort to test another
mechanism for selectivity (Noskov et al., 2004). The carbonyl dipoles of
the filter that coordinate the permeating ions repel one another.
Binding an ion then involves the favorable ion–dipole interactions
and the unfavorable dipole–dipole interactions. For the geometry of
the Kþ channel’s selectivity filter, the interplay between these two
interactions gives a lower energy minimum for Kþ than for the smaller
Naþ. This theory explains selectivity in terms of the specifics of the
interactions between a permeating ion and the ligands within the
channel, much as the Eisenman theory did with a simple Coulombic
interaction (Section 14.4).

At the outset of this chapter a parallel was drawn between ion
channels and enzymes. It is thus interesting to compare the pro-
gress in quantitative theoretical modeling of ion channel permea-
tion with that of enzyme catalysis. One advantage of ion channels is
that ions get through very rapidly so that simulations only need to
be on the order of a microsecond. For most enzymes simulations of
�1000 times longer are needed to capture catalytic events. During
ion permeation, there are no chemical reactions. Covalent bonds
do not form and break. The standard types of potential energy
functions suffice to describe the trajectory of an ion. Modeling
enzyme catalysis requires quantitative representation of the forces
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that come into play as chemical bonds form, and potential energy
functions for these processes are not readily accessible (Section
10.10). Furthermore, the motions of the ions are not intimately
dependent on the motions of the protein, so Brownian dynamics
in a relatively static environment simulates ionic motions well. By
neglecting protein dynamics the equations are much simpler, so
computation is faster and simulations can run for times long
enough to generate an appreciable number of barrier crossings. In
enzymes the motions of the protein play an important role, and this
requires the method of molecular dynamics, which is computation-
ally much more demanding.

Problems for Chapter 14

1. Use the Ohmic channel model to calculate the conductance of the
selectivity filter with the dimensions indicated in Fig. 14.14.

2. Show that when all of the barriers in a single-ion channel
(Fig. 14.10) for two different ions differ by the same amount, �E,
the permeability ratio is e��E/RT (Coronado et al., 1980).

3. Assign permeabilities, PA and PB to the appropriate sums in
Eq. (14.45), ignore their voltage dependence, and derive the
Goldman–Hodgkin–Katz voltage equation (Eq. (13.22)).

4. Use the results from the single-ion channel model (Section 14.8) to
show that the ratio KP / �max is a constant independent of choice of
ion (P is permeability) (Coronado et al., 1980). For P use the relevant
sums in Eq. (14.45). Use Eq. (14.52) to derive �max.

5. Use Eq. (2.7) to calculate the energy of a Kþ ion at the center of the
water-filled cavity of the KcsA channel, assuming the cavity is
spherical with a radius of 5 ¯ (Roux and MacKinnon, 1999; Roux
et al., 2000).

6. Consider a channel with a single site at �¼ 1/2, and two barriers
with �¼1/2 �  , where  can range from 0 to 1/2. The site can be
empty or contain one ion. The energy barriers at zero voltage are
ART, the well is 0, and the preexponential factor is one. Derive the
current as a function of voltage and ion concentration. For sym-
metrical ions and low concentrations, plot the I–V curve for A¼ 10
and  ¼0.1, 0.25, and 0.4.

7. Consider a single barrier to ion flow across a membrane. At �V¼ 0
the peak is at the center of the membrane, and in the neighbor-
hood of the peak the barrier energy has the form E��(x� x0)2. Add
a linear voltage drop to this energy and determine the position
and height of the barrier for an arbitrary value of �V. The result is
a Marcus relation (Section 7.6). Write out the current–voltage
relation.

8. When n in Eq. (14.61) equals one, the model can no longer be
called single file because there is only one ion. Are the fluxes now
independent? Why does the flux ratio deviate from the Ussing
equation (Eq. (13.27))?
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Chapter 15

Cable theory

Cells can have very complex geometries, and when they do the
voltage can vary dramatically between different regions. If ionic
current flows through a restricted part of a cell’s membrane, then
the membrane potential at that location will change rapidly, but the
membrane potential at distant locations will change more slowly
and the change will be smaller. Voltage changes spreading through
a cell act as signals to change membrane properties and trigger
cellular events such as exocytosis and muscle contraction.
Electrical signaling allows the nervous system to control and orga-
nize behavior.

Electrical signals in cells fall into two general classes. If the
membrane conductance is independent of voltage, then the spread
of voltage is passive. This type of signal, also referred to as electro-
tonic, travels a limited distance. On the other hand, when voltage
alters the membrane conductance, then a voltage signal can regen-
erate itself and propagate without decrement over unlimited dis-
tances. This chapter will examine passive electrical signaling and
the following chapter will treat active propagation.

The study of passive voltage changes serves a number of pur-
poses. (1) Some biologically important voltage changes spread pas-
sively; passive spread is especially important when voltage changes
are small. (2) Passive voltage changes are of technical importance in
the design and interpretation of electrophysiological experiments.
(3) Passive signaling serves as a baseline from which one goes on to
study active propagation.

The principles of passive signaling derive from the basic rules of
electrical circuits. Voltage drives current through resistors. Current
flow changes the voltage by charging a capacitor. In cable theory
these processes are generalized to continuous geometries with cir-
cuit elements distributed through cell membranes and cytoplasm.
This generalization leads to the cable equation. For any particular
geometry of a cell, we can solve the cable equation to obtain
a description of the relevant passive voltage changes.



15.1 Current through membranes and cytoplasm

Ionic current flows through both membrane and cytoplasm. Current
through the membrane changes the voltage, and current through the
cytoplasm makes these voltage changes spread. The relative magni-
tudes of the membrane and cytoplasmic currents determine the
degree to which voltage spreads. To compare these two currents,
we need the resistances of equivalent pieces of membrane and cyto-
plasm. A sheet of biological membrane with area 1 cm2 has a resis-
tance of about 104 � (the resistance of a unit area is the membrane
resistivity, �m, with units of � cm2). A cube of cytoplasm of volume
1 cm3 has a resistance of about 100 � (this is the cytoplasmic resistivity,
�c with units of � cm). Scaling down the cube of cytoplasm to a unit
square sheet with the thickness of a membrane (�5�10�7 cm)
gives 5�10�5 �. Thus, cytoplasm conducts about eight orders of mag-
nitude better than cell membrane. This gives us a qualitative perspec-
tive on voltage spread in a cell. For a voltage difference between two
points, one inside a cell and one outside a cell, nearly the entire
voltage drop occurs across the membrane.

At this level of analysis, the voltage within a cell tends to be
uniform. If a cell is spherical, the resistance between any two points
on the inside is negligibly small compared to the resistance across
the cell membrane. The situation changes only when extreme geo-
metries provide very long cytoplasmic pathways. Then substantial
voltage gradients can occur in cytoplasm. This condition arises in
cells with long, thin, fiber-like extensions.

Since spatial variations in voltage within a cell require fiber-like
processes, we use a cylindrical cable with a radius of a as our basic
geometric model (Fig. 15.1). In this model the cytoplasmic current
flows almost entirely along the cylindrical axis. This axial current is
denoted as ia. The current that traverses the membrane is denoted as im.

We can now estimate the relative resistances of these two path-
ways in the context of the cable illustrated in Fig. 15.1. The resis-
tances to axial and transverse current are defined in terms of axial
and transverse resistivities, ra and rm, of a unit length of cable. The
axial resistivity is �c divided by the cross-sectional area

ra ¼
�c

pa2
(15:1)

It has units of � cm�1 so multiplying by the length gives the resis-
tance to current flow in the axial direction of a specified length of
cable.

ia

im

cytoplasm

membrane

a

Fig: 15:1: Current flows axially

down the core of a cable through

the cytoplasm, and transversely

across the membrane.
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The transverse resistivity is �m divided by the membrane
circumference

rm ¼
�m

2pa
(15:2)

The units here are � cm, so we divide by length to get the resistance
of a segment of cable to current flow across the membrane. Each of
these quantities decreases with radius; rm / 1/a, and ra / 1/a2. So as
a increases the axial resistance goes down more rapidly than the
transverse resistance. As a result, voltage spreads further in wider
cables. The ratio of ra to rm is the natural variable with which to
evaluate voltage nonuniformity. This ratio is generally low, so that
voltage can spread quite far in the axial direction.

It is also instructive to compare the time scale for the relaxation
of a spatial voltage gradient within cytoplasm versus relaxation of a
voltage difference across a membrane. For each we use the model of
a resistor and capacitor in parallel, where voltage decays exponen-
tially as e�t/RC, with the product RC as the time constant. For the first
case, picture a unit cube of solution. Two of its opposing faces can be
thought of as a capacitor, with capacitance C ¼ "w A/l, where "w is the
dielectric constant of water, and A and l are the area and thickness. If
the capacitor carries a charge, current will flow between the faces,
and this current sees a resistance R ¼ �cl/A. The product RC works
out to be independent of the details of the cubic volume element
because A and l cancel. We are left with the product "w�c, which is
known as the Maxwell time constant.1 For a typical physiological
saline "w�c is of the order of 1 ns.

For the decay of a voltage difference across a membrane we use
the membrane resistance R ¼ �m /A and capacitance C ¼ cm A, where
cm is the specific membrane capacitance. Again, A cancels when we
compute RC ¼ �mcm. For a typical membrane �mcm�10 ms. So spa-
tial voltage variations within a solution relax about 107 times faster
than voltage drops across a membrane. This constitutes the
dynamic counterpart to the above comparison of spatial extent of
spread of voltages.

1 For a more rigorous derivation of the Maxwell time constant, start with the Poisson

equation.

d2V

dx2 þ
d2V

dy2 þ
d2V

dz2 ¼ �
q

"

Since i ¼ ð1=�ÞðdV=dxÞ, the first derivatives in V can be replaced by ix�, iy�, or iz�,

where ix, iy and iz are the current densities in the direction of each voltage derivative.

We then have the divergence of the current density, which gives the total charge

flowing into a volume element minus the total charge flowing out. This must equal

the rate of change of the charge density at that site (conservation of charge) so we can

replace the left-hand side of the Poisson equation with �ðdq=dtÞ as follows

�
dq

dt
¼ � q

"

The solution is q¼ q0e� t/�", where q0 is the initial value, so we recover the Maxwell

time constant �".
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These qualitative calculations tell us where we should look for
spatial variations in voltage and where we need not bother. For
example, within a typical spherical cell of diameter 25 mm we
might ask what will happen when a bunch of channels are concen-
trated in one small raft of membrane. Opening all of those channels
suddenly would change the voltage at that spot but the voltage change
would spread through a roughly spherical cell within the Maxwell
time constant of �10�9 s. This is much faster than any relevant biolo-
gical signaling process. On the other hand, in an axon or dendrite of
length �1 mm, cytoplasm would produce an accumulating resistance
while the large area of membrane would provide a significant exit
pathway. The voltage along this process will then vary quite a bit.

15.2 The cable equation

To proceed from these qualitative order-of-magnitude arguments to a
quantitative understanding requires a more precise mathematical
representation. The cable equation gives us just that. Consider a
cable of radius a, broken up into infinitesimally thin slices (Fig. 15.2).
The tendency toward uniformity over short distances means that the
voltage within a slice can be taken as constant.

We assume that the voltage is zero everywhere outside the cable
and that the voltage in the cable is a function only of axial distance,
V(x). Ohm’s law states that the axial current through each slice will
be equal to the voltage difference divided by the resistance, which is
ra (Eq. (15.1)) times the distance between slices, dx. For the two slices
in Fig. 15.2 we have

iaðxþ 1=2dxÞ ¼ �Vðxþ dxÞ � VðxÞ
radx

¼ �1

ra

qVðxþ 1=2dxÞ
qx

(15:3a)

iaðx� 1=2dxÞ ¼ �VðxÞ � Vðx� dxÞ
radx

¼ �1

ra

qVðx� 1=2dxÞ
qx

(15:3b)

The position for evaluating the derivative is taken as half way
between the two surfaces, giving xþdx/2 and x �dx/2.

a

im ( x )

ia( x –      )d x
2

d xia ( x +      )
2

x –  d x x x +  d x

Fig: 15:2: Axial current,

ia(x), flows between two thin slices

and membrane current, im(x), flows

across the cell membrane. One slice

is bounded by x� dx and x. The

adjacent slice is bounded by x

and xþ dx.
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The transverse current through the membrane around the
central slice is also given by Ohm’s law. The resistance will be rm/dx
(Eq. (15.2)), so we have

imðxÞ ¼ dx VðxÞ=rm (15:4)

By Kirchhoff’s law, the net current into a slice centered at x must
produce a voltage change at x proportional to the capacitance of the
membrane. The net current is obtained by summing the axial and
transverse contributions, into and out of the central point in Fig. 15.2

iaðx� 1=2dxÞ � iaðxþ 1=2dxÞ � imðxÞ ¼ dx cm0
qVðxÞ
qt

(15:5)

where cm0 is the capacitance of the same area of membrane for
which rm is the resistance (the subscript m0 is necessary because
cm is used for the capacitance of a unit area of membrane).

We now use Eqs. (15.3a), (15.3b), and (15.4) to replace all the
current terms in Eq. (15.5) and get an equation in which voltage is
the only variable

� 1

ra

qVðx� 1=2dxÞ
qx

þ 1

ra

qVðxþ 1=2dxÞ
qx

� dx

rm
VðxÞ ¼ dx cm0

qVðxÞ
qt

(15:6)

The difference between derivatives can be converted to a second
derivative after division by dx. Multiplying by rm then produces

rm

ra

q2V

qx2
� V ¼ rmcm0

qV

qt
(15:7)

Equation (15.7) is called the cable equation. It is a partial differ-
ential equation with essentially the same mathematical properties
as the diffusion equation of Chapter 6. This equation tells us how an
initial spatial variation in V evolves through time. Given an initial
condition V(x, 0), and boundary conditions for what happens at the
cable ends, the solution to the cable equation gives us V(x, t), the
distribution at any later time. The cable equation has a long history
going back to the study of telegraph lines. It was introduced into
biophysics by Hodgkin and Rushton (1946), and is the starting point
for the analysis of a wide range of electrical processes in cellular
physiology (Rall, 1977; Jack et al., 1983).

The cable equation can be expressed more compactly by chan-
ging variables to T ¼ t/(rmcm0) and X ¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffi
rm=ra

p
as follows

q2V

qX2 � V ¼ qV

qT
(15:8)

Now the equation has no constants because they have been
absorbed into the variables.

This transformation confers importance on the quantities rmcm0

and
ffiffiffiffiffiffiffiffiffiffiffiffi
rm=ra

p
, which define the fundamental units of time and

length. The quantity

�m ¼ rmcm0 (15:9)
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is the membrane time constant, already examined at the end of the
preceding section. Because resistance and capacitance have the
opposite proportionality with area, the dimensions of the mem-
brane cancel, leaving �m with units of time.

The quantity

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rm=ra

p
(15:10)

has units of length and is defined as the cable length constant (also
referred to as the space constant). The variables �m and l are the basic
units of the cable equation, and one often finds oneself thinking
with reference to these basic measures of length and time.

Note that l is the square root of that important ratio of resistiv-
ities introduced in the qualitative analysis of voltage spread in the
preceding section. To see what l means, and also to get a more
quantitative sense for the distance over which voltage spreads, let
us take the steady-state case of Eq. (15.8), setting qV=qT ¼ 0

q2V

qX2 ¼ V (15:11)

If the cable is infinite, and we let V ¼V0 at X ¼ 0 and V ¼ 0 at X ¼1
(boundary conditions), the solution for positive X is

V ¼ V0 e�X ¼ V0e�x=l (15:12)

Thus, l has a clear physical meaning as the length over which the
voltage changes e-fold. That is why it is called the length constant.
It is the natural unit for thinking about spatial variations in the
voltage in a cell.

Equation (15.10) makes the point that l increases with rm, and
decreases with ra. This shows how voltage spread is influenced by
these two parameters, and these dependences are intuitively rea-
sonable if one uses Fig. 15.1 to envision how spread of voltage
reflects a division in the flow of current between the two pathways
provided by the membrane and cytoplasm.

Since rm and ra depend on the radius, so does l. This becomes
explicit when we use Eqs. (15.1) and (15.2) to express l in Eq. (15.10)
in terms of more fundamental quantities

l ¼
ffiffiffiffiffiffiffiffiffi
a�m

2�c

r
(15:13)

The fact that l increases with a illustrates another qualitative point
of the preceding section that voltage spreads further in a wider
cable.

The cable equation brings into focus a few key electrical para-
meters that influence voltage spread in cells. Among these are the
resistivities, �m and �c, and the specific membrane capacitance,
cm (for unit area; cm0 was for unit length of cable). Some experimen-
tally measured values are given in Table 15.1.
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The value of cm is fairly constant from one cell to the next and is
very close to what is computed from the formula c ¼ "/l with the
dielectric constant " � 5 and membrane thickness l � 50 ¯. The
value of � of the extracellular saline is simply its bulk resistivity.
More rigorous analysis that treats voltage changes outside the
cell includes this quantity, but the effects are usually small. Note
that �c is hard to measure but tends to be about two to three
times greater than � of isotonic saline, with the difference reflec-
ting the higher viscosity of cytoplasm and the large amount
of charge attached to high molecular weight molecules with lower
mobility; �m for a resting membrane varies from cell to cell. When
a cell is stimulated with chemicals or voltage, channels can open,
causing �m to change by factors of greater than 100. This is the
basis for the active propagation of voltage signals discussed in
Chapter 16.

15.3 Steady state in a finite cable

The steady-state cable equation provides a description of standing
voltage gradients within a cell. Voltage signals are often rapid and
dynamic, and in these cases the steady state is not very relevant.
However, it is much easier to solve the steady-state equation, and
when voltage changes last for times significantly longer than the
membrane time constant, �m, these solutions are very useful.

The steady-state cable equation (Eq. (15.11)) has the general
solution

V ¼ Ae�x þ Bex (15:14)

A specific solution is found by imposing boundary conditions to
determine A and B. The infinite cable was one example (Eq. (15.12)).
It was easy to solve so we did not need to deal formally with the
boundary conditions. Now we will take a finite cable of length L. An
electrode positioned at one end imposes a voltage of V0 at X ¼ 0. The
other end of the cable at X ¼ L is open so the voltage is zero. (This is
an absorbing boundary condition (Section 6.2.4).)

Table 15.1. Cable parameters

Squid axon a Lobste r axon b
Hippocampal
neur on c

cm(mF cm
�2) 0.9 1.3 0.9

�m(� cm2) 7600 2300 14 000

�c (� cm) 61 60 300

aHodgkin et al. (1952).
bHodgkin and Rushton (1946).
cGentet et al. (2000); Meyer et al. (1997).
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The expression V(0)¼V0 constitutes the boundary condition at
X ¼ 0. This gives

Aþ B ¼ V0 (15:15)

The other boundary condition, V(L) ¼ 0, gives

Ae�Lþ BeL ¼ 0 (15:16)

Solving Eqs. (15.15) and (15.16) for A and B gives

A ¼ �V0e2L

1� e2L
¼ �V0e L

e�L � e L
(15:17a)

and B ¼ V0

1� e2L
¼ V0e�L

e�L � e L
(15:17b)

The second steps in each of these entailed multiplying by e�L/e�L.
Using these expressions in Eq. (15.14) completes the determination
of the specific solution

V ¼ �V0e L

e�L � e L
e�X þ V0e�L

e�L � e L
e X

¼ V0

e L � e�L
ðe L�X � e�ðL�XÞÞ (15:18)

Hyperbolic sines simplify this result to

V ¼ V0
sinhðL� XÞ

sinhðLÞ (15:19)

You can check that this solves Eq. (15.14) and satisfies the boundary
conditions.

If the cable is sealed at X ¼ L, then the boundary condition is
different. There is no axial current, making ia ¼ �ð1=raÞðqV=qxÞ ¼
�ð1=lraÞðqV=qXÞ ¼ 0 (see Eqs. (15.3a) and (15.3b)). So instead of set-
ting Eq. (15.14) equal to zero, as we did when the end was open, we
set its derivative equal to zero (a reflecting boundary (Section 6.2.4))

�Ae�L þ BeL ¼ 0 (15:20)

Combining this with Eq. (15.15) to solve for A and B leads to

V ¼ V0

e L þ e�L
ðeL�X þ e�ðL�XÞÞ ¼ V0

coshðL� XÞ
coshðLÞ (15:21)

These two solutions (Eqs. (15.19) and (15.21)) are plotted in Fig. 15.3,
along with the solution for the infinite cable (Eq. (15.12)). These
results illustrate how different boundary conditions alter the solu-
tion. This point will be explored further with the dynamic behavior
of the cable equation in Sections 15.4 and 15.5.

The sealed-end case is especially useful as a model for cells
with processes. In Fig. 15.3 we see that if L¼1, the voltage at the
end of the process is about 65% of V0. The value of L is a useful
number to know because it enables us to estimate the voltage
nonuniformity.
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15.4 Voltage steps in a finite cable

We will now proceed from the steady-state equation to explore
situations where voltage varies with time. This means using the
full partial differential equation, Eq. (15.8). The method of separa-
tion of variables (Section 6.2.4, footnote 2) produces the following
general solution

VðX; TÞ ¼ ðA sinð�XÞ þ B cosð�XÞÞe�ð1þ�2ÞT (15:22)

This can be verified by direct substitution back into Eq. (15.8). The
only difference between this and the general solution to the diffu-
sion equation (Eq. (6.16)) is that the exponential has 1þ�2 in place
of �2. The general strategy for going from this general solution to a
particular solution is the same as for the diffusion equation in
Chapter 6. One determines boundary conditions at the ends of the
cable and uses them to solve for �. There are usually an infinite
number of solutions, and they must be indexed with a subscript, �i.
This gives an infinite number of cosine and sine functions that can
be combined as a Fourier sum to satisfy a particular initial condition

VðX; 0Þ ¼
X

i

ðAisinð�iXÞ þ Bicosð�iXÞÞ (15:23)

(Note that e�ð1þ�
2ÞT ¼ 1 at T ¼ 0.) We can determine Ai and Bi by

taking a Fourier transform (Appendix 3) of the initial condition.
Once they are known, we compose the solution as

VðX; TÞ ¼
X

i

ðAisinð�iXÞ þ Bicosð�iXÞe�ð1þ�i
2ÞTÞ (15:24)

The different values of �i correspond to different frequencies
of spatial variation in the initial voltage distribution. The way that

1.0

0.8

0.6

0.4

V
/V

0
0.2

0.0
0.0 0.2 0.4

X  ( λ )
0.6 0.8

Open end

Infinite

Sealed end

1.0

Fig: 15:3: Plots of solutions to

the steady-state cable equation for

an open end (Eq. (15.19)), a sealed

end (Eq. (15.21)), and an infinite

cable (Eq. (15.12)). Plots are for

L¼ 1. The dotted straight line is

shown to make the point that the

open-end plot is not linear.
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the �i appear in both the spatial and temporal part of the equation
means that the spatial features with higher frequencies (variations
over shorter distances) decay more rapidly in time. Diffusion has the
same property.

We will now solve the time-dependent equation for a cable of
length L with a voltage clamp at X ¼0 to maintain V(0,T) ¼ 0. At the
other end, where X ¼ L, a sealed end means that the derivative with
respect to X must be equal to zero. We apply the condition at X ¼ L
first, differentiating Eq. (15.24) to obtainX

i

ðAi�icosð�iLÞ � Bi�isinð�iLÞÞe�ð1þ�i
2ÞT ¼ 0 (15:25)

Since this holds for all T it must apply to each term

Ai�icosð�iLÞ � Bi�isinð�iLÞ ¼ 0 (15:26)

The boundary condition V(0, T) ¼ 0 is applied to Eq. (15.24), and
after using sin(0) ¼0 and cos(0) ¼1 we haveX

i

Bie
�ð1þ�i

2ÞT ¼ 0 (15:27)

Again, this holds for all T, so it applies to each term and makes all
the Bi zero. This reduces Eq. (15.26) to

Ai�icosð�iLÞ ¼ 0 (15:28)

This equation defines a set of values for �. One of these is zero,
which we designate as �0¼ 0. However, this value contributes
nothing to the solution because sin(0)¼ 0 and B0¼0. Other values
of �i that solve Eq. (15.28) are p/2, 3p/2, 5p/2, etc. The general
expression is

�i ¼ ð2i� 1Þ p
2L

(15:29)

where i is a positive integer. The exponentials in the solution then

have the form e�
�

1þ
�
ð2i�1Þðp=2LÞ

�2�
T .

It is significant that the boundary conditions are sufficient to
determine the values of �i. The exponential functions thus defined
can then be combined in various ways to satisfy different initial
conditions.

The time constants of a response to a voltage step can provide
important information about a cell, regardless of the initial condi-
tion. Setting i ¼ 1 and 2 in Eq. (15.29) gives the time constants of the
two slowest exponentials as

�1 ¼
�m

1þ �1
2
¼ �m

1þ p=2Lð Þ2
(15:30)

and

�2 ¼
�m

1þ �2
2
¼ �m

1þ 3p=2Lð Þ2
(15:31)
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where �m reappears because units were converted back to real time,
t ¼ �mT. We can use these two relations to solve for L as follows
(Rall, 1969)

L ¼ p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�2 � �1

�1 � �2

r
(15:32)

Thus, L can be calculated from the time constants extracted from
an experiment, and �m is then calculated from either �1 or �2 with
Eqs. (15.30) or (15.31).

The time constants are an important part of the solution, but
to solve the equation completely one must use an initial condition
to determine the Ai. The value of V was taken as zero at X ¼ 0, but
this value was imposed by the voltage clamp at T ¼0. Before T ¼ 0
the voltage clamp was at another voltage, which we will call V0.
We will assume that the prior voltage was held long enough for a
steady state to be reached. That means that V(X) immediately
before the step is given by Eq. (15.21). The combination of sine
functions that sums to this particular function is found by Fourier
transformation

Ai ¼
2

LcoshðLÞ

ZL

0

coshðL� XÞsin ð2i� 1Þ pX

2L

� �
dX

¼ 4pð2i� 1Þ
4L2 þ ð2i� 1Þ2p2

(15:33)

From this we can reconstruct the initial condition as a sum of sine
functions

V0
coshðL� XÞ

coshðLÞ ¼ V0

X1
i¼ 1

4pð2i� 1Þ
4L2 þ ð2i� 1Þ2p2

sin ð2i� 1Þ pX

2L

� �
(15:34)

Since this sum of sine functions satisfies the initial condition, the
sum of exponentials

VðX; TÞ ¼ V0

X1
i¼1

4pð2i� 1Þ
4L2 þ ð2i� 1Þ2p2

sin
ð2i� 1ÞpX

2L

� �
e�
�

1þ
�
ð2i� 1Þp=2L

�2�
T

(15:35)

satisfies both the initial condition and the cable equation, and is
thus a complete solution. Each term in Eq. (15.35) has the form of
the general solution (Eq. (15.22)).

With this solution in hand it is apparent that if we go the
other way and step the voltage from 0 to V0 at T ¼0, we have the
solution

VðX; TÞ ¼ V0
coshðL� XÞ

coshðLÞ

� V0

X1
i¼ 1

4pð2i� 1Þ
4L2 þ ð2i� 1Þ2p2

sin
ð2i� 1ÞpX

2L

� �
e�
�

1þ
�
ð2i� 1Þp=2L

�2�
T

(15:36)
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At T ¼0 the sum cancels out the steady-state cosh(L �X)/cosh(L)
term leaving the voltage zero everywhere. As the exponentials
decay, the terms in the sum gradually disappear and we arrive at
the final steady state.

Equation (15.36) is plotted for L ¼ 2 and for X ¼ 0.1, 0.5, 1, and 2
(Fig. 15.4). This graph shows how the voltage at different positions
responds to the voltage step applied at X ¼ 0. The locations closest to
the site of the applied voltage step respond with the largest change,
and with the greatest speed. This illustrates at the most basic level
how a cable shapes a passive voltage signal.

15.5 Current steps in a finite cable

The particular experimental method used to record an electrical
signal is connected in a very interesting way with the mathematics
of solving the cable equation. This connection will be illustrated by
looking at the current clamp and comparing it with the results of
the preceding section on the voltage clamp. With the voltage clamp,
a voltage is imposed at a particular location and one measures the
current. A current clamp imposes a current while measuring volt-
age. These experimental conditions are expressed mathematically
as boundary conditions. Clamping the voltage to V0 at X ¼0 pre-
scribes the boundary condition V(0) = V0. Clamping the current to I0
at X ¼ 0 specifies the derivative of the voltage at that point. We will
simplify this to I0 ¼ 0 so that

qV

qX
¼ 0 (15:37)

The derivative of the general solution (Eq. (15.22)) is a sum of sine
and cosine terms. Since cos(0) ¼ 1, the Ai, which become the coeffi-
cients of the cosine terms after the derivative is taken, must all be

0.8

X = 0.1

X = 0.5

X = 1

X = 2

T  ( τm ) X  ( λ)

0.6

0.4

V
/V

0

0.2

1.0

0.0
0 1 2 3 0 1 2

cosh( L –  X )/cosh( L)

Fig: 15:4: Plots of Eq. (15.36) as a

function of T (left) for L¼ 2 and for

the indicated values of X. Note that

V rises with varying speeds to

reach steady-state values (right),

determined by Eq. (15.21). The

plot on the right is like Fig. 15.3,

but with L¼ 2.
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zero. The mathematical solution to this problem must therefore be
composed entirely from the terms of the form Bicosð�iXÞe�ð1þ�i

2ÞT .
Compare this with the voltage clamp scenario of the preceding
section, where the Bs were forced to zero and we were left with
terms of the form Aisinð�iXÞe�ð1þ�i

2ÞT .
The derivative at a sealed end at X ¼ L is zero. Applying this

condition to the remaining terms of the form Bicosð�iXÞe�ð1þ�i
2ÞT

gives

�iBisinð�iLÞ ¼ 0 (15:38)

Since the sine function is zero for 0, p, 2p, 3p, etc., we have

�i ¼
ip
L

(15:39)

where i is zero or a positive integer (compare with Eq. (15.29)). The
exponentials will then have the form e� 1þ ip=Lð Þ2ð ÞT, with time
constants

�i ¼
�m

1þ ip=Lð Þ2
(15:40)

The slowest time constant is simply �m, for i ¼0. By contrast, the
slowest time constant under voltage clamp (Eq. (15.30)), is always
smaller than �m.

This theoretical result suggests a simple experimental way to
determine �m: take the time constant of the slowest component of
the response to a current step. However, this approach can lead to
errors for more realistic models of neurons (Section 15.7).

The way in which the difference between voltage clamp and
current clamp comes about can be summarized as follows. Fixing
V ¼ 0 removes the cosine terms, and when the remaining sine terms
are used they specify the �i as half-integral multiples of p/L that do
not include zero. Fixing I ¼ 0 removes the sine terms, and when the
remaining cosine functions are used they specify the �i as integral
multiples of p/L that do include zero.

15.6 Branches and equivalent cylinder
representations

Cable theory is clearly appropriate for axons and muscle fibers
because they are shaped like cables, but what about cells with
other geometries? Many neurons have extraordinarily complex
dendrites (Fig. 15.5). Their extensive branching looks like a hopeless
obstacle to mathematical modeling. However, in 1959 W. Rall car-
ried out an important analysis of branching dendrites to identify
conditions under which a complex dendritic tree can be expected to
behave like a single cylindrical process. The key conditions were as
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follows. (1) At a branch the radius of the parent segment, ap, and the
daughter branches, ab1 and ab2, obey the relation

a 3=2
p ¼ a 3=2

b1 þ a 3=2
b2 (15:41)

This is known as the 3/2 power law. (2) All branches terminate with
the same electrotonic length. So for two branches

Lb1 ¼ Lb2 (15:42)

Each L is in units of its own length constant, lb1 or lb2. Rall’s work
raised the hope that a cylinder with the right dimensions could
model the passive voltage changes in a complex dendrite. The idea
of an equivalent cylinder representation of a complex dendrite
has had a considerable impact on electrophysiological studies of
neurons.

15.6.1 Steady state
We first use a steady-state solution of the cable equation to show
how the Rall branching conditions make the dendritic resistance
equal to that of an equivalent cylinder. The input resistance of a
cable of length L with a sealed end is the voltage, V0, applied at X ¼ 0
divided by the total membrane (transverse) current. Current flows
across the membrane all along the cable. At each point the current is
V(x)dx/rm, so the total current is the integral

I ¼ 1

rm

ZlL

0

VðxÞdx ¼ l
rm

ZL

0

VðXÞdx (15:43)

Fig: 15:5: (a) A granule cell from

the dentate gyrus (Courtesy of

Dr. Helen Scharfman). (b) An

interneuron from the lateral

geniculate nucleus (Courtesy of

Dr. Dan Uhlrich). Both are from rat.
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The integral was first expressed in terms of x, because rm is in � cm,
and then converted to units of L. Taking V(X) from Eq. (15.21) gives

I ¼ V0l
rm

ZL

0

coshðL� XÞ
coshðLÞ dX (15:44)

The integral of cosh(L �X) is �sinh(L �X) (Appendix 5), so the resis-
tance, RL, is

RL ¼
V0

I
¼ rmcoshðLÞ

l sinhðLÞ ¼
rm

l tanhðLÞ (15:45)

Recall how l depends on the radius, a, of the cable. With the aid of
Eqs. (15.2) and (15.13) we obtain

Fig: 15:5: (cont.)
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RL ¼
�m

2pa tanhðLÞ

ffiffiffiffiffiffiffiffiffiffi
2

a

�c

�m

s
¼ a�3=2ffiffiffi

2
p

p tanhðLÞ
ffiffiffiffiffiffiffiffiffiffiffi
�c�m
p

(15:46)

Now consider a cylinder that branches (Fig. 15.6). According to
Eq. (15.46), the resistance of each branch is

Rb1 ¼
ab1
�3=2ffiffiffi

2
p

p tanhðLb1Þ
ffiffiffiffiffiffiffiffiffiffiffi
�c�m
p

(15:47a)

Rb2 ¼
ab2
�3=2ffiffiffi

2
p

p tanhðLb2Þ
ffiffiffiffiffiffiffiffiffiffiffi
�c�m
p

(15:47b)

These two resistors are in parallel, so their combined resistance is

Rb ¼
1

ð1=Rb1Þ þ ð1=Rb2Þ
¼

ffiffiffiffiffiffiffiffiffiffiffi
�c�m
p

p
ffiffiffi
2
p 1

tanhðLb1Þab1
3=2 þ tanhðLb2Þab2

3=2

� �
(15:48)

Now applying the Rall conditions (Eqs. (15.41) and (15.42)) simplifies
Eq. (15.48) to

Rb ¼
ap
�3=2ffiffiffi

2
p

p tanhðLbÞ
ffiffiffiffiffiffiffiffiffiffiffi
�c�m
p

(15:49)

which is identical to Eq. (15.46).
Thus, the two branches behave just like an extension of the

parent segment. We can therefore expect the resistance of the
entire structure shown in Fig. 15.6 to be (Problem 4)

R ¼ ap
�3=2

p tanhðLp þ LbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c�m=2

p
(15:50)

The parent segment with its two branches has the resistance of a
single cylindrical segment with a length Lpþ Lb. This calculation
indicates that the steady-state solution of a branching process will
be the same as that for an equivalent unbranched cylinder if the
segments obey the two branching rules of Rall.

15.6.2 Time constants
The time course of voltage spread in a cable with branches also
reduces to the equivalent cylinder result when the Rall conditions
are met. This will now be demonstrated for the time constants.

ap

Lp

L b1

L
b1

ab1

ab2

Fig: 15:6: A branching cable with

parent segment of radius ap and

length Lp, and two daughter

branches of radii ab1 and ab2

and lengths Lb1 and Lb2.
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The voltage in each segment is a sum of terms of the form

VpðXp; TÞ ¼ ðApsinð�ðLp � XpÞÞ þ Bpcosð�ðLp � XpÞÞÞe�ð1þ�
2ÞT

(15:51a)

Vb1ðXb1; TÞ ¼ ðAb1sinð�ðLb1 � Xb1ÞÞ þ Bb1cosð�ðLb1 � Xb1ÞÞÞe�ð1þ�
2ÞT

(15:51b)

Vb2ðXb2; TÞ ¼ ðAb2sinð�ðLb2 � Xb2ÞÞ þ Bb2cosð�ðLb2 � Xb2ÞÞÞe�ð1þ�
2ÞT

(15:51c)

These expressions differ from Eq. (15.22) in the replacement of
X with L �X. This still satisfies Eq. (15.8) and aids in the present
analysis.

The ends are sealed so the boundary conditions at Xb1 ¼ Lb1 and
Xb2 ¼ Lb2 are that the derivative with respect to X is equal to zero.
The terms A�cos(�(L �X)) (derivatives of sine terms) cannot be zero
at X ¼ L because cos(0) ¼ 1, so Ab1 and Ab2 must be zero.

The branch point, where Xp ¼ Lp and Xb1 ¼Xb2 ¼0, provides two
additional conditions. All three voltage functions must be equal at
this point; Vp(Lp, T)¼Vb1(0, T)¼Vb2(0, T). So Vp(Lp) is simply Bpe�ð1þ�

2ÞT

because cos(0)¼1 and sin(0)¼0, and Ab1 and Ab2 are zero owing
to the condition just stated for the branch ends. After canceling
out the time dependent factors, which are the same in all three
equations, the voltage equivalence at the branch point gives us

Bp ¼ Bb1cosð�Lb1Þ ¼ Bb2cosð�Lb2Þ (15:52)

We also have a constraint on the current flow at the branch
point. The current out of the parent segment is equal to the sum
of the currents flowing into the two branches. Each current is given
as the spatial derivative divided by the axial resistivity (from
Eq. (15.1))

pap
2

�clp

qVp

qXp
¼ pab1

2

�clb1

qVb1

qXb1
þ pab2

2

�clb2

qVb2

qXb2
(15:53)

The length constants are there because we need units of cm to be
compatible with the units used for �c. If we assume that �c and �m

are the same for all segments, then all of the factors multiplying
each derivative cancel except for a3/2, as follows

ap
3=2 qVp

qXp
¼ ab1

3=2 qVb1

qXb1
þ ab2

3=2 qVb2

qXb2
(15:54)

Inserting the expressions for Vp, Vb1, and Vb2 from Eqs. (15.51a)–
(15.51c) into Eq. (15.54) gives

�ap
3=2Ap ¼ ab1

3=2Bb1sinð�Lb1Þ þ ab2
3=2Bb2sinð�Lb2Þ (15:55)

The final constraint of a sealed end at Xp ¼0 gives a derivative of
Eq. (15.51a) equal to zero
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�ðApcosð�LpÞ � Bpsinð�LpÞÞ ¼ 0 (15:56)

Equations (15.52), (15.55), and (15.56) can now be used to solve for�.
Equation (15.52) gives Bb1 and Bb2 as Bp/cos(�Lb1) and Bp/cos(�Lb2),
respectively. Equation (15.56) gives Ap as Bpsin(�Lp)/cos(�Lp).
Making these substitutions in Eq. (15.55) gives

�ap
3=2Bp

sinð�LpÞ
cosð�LpÞ

¼ ab1
3=2Bp

sinð�Lb1Þ
cosð�Lb1Þ

þ ab2
3=2Bp

sinð�Lb2Þ
cosð�Lb2Þ

(15:57)

This simplifies to

ap
3=2tanð�LpÞ þ ab1

3=2tanð�Lb1Þ þ ab2
3=2tanð�Lb2Þ ¼ 0 (15:58)

This equation can in principle be solved for �, but for arbitrary
values of the as and Ls these results will not show a simple pattern.
Invoking the Rall rules changes that. First, using Eq. (15.42),
Lb1 ¼ Lb2 ¼ Lb, leads to

ap
3=2tanð�LpÞ þ ðab1

3=2 þ ab2
3=2Þtanð�LbÞ ¼ 0 (15:59)

Now if the 3/2 power rule (Eq. (15.41)) is obeyed we have

tanð�LpÞ þ tanð�LbÞ ¼ 0 (15:60)

Finally, examination of the trigonometric identity for the tangent of
a sum

tanð�þ �Þ ¼ tanð�Þ þ tanð�Þ
1� tanð�Þtanð�Þ (15:61)

makes it apparent that Eq. (15.60) will have the same roots as
tan(�Lpþ�Lb), so

tanð�ðLp þ LbÞÞ ¼ 0 (15:62)

This defines � as integral multiples of p/(Lpþ Lb), just as in Eq. (15.39).
So the transient response of a branched cable will have the same time
constants as a single cylinder with a length of Lpþ Lb.

This analysis can be extended to a very complicated dendritic
arbor. Working one’s way back from the ends, each pair of branches
can be replaced by an equivalent segment to reduce the entire
dendrite to a single equivalent cylinder. Rall (1959, 1977) has
shown that the complete dynamic response characteristics are
reproduced completely by this equivalent cylinder representation.

Of course, the big question raised by this mathematical analysis
is whether real dendrites obey the Rall rules for branching. A sub-
stantial amount of effort has been invested in anatomical examina-
tions of neurons such as those shown in Fig. 15.5 to try to determine
whether dendritic branches obey these two rules. The diversity
of neuronal morphologies is so vast that it is impossible to draw
general conclusions. A study of two types of relay neurons in the
lateral geniculate nucleus suggested that the Rall rules are obeyed
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(Bloomfield et al., 1987). On the other hand, in motoneurons the
dendrites get thinner as they branch so that the sum of a3/2 is less
than that of the parent segment (Barrett and Crill, 1974; Clements
and Redman, 1989). This suggests that the dendrite should be repre-
sented by a cylinder that tapers with distance from the cell body.

Ways of testing the equivalent cylinder model are discussed near
the end of the following section. If the Rall branching rules are
violated, or if one is uncertain about their applicability, morpholo-
gical information about a cell can be used to develop a compart-
mental model that can be solved with a computer to simulate
passive voltage changes (Section 15.9).

15.7 Cable analysis of a neuron

If the dendritic tree of a neuron can be represented by a single
cylinder, then we can use the model shown in Fig. 15.7. The simple
branching pattern of the neuron in Fig. 15. 5a m akes it a g ood
candidate for such a representation. The cell body is represented
by a sphere and the dendrite by a cylinder. The axon is so narrow
that it can be ignored. This physical representation of a neuron is
known as the Rall model (Rall, 1969). Here we will consider the Rall
model with a patch electrode in the ‘‘whole-cell configuration’’
(Jackson, 1992). The tip of a patch pipette provides a direct electrical
link from the amplifier to the interior of the cell. Experimentally, a
voltage is imposed at the point denoted by Vc in Fig. 15.7.

Before examining the complete model shown in Fig. 15.7 it is
worth a brief comment on how this system performs when there
is no dendrite, just a voltage-clamped spherical cell (Marty and
Neher, 1995). If the cell resistance Rcb is very high compared to the

V0

Vc

Re

Ccb Rcb

Patch electrode

Cell body

Dendrite of length  =  L

Fig: 15:7: The Rall model has

a cell body with a dendrite

represented by an equivalent

cylinder. The resistance and

capacitance of the cell body are

Rcb and Ccb. An amplifier imposes

a voltage Vc through the patch

electrode, which has a resistance Re.
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resistance of the electrode, Re, then the only relevant current is
through the patch electrode, which by Ohm’s law is (Vc�V0)/Re. The
capacitance of the cell body, Ccb, is charged by this current, so V0

changes at a rate dictated by the current and capacitance

Vc � V0

Re
¼ Ccb

dV0

dt
(15:63)

A term V0/Rcb was omitted because Rcb is very large. According to this
equation, the step response will be a single exponential with a time
constant equal to ReCcb.

Now we add the dendrite. This allows current to leave the cell
body through the cable. A term accounting for this axial current
must be added to Eq. (15.63). This current is given by the derivative
of the voltage at the entrance to the cylinder divided by the axial
resistivity, ra. Incorporating this term on the left-hand side of
Eq. (15.63) gives

Vc � V0

Re
þ 1

ra

qV0

qx
¼ Ccb

qV0

qt
(15:64)

To apply the cable equation we need to convert to units of X and T as
follows

Vc � V0

Re
þ 1

lra

qV0

qX
¼ 1

Rcb

qV0

qT
(15:65)

The factor Rcb appears because after replacing t by �mT, we realize
that Ccb cancels if we take �m ¼RcbCcb. At X ¼ L we have the usual
sealed-end condition

qV

qX
¼ 0 (15:66)

As with the step response of a finite cable, the general solution,
Eq. (15.22), is inserted into each of the boundary conditions. We use
Eq. (15.65) first, set Vc ¼0, cancel out the exponential factor present
in every term, and after noting that sin(0) ¼ 0 and cos(0) ¼ 1, we
obtain

� B

Re
þ A�

lra
¼ � Bð1þ �2Þ

Rcb
(15:67)

This can be rearranged to

A

B
¼ lra

�

1

Re
� 1þ �2

Rcb

� �
(15:68)

Inserting Eq. (15.22) into the other boundary condition (Eq. (15.66))
gives

Acosð�LÞ � Bsinð�LÞ ¼ 0 (15:69)

which can be rearranged to

A

B
¼ tanð�LÞ (15:70)
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Now A and B can be eliminated by equating Eqs. (15.68) and (15.70)
to obtain an equation for �

tanð�LÞ ¼ lra

�

1

Re
� 1þ �2

Rcb

� �
(15:71)

The values for � that solve this equation define the exponential time
constants, just as Eqs. (15.28) and (15.38) defined � for other
conditions.

Although Eq. (15.71) is a transcendental equation that cannot be
solved analytically, its behavior can be understood by rearranging
to give

Rcb

lra
�tanð�LÞ � Rcb

Re
þ 1þ �2 ¼ 0 (15:72)

The left-hand side is plotted versus � in Figure 15.8 to show the
roots.

Figure 15.8 shows that Eq. (15.72) is satisfied by values of � very
near p/2, 3p/2, etc. These roots arise because the tangent function
approaches1 at half-integral multiples of p. Since the ratio Rcb/Re is
large the tangent part of the equation has to be very large to cancel it.
For low values of �, the roots are determined by the interplay between
these two terms. It is important to recognize that these roots are
the same as for a finite cable without a cell body (Eq. (15.29)). Thus,
Eqs. (15.30)–(15.32) can be used to calculate L and �m.

It is significant that as � becomes large a solution to the equation
can be found that does not depend on the singularity in the tangent
function. At this point the equation crosses the x-axis at �2 � Rcb/Re,
because Rcb/Re is of the order of 100. This means that one of the
exponentials will have a time constant given by

� � �m
Re

Rcb
¼ CcbRe (15:73)

400

200

–200

–400

π/2

α

3π/2 5 π/2

α 
2 ~ Rcb  

/ Re

0

Fig: 15:8: A plot of the left-hand

side of Eq. (15.72) versus �. Here

Rcb/lra¼ 2, Rcb/Re¼ 200, and L¼ 1.

Dotted vertical lines are at half

integral multiples of p.
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which is identical to the time constant of the single exponential
function obtained by solving Eq. (15.63). Thus, this value of � is
fundamentally different from the others in corresponding to the
charging of the cell body. The other exponential time constants
reflect the charging of the dendrite. In patch clamp recordings
from neurons, this part of the charging transient is quite prominent
and easily distinguished from slower dendrite charging terms. In
spite of the presence of the dendrite, this term provides a measure-
ment of the cell body capacitance, Ccb.

An example is shown in Fig. 15.9 of an experimental recording of
a passive charging transient in a neuron elicited by a voltage step.
The current is fitted to a sum of three exponentials, and �1 and �2

can be used to determine L and �m with Eqs. (15.30)–(15.32).
The charging transient also can be used to evaluate the validity of

the equivalent cylinder representation. For example, Eq. (15.32) tells
us that if �1>9�2 then L is imaginary. No cylinder can give a transient
with such charging dynamics so the dendrite cannot have an equiva-
lent cylinder representation. This makes it relatively easy to reject
the Rall model. However, the converse does not hold. A transient with
�1< 9�2 will allow one to calculate L and �m, but that does not prove
that the dendrite being charged has a cylindrical representation.

If three or more exponentials can be resolved in a step response
then L and �m are overdetermined and one can assess consistency
with an equivalent cylinder representation. After calculating L
and �m from the two slowest time constants of a transient response
(Eqs. (15.30)–(15.32)), one can check the amplitudes and time constants
of the other components. Additional criteria for consistency with an
equivalent cylinder representation have been developed (Jackson,
1992, 1993a), and satisfying several theoretical predictions would
increase the likelihood that this model is valid. However, it should
be emphasized that the charging transient of a neuron has nowhere
near enough information for a detailed reconstruction of a cell’s
morphology. The Rall model fails quite often, and the equivalent

200 pA

2 ms

Fig: 15:9: A passive current

transient evoked by a 10 mV voltage

step in a cell with a process

(a granule cell of the dentate gyrus

like Fig. 15.5a). The transient was

fitted to three exponentials

I(t)¼ 3.24e�t/.013þ 1.41e�t/0.7

þ 1.09e�t/4.8; the dotted

curves indicate the two slowest

components.
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cylinder representation cannot be used in these cases. More compli-
cated analytical methods (Major et al., 1993) and computer models
(Section 15.9) must then be used.

It is significant that in many respects a voltage clamped model
neuron behaves similarly to a voltage clamped cylindrical segment
(Section 15.4). The slower components have the same time con-
stants, and Eqs. (15.30)–(15.32) can be used to make quantitative
determinations of �m and L. The situation is less fortunate for a
current clamped neuron. For this case the time constants are deter-
mined by the formula (Problem 9; Rall, 1969)

�L cotð�LÞ ¼ � Rcb

RdtanhðLÞ (15:74)

where Rd is the resistance of the dendrite. This equation does not
have simple solutions because the right-hand side is neither very
small nor very large (Problem 10). Depending on the ratio of Rcb/Rd,
the �i, and therefore the time constants, can vary between the two
extremes of Eqs. (15.29) and (15.39). This makes it very risky to take
the slowest exponential time constant from a current clamp experi-
ment as �m (Section 15.5). It is necessary to use additional theore-
tical expressions to determine the ratio of the cell body and dendrite
resistances and then determine the appropriate roots of Eq. (15.74)
(Rall, 1969; Jack and Redman, 1971).

The voltage clamp is a much better technique for cable analysis
than the current clamp. Equations (15.30)–(15.32) provide a straight-
forward path from voltage clamp data to the accurate determination of
L and �m. In spite of this, the voltage clamp has not been widely
exploited in the analysis of cable properties. Rall’s 1969 analysis
clearly demonstrated the advantages of the voltage clamp. However,
at that time there were serious technical problems with voltage clamp-
ing neurons. Voltage clamping then required placing two microelec-
trodes in a cell, but this was quite difficult. The microelectrodes used
in those days had high resistances, so that with only one, the electrode
and cell were resistors in series. They divided an applied voltage in a
manner that made the voltage of the cell difficult to control. Current
was easier to control because with two resistors in series the same
current passes through both. For these reasons experimenters used the
current clamp for cable analysis. Much later, around 1990, electrophy-
siologists learned how to use low resistance patch electrodes to record
from neurons in brain slices. These electrodes (<10 M�) made voltage
clamping easy, but investigators long accustomed to doing cable ana-
lysis under current clamp have been slow to change their habits.

15.8 Synaptic integration in dendrites: analytical
models

Neurons use synapses to communicate. Although virtually every
part of a neuron can form a synapse, the generic case involves an
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axon terminal forming a synapse with a dendrite. Neurotransmitter
released by a nerve terminal opens channels and elicits current flow
through a small spot of membrane on a dendrite. An electrode in the
cell body can measure the effect of this current originating at a
distant site, and cable theory can describe how the voltage change
produced at the site of the synaptic input spreads through the rest of
the cell (Rall, 1967; Rall et al., 1967; Jack and Redman, 1971).
A complete analysis of this problem using the Rall model is quite
complicated. However, the qualitative features are well represented
by a simpler model consisting of a cylindrical segment with two
sealed ends (Fig. 15.10).

15.8.1 Impulse responses
We begin with the notion that a synaptic potential starts off as an
instantaneous impulse of voltage, which takes the form of a delta
function. The results will later be extended to a more realistic input.
The analysis developed in Section 15.5 provides the starting point.
With both ends sealed, the �i are defined in Eq. (15.39) as integral
multiples of p/L, and the coefficients of the sine terms, the Ai, are all
zero. We must use the initial condition to determine the Bi that
multiply the cosine terms. With an instantaneous impulse as the
synaptic input, the initial voltage at T ¼0 is a delta function

VðX; 0Þ ¼ S0�ðX � YÞ (15:75)

where Y is the site of the input indicated in Fig. 15.10. Here S0 might
be thought of as the charge that enters during the synaptic impulse
divided by the capacitance of subsynaptic membrane at Y.

We must now use a Fourier integral to find the Bi in order to
compose a delta function from cosines

Bi ¼
2S0

L

ZL

0

�ðX � YÞcos
ipY

L

� �
dX (15:76)

The delta function is one of the easiest functions to Fourier trans-
form. Since it is large at X ¼ Y and zero everywhere else, the integral
extracts the value of the cosine function at X ¼ Y

Bi ¼
2S0

L
cos

ipY

L

� �
(15:77)

The determination of B0 is a little different, being half as great as
Eq. (15.76) with i ¼ 0 (Eq. A3.2)

LYZ

X

electrode

dendrite

synapse

Fig: 15:10: A synapse on a

cylindrical dendrite. The X-axis

marks distance along the dendritic

cable. The recording electrode is

near one end at X¼Z. The synapse

is at X¼ Y. The electrotonic length

of the dendrite is L.
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B0 ¼
S0

L

ZL

0

�ðX � YÞdX ¼ S0

L
(15:78)

Now we can put these pieces together in Eq. (15.24) to obtain the
complete solution

VðX; TÞ ¼ S0

L
e�T þ 2

X1
i¼ 1

cos
piY

L

� �
cos

piX

L

� �
e� 1þ ip=Lð Þ2ð ÞT

 !

(15:79)

This result is plotted in Fig. 15.11 for a cable with L ¼ 2, setting X
equal to the recording site (Z ¼ 0.01 for recording near the left end
as indicated in Fig. 15.10) and taking the input at various sites
(values of Y). The plots show how a very brief transient signal is
shaped as it spreads.

Figure 15.11 makes a number of important points about the
passive spread of voltage signals. A proximal input, one near the
recording site, rises almost instantly. It decays rapidly at first and
slowly later on. A distal input, one far from the recording site, rises
after a delay and decays slowly. The decay of the distal input has the
same time constant as the slowest component of decay of the
proximal input. In fact, all of the various signals end up decaying
with the same final time constant, equal to �m. This corresponds
to �0 ¼ 0. This is a direct consequence of the fact that according to
Eq. (15.79), all responses are composed as sums of the same set
of exponential functions.

Another significant feature in Fig. 15.11 is that the peaks of the
responses decrease very strongly with increasing distance from the
recording site. The most extreme case would arise if the response
were plotted for an input exactly at the recording site. The initial

2.5
Y =  0.2

Y  =  0.5

Y =  1

Y  =  1.5
Y  =  2

2.0

1.5

1.0

Vol
tage
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0.0
0.0 0.5 1.0 1.5

Time ( τm )

2.0 2.5 3.0

Fig: 15:11: Plots of Eq. (15.79)

(summed to 2000 terms) for L¼ 2

and synaptic inputs at the indicated

distances from the recording site

(see Fig. 15.10).
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voltage would be infinite, but that is an artificial result due to the
delta function. That issue will be dealt with shortly, but for now it is
still useful to note that the peak decreases from 0.86 to 0.33 to 0.18
to 0.16 for Y ¼ 0.5, 1.0, 1.5, and 2, respectively. This decrease is far
greater than that predicted for the solution to the relevant steady-
state problem (Eq. (15.21)). These values of 0.62, 0.41, 0.3, and 0.27
span a factor of 2.3 compared to a factor of more than 5 for the
impulse responses. This illustrates a general aspect of cable theory.
Transient signals do not spread as far as steady signals. The reason
for this is that the membrane capacitance acts as a low-pass filter to
remove rapidly varying voltages.

15.8.2 Realistic synaptic inputs
The impulse response illustrates some important qualitative fea-
tures about how synaptic inputs are processed by the dendrite of a
neuron, but we are left wondering how the time course of a real
synaptic conductance will be shaped by a dendrite. The impulse
response provides a tool to address this question. Envisage an input
with a particular time dependence as an envelop of impulses. S0 of
Eq. (15.75) can be replaced by this function of time. Because time
here refers to the time course of the input, we represent it with a
different symbol, S, and call the function ’ (S).

If we denote Eq. (15.79) as Vimp(X, T), then the response to a
particular part of the input at time S is ’ (S)Vimp(X, T� S). The complete
response is then obtained by integrating this product from 0 to T
as follows

VðX; TÞ ¼
ZT

0

V impðX; T � SÞ’ðSÞdS (15:80)

This is called a convolution integral and it appears in many different
problems in physics. Here we are expressing the synaptic response
as a convolution of the impulse response and the synaptic input
function.

We will evaluate this integral (Eq. (15.80)) using the function2

’ðSÞ ¼ �2 Se��S (15:81)

This form of ’(S) rises, peaks at S ¼1/�, and then decays exponen-
tially. It does a pretty good job of reproducing the actual time course
of the conductance change seen at a real synapse (Finkel and
Redman, 1983). The �2 in front normalizes the area so that the
time course can be stretched or contracted without changing the
amount of charge entry.

Putting Eq. (15.81) and Eq. (15.79) together in Eq. (15.80) gives the
response to an alpha function synaptic input.

2 This function is commonly referred to as an ‘‘alpha’’ function, with the symbol � in

place of �. Using � here would create confusion because this symbol appears in the

time constants in the solution of the cable equation.
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VðX; TÞ ¼�
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(15:82)
We can rewrite this expression as

VðX; TÞ ¼�
2
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e�T

ZT

0

SeSð1��Þ dS

0
@
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L
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1
A ð15:83Þ

There are now two integrals to evaluate, both of the formRT
0

SecSdS ¼ 1
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Figure 15.12 plots this result for the same values of Y as in
Fig. 15.11. A r a pi d l y v ar y i n g in p u t i s u s e d f o r F i g . 15.12 a . T h is w a s
created by taking � ¼ 5. Since T is in units of �m, this means that the
synaptic input peaks at �m /5. The other c ase ( Fig. 15. 12b) shows a
slowly varying input, c reated by taki ng � ¼ 0. 2. This synaptic input
peaks at 5�m.

The r espo nses to a b rief input in Fig . 15. 12a c an be compared
with Fig. 15.11. The qualitative trend is similar. The more distal
inputs are smaller in amplitude and more spread out over time.
The effect is not as dramatic as for the impulse responses in Fig.
15.11 because an impulse is briefer and more sensitive to the high
frequency filtering action of the cable. It is significant that for Y� 1
the responses are very similar for both the impulse input and rapid
version of ’(S). This means that an experimental recording of a
distal synaptic potential contains very little information about the
actual time course of a fast synaptic input. The cable filters out this
information. It is also significant t hat t he shape o f the response in
Fig. 15.12a does not chan ge much as Y gets closer to L . This makes it
harder to evaluate the site of the input as it approaches the distal
end of the dendrite (Jack and Redman, 1971).

In contrast to the fast inpu t , Fig. 15.12b s h o w s t h a t t h e s lo w
input is not distorted as much by the cable. The amplitudes are
reduced, and they scale roughly according to the steady-state
expression (Eq. (15.21)). These inputs are slow enough for the vol-
tage to approach a steady-state.
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Plots such  as those in Figs. 15.11 and 15.12a have been used to
characterize how the shape of a response depends on the location of
a synaptic input. By comparing the synaptic recordings with these
kinds of theoretical curves it was possible to estimate the distance
of the synaptic input from the recording site (Rall et al., 1967; Jack
and Redman, 1971). When this analysis was followed by anatomical
examination to locate the synapse (in experiments on spinal moto-
neurons), the two methods were in good agreement (Redman and
Walmsley, 1983).

One interesting experimental approach to the question of loca-
tion is to apply voltage steps to the cell body and activate a synaptic
input at various times after the voltage step. The amplitude of the
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synaptic response is then plotted versus the time interval. A prox-
imal input settles rapidly to the value specified by the new voltage,
but a distal input takes a longer time (Hestrin et al., 1990). Imaging
techniques have permitted the detection of highly localized rises in
intracellular Ca2þ induced by synaptic inputs. This method localizes
an input far more precisely than is possible with cable analysis. As
yet, there has been little effort to combine cable analysis and Ca2þ

imaging to gain a deeper understanding of synaptic integration.

15.9 Compartmental models and cable theory

Most of the analytical results of cable theory are limited to cylin-
ders. Extending cable analysis to the complicated geometries routi-
nely encountered in the nervous system requires a general
approach that does not depend on the mathematical convenience
of cylindrical geometry. The most useful general approach is com-
putational, in which a computer solves the problem numerically for
an arbitrary shape (Segev et al., 1989).

Recall that to derive the cable equation (Section 15.2) we sliced a
cylinder into discrete sections (Fig. 15.2), and then wrote down the
equations for current flow and voltage change. Taking the limit of
infinitely many infinitely thin sections led to the cable equation. For
the more general approach here we will again slice or subdivide our
cell into discrete sections. But instead of going to a limit of infinitely
many infinitesimal slices, we will try to find a suitable size in which
the voltage can be taken as essentially uniform. Recall that in
Section 15.1 qualitative reasoning indicated that the voltage within
a cell varies only over rather large distances. This means that we do
not need to go to an extreme limit to obtain a useful model. We can
take the compartments as small enough to be nearly isopotential
(uniform in voltage), but not so small that there are too many for the
computer to handle.

Consider a neuron with a cell body and a dendrite (Fig. 15.13). We
might divide it up into compartments as shown. As a rough and
tentative guide we can calculate the length constant locally and
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Figure 15:13: A cell with a cell

body (1), primary dendrite (2–4),

and a branch point (5) with two

tapering segments (6, 7 and 8, 9).

Each compartment has its own

membrane resistance and

capacitance. Adjacent compartments

are connected by resistors.
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make the length of the compartment much smaller, say less than
5%, of the length constant. The voltage will vary within this section
roughly by a fraction of �e�0.05 ¼0.95, so the change is only 5%.

Figure 15.13 shows the resistors and capacitors that represent the
relevant circuit elements of each compartment. Borders were drawn in
an arbitrary manner, and it does not really matter how they are drawn
as long as the compartments are small enough to be isopotential. The
membrane surrounding each compartment has its own capacitance,
which is proportional to the surface area, and its own resistance,
which is inversely proportional to the surface area. These numbers
can all be calculated using the unitary membrane quantities �m and cm.
Between each compartment is a resistor for the cytoplasm. The cross-
sectional area at the border between the two compartments is used to
calculate the connecting resistance using �c.

The voltage of each compartment will change with the charging
of its membrane capacitance as current flows through the various
resistors connected to that compartment. We can write down the
basic circuit equation for each compartment. Compartment 1 is
the cell body, with a membrane resistance of Rm1. Its voltage, V1,
changes as its membrane capacitance, C1, is charged by the mem-
brane and axial current

C1
dV1

dt
¼ � V1

Rm1
� V1 � V2

Ra1� 2
(15:85)

The first term on the right is the current through the membrane of
the cell body and the second is the axial current through the cyto-
plasmic connection to compartment 2. This connection is repre-
sented by the resistance, Ra1�2.

For compartment 2 we have

C2
dV2

dt
¼ � V2

Rm2
þ V1 � V2

Ra1� 2
� V2 � V3

Ra2� 3
(15:86)

where the resistances and capacitance are analogous to those of
Eq. (15.85). Here there are two axial current terms, one for current
between compartments 1 and 2 and another for current between
compartments 2 and 3. The equation for compartment 4 would have
three such terms because it contains the branch. When we get to the
end of a branch there is only one axial term.

Each compartment has its own equation of the form of Eqs. (15.85)
and (15.86). The full description of a cell with N compartments is then
N such equations. They form a system of coupled linear first order
differential equations of exactly the same form that arises in multi-
state kinetics (Chapter 9). The matrix method developed for those
problems is fully applicable (Perkel et al., 1981), but in practice the
analytical solutions are rarely used. Instead, computers are used to
integrate the system of equations numerically, computing Vi as a
function of time for all the compartments.

Neuroscientists have developed powerful computer modeling
programs based on compartmental models. Use of these programs
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requires detailed knowledge of a cell’s geometry. Photomicrographs
of cells (Fig. 15.5) are used to render a system of compartments, in
some cases numbering in the thousands. With the membrane area of
each compartment, as well as the local cross-sectional area, the para-
meters Ci, Rmi, and Rai, iþ 1 can be calculated. With each parameter
specified the system of equations can then be integrated and the
passive voltage changes simulated with excellent accuracy. It is com-
mon practice in work with such models to carefully vary the com-
partmentalization scheme to make certain that compartments are
small enough to be isopotential. For example, if each compartment is
divided in half to generate twice as many compartments, the compu-
ter time needed to perform the integration will be greater but if this
check produces the same behavior then results with the original
number of compartments can be trusted as accurate.

15.10 Synaptic integration in dendrites:
compartmental models

To illustrate compartmental modeling we return to the subject
of synaptic integration, and use a hippocampal pyramidal neuron
(Fig. 15 . 1 4 a) to expa nd on the prin ciples from Section 15. 8. The
extensive branching of its dendrites makes it unlikely that an
equivalent cylinder representation will work for this cell.
Furthermore, we might also wonder about how voltage signals in
one branch spread to other branches. The equivalent cylinder
model ignores this question.

Figure 15.14b shows how t he voltage i n t he cell bod y
responds to synaptic inputs at different locations. These traces
were generated with the computer program NEURON (Hines and
Carnevale, 1997) using a compartmental model based on the cell in
Fig. 15. 14a. The model has nearly 200 compartments connected by
the simple rules of Section 15.9. NEURON then integrated these
�200 coupled equations, with the conductance of one of the com-
partments changing to simulate a synapse at the various sites indi-
cated (input funct ion was Eq. (15.81) with � ¼ 5).

As in Fig s. 15.11 and 15.12a, the synaps es at more distant inputs
produce responses at the cell body that are smaller and more spread
out in time. All of the responses coalesce to the same slow exponen-
tial. Again, we can see how passive voltage changes are sums of the
same exponentials, weighted differently according to the condi-
tions of each simulation. The equivalent cylinder captures these
qualitative effects, but the differences between proximal and distal
synapses are far greater in this real neuron. The distal synapses
attenuate to the point where they have almost no discernable
impact on the cell body. This implies that many distal synaptic
inputs must be activated simultaneously to generate a noticeable
response. The pyramidal cells of the hippocampus compensate for
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this attenuation by having higher receptor densities at distal loca-
tions so that activating synapses at those sites produces larger
currents (Magee and Cook, 2000).

The compartmental model can be used to illustrate a few more
interesting features of synaptic integration. First, although the den-
drite attenuates and retards responses at the cell body, the local
response at the location of the synapse is much larger, and quite
rapid ( Fig. 15 . 1 5 a) . The synapse depolar izes the m embrane quite a
bit in the segment of the dendrite it contacts. The dendrite is very
narrow so the capacitance of that region of membrane is small. The
current that enters the cell at that site can thus exert a large effect
on such a small capacitance. As this current spreads through the
dendrite, the large surface area of the many branches acts as a sink
to absorb more charge in the production of local voltage changes. That
leaves little charge to reach the cell body, hence the large disparity.
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It is also interesting to look at how synaptic inputs influence
other parts of the dendrite. In Fig . 15.15b we see that a synaptic
input at one site depolarizes another site with exactly the same
amplitude and time course as an equivalent synaptic input at the
second site depolarizes the first. In fact, this is a general reciprocity
relation that can be proven mathematically for any pair of sites in a
structure of arbitrarily branching cylinders (Major et al., 1993).

The location of a synaptic input in a dendritic arbor profoundly
influences how it functions in a neural circuit. The complexities of
synaptic integration make neurons very interesting and versatile
electrical devices. Different cell morphologies in various brain
regions serve specialized functions, allowing neural circuits to han-
dle information in different ways. The functional diversity is ampli-
fied enormously by the presence of voltage-activated channels in
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dendrites (Stuart et al., 2000). This makes the spread of all but the
smallest voltage signals active, and the passive models fail to cap-
ture these important features (Section 16.11).

Problems for Chapter 15

1. Show that the transformation V¼Ue�T converts the cable equa-
tion into a dimensionless form of the diffusion equation.

2. Determine the resistance of a semi-infinite cable and of a finite
cable with an open end at X¼ L, and then with a sealed end
at X¼ L.

3. Solve the cable equation in the steady-state for a finite length
segment with V¼V0 at X¼0. The end at X¼ L terminates with a
resistance Rterm (hint: the boundary condition at X¼ L is
1=ralðdV=dXÞ ¼ ðV=RtermÞ). Calculate the resistance in terms of
L, Rterm, �c and �m, and a.

4. In the preceding problem, place a sealed-end cylinder of length
LB of the same diameter at the end of a segment of length LA (L of
the preceding problem). Show that the combined resistance
equals that of a finite sealed-end cylinder of length LAþ LB.

5. Solve the cable equation for a cable extending to �1, with
V(X,0)¼ �(X) as the initial condition.

6. Show that two branches that satisfy the Rall conditions for an
equivalent cylinder have the same surface area (not including
ends) as the equivalent cylinder.

7. Determine the time constants for a current clamped cable with
an open end at X¼ L.

8. Determine the time constants of the branched structure in
Fig. 15.6 with a voltage clamp at Xp¼0, and with the Rall branch-
ing criteria fulfilled. This requires repeating the analysis of
Section 15.6.2 with Vp(0)¼0 instead of with the sealed end
condition.

9. Derive Eq. (15.74).
10. Plot Eq. (15.74) to visualize the roots, with the right-hand side

equal to 0.2, 1, and 5. Compare the two smallest roots indicated
from this plot with the integral and half-integral multiples of p.

11. Calculate L and �m from the time constants given in the legend of
Fig. 15.9. Is �3 consistent with this result? What does this tell you
about the validity of the equivalent cylinder representation for
recordings from this cell?

PROBLEMS FOR CHAPTER 15 433



Chapter 16

Action potentials

Many types of cells, including neurons, muscle fibers, and endo-
crine cells, have the capacity to generate electrical impulses. These
impulses, known as action potentials, play an important role in the
regulation of cell function, and constitute a biological mechanism
for the digitization of information. Action potentials arise from a
very special combination of cell membrane properties. The selec-
tive permeability of ion channels (Chapter 14) and voltage induced
transitions in membrane proteins (Chapter 1) join forces to gener-
ate rapid voltage changes with unique features. Action potentials
are not the passive decremental processes of Chapter 15, but wave-
like events that propagate over great distances. This chapter will
bring together many ideas developed earlier in this book to provide
a quantitative description of this fundamental form of bioelectric
signaling.

16.1 The action potential

An action potential presents a striking contrast with the passive
behavior of the preceding chapter. The basic phenomenon is most
easily visualized in a compact, spherical cell with no internal vol-
tage gradients. This avoids the complication of propagation, which
can be incorporated into the picture later.

First consider the passive response of a cell with only the channels
that generate a resting potential, Vr¼��70 mV (Section 13.3). These
channels are always open so the cell responds to a stimulus current
injected through an electrode according to the differential equation

C
dV

dt
¼ Istim þ ðVr � VÞ=R (16:1)

where C is the cell’s capacitance, Istim is the current applied through
an electrode, and R is the resistance, which for now is taken as
constant. The term (Vr �V)/R represents the current through the
channels that set the resting potential. The linear expression sim-
plifies things quite a bit compared to the Goldman–Hodgkin–Katz



current equation (Eq. (13.45)) or a rate theory expression (Eq. (13.62)).
This is entirely adequate for the present purpose, which is to com-
pare passive and active responses.

Equation (16.1) has the solution

V ¼ Vr þ IstimRð1� e�t=RCÞ (16:2)

Note that V ¼Vr at t ¼ 0, and the final value of Vrþ IstimR is reached
after the exponential term has decayed. This response is plotted in
Fig. 16.1 a. We see t hat increasing t he stimulus current moves the
voltage in the positive direction, to depolarize the membrane.
The final steady-state voltage increases linearly with current, and
the time constant, RC, is the same for each trace.

An excitable cell generates a response that is strikingly different
from the p assive responses i n Fi g . 16.1a. These r espo nses are shown
in Fig . 16.1 b . For t he s mallest stim ulus current the response r oughly
resembles the smallest passive response in Fig. 16.1 a, but for larger
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stimulus currents the response changes dramatically. Once the
stimulus current exceeds a certain value, the threshold, the voltage
shoots up to a value close to the NaþNernst potential (�50 mV), and
then returns to a negative value, undershooting the initial voltage
before settling back to the resting potential. This brief impulse of
voltage is highly characteristic of excitable cells and is known as an
action potential. Because of their shape action potentials are often
referred to simply as ‘‘spikes.’’

Action potentials cannot be explained with a static membrane
conductance such as the one that generates the resting potential.
Qualitatively, the action potential can be understood in terms of the
gating of ion channels, which makes the voltage swing back and
forth between the Nernst potentials for Kþ and Naþ (EK and ENa).
Recall from Chapter 13 that the membranes of neurons rest at a
negative voltage a bit above EK, because the permeability to Kþ is
much higher than to other ions. By contrast, ENa is around 50 mV, so
when enough Naþ channels open to enable Naþ permeability to
dominate, the voltage approaches ENa.

The action potential is initiated by the opening of voltage-
dependent Naþ channels. Making the voltage more positive opens
these channels by inducing a conformational transition in the channel
protein (Section 1.8). The Naþ channels are nearly all closed at the
resting potential of �70 mV. The Naþ channel has a midpoint for
activation at about �45 mV, and if a stimulus raises the membrane
potential, then the Naþ channels open. Naþ flows into the cell through
these channels, and when enough Naþ channels are open so that the
inward Naþ current exceeds the outward Kþ current, the voltage will
start to move toward ENa. Once this starts to happen the process has
become regenerative. Even if the stimulus current is turned off, Naþ

will keep moving into the cell, the voltage will keep moving in the
positive direction, and more Naþ channels will open. Eventually a
potential is reached just below ENa, reflecting the new dominance of
Naþ (Fig. 16.2a) .

This movement of Naþ through voltage-dependent Naþ channels
accounts for the rising phase of the action potential. If nothing else
happened then an action potential would be a one-way event.
However, there are two other voltage-activated processes that
follow Naþ channel activation and limit the time spent near ENa. One
of these is Naþ channel inactivation. This is a separate voltage-induced
transition in the Naþ channel protein that plugs or closes the channel.
The other process is the activation of additional Kþ channels (different
from those that produce the resting potential). These two processes
work together to terminate the action potential and repolarize the
membrane to a value near EK. The opening of additional Kþ channels
raises the Kþ to Naþ permeability ratio to a value much higher than the
resting value of�20 (Section 13.5). This makes the voltage undershoot
the resting potential and move closer to EK. Returning to a negative
membrane potential closes the voltage-gated Kþ channels so the mem-
brane potential can finally return to its resting state (Fig. 16.2a) .
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There are a total of three distinct voltage-dependent channel
transitions in the action potential, Naþ channel activation, Naþ

channel inactivation, and Kþ channel activation. Their impacts are
illustrated in Fig. 16.2b. A c omplete action p otential is shown, as in
Fig. 16.2 a, together with the v oltage wave-for ms that ar e compu ted
without Naþ channel inactivation, without Kþ channel inactivation,
and with only Naþ channel activation.

The next section will examine these voltage-dependent conduct-
ances in detail, but now we continue the qualitative discussion by
visualizing how these membrane mechanisms can make the action
potential propagate along a cable. If current is injected at one end of
a cable to depolarize it, the voltage will rise above the threshold. An
action potential will then be initiated near where the current is
injected, but current entering through the membrane will spread
axially, away from the site of excitation. Adjacent membrane will
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then be depolarized sufficiently to open new Naþ channels and
initiate a new action potential. In this way the action potential
can propagate all the way down the cable to its far end. The regen-
erative nature of the action potential supports propagation over
unlimited distances.

The responses of passive and active cables are compared in
Fig. 16.3. In the passive case the response decreases with distance
from the stimulus site (like Fig. 15.4). In the active case the peak
amplitude is the same over the entire cable. The shape is also
essentially the same wherever it is observed, but the distant sites
have a delay reflecting the time it takes for the action potential to
propagate there from its site of initiation. Action potentials gene-
rally propagate with a constant velocity.

Action potentials have a number of essential properties. Most
importantly, they are all-or-none events, with a sharp threshold. It is
almost impossible to produce a half-amplitude action potential. As
the stimulus is increased above threshold, the action potential’s
peak amplitude remains virtually constant, and indistinguishable
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from those evoked by weaker stimulus currents. But when the
stimulus drops below the threshold, the response is small and
resembles t he passive res ponses o f Figs. 16. 1a and  16.3 a. Another
important feature of an action potential is its refractory period, a
period immediately after the action potential during which a supra-
threshold stimulus will fail to evoke another action potential (dis-
cussed in Section 16.4). Two action potentials propagating toward
one another from opposite ends of an axon will collide and annihi-
late one another due to this refractory period.

The voltage-dependent transitions of Naþ and Kþ channels give a
full account of the action potential. The following sections will
develop a detailed quantitative analysis of the relation between
these ion currents and the action potential.

16.2 The voltage clamp and the properties
of Naþ and Kþ channels

To understand the action potential we need to study the Naþ and Kþ

channels and see how their activity varies with voltage and time. This
is experimentally challenging because the complex geometry typical
of excitable cells makes the voltage across the membrane hard to
control. Controlling the voltage at one region of the cell membrane is
not good enough because the voltage elsewhere will vary. The cur-
rents through different parts of membrane will then add together to
create a confusing mixture. It is necessary to ‘‘clamp’’ the voltage of
an entire cell so that a current measurement reflects only the
intended voltage. K. S. Cole and G. Marmont performed the first
voltage clamp experiments in 1949. A. L. Hodgkin and A. F. Huxley
then used the technique in a landmark study in 1952 that elucidated
the basic properties of neuronal Naþ and Kþ channels. They went on
to show how these channels generate action potentials.

These experiments were performed on a particularly large axon,
called the giant axon, located in the mantel of the squid. In the
typical animals used for experiments the axon was�20 cm long and
�0.5 mm wide. The unusually large diameter of the squid giant axon
was exploited by inserting a long thin silver wire axially as shown in
Fig. 16.4. An electrical stimulus applied to the wire is then trans-
mitted nearly uniformly along the entire length of the axon. The
axial wire effectively reduces the axon’s cylindrical geometry to a
circular geometry.

The axial wire eliminates spatial nonuniformity, but even with
this ‘‘space-clamp’’ the currents responsible for the action potential

V Fig: 16:4: The axial wire

distributes an applied voltage (V)

uniformly through an axon.
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are still very difficult to study because membrane conductances
vary with voltage. As channels open and close to produce changes
in current, the voltage will change. To solve this problem, a circuit is
needed to hold the voltage constant as the current varies. A voltage
clamp amplifier is designed to control the voltage on the axial wire,
and measure the current as the conductance of the membrane
changes. The standard protocol is to change the voltage in a step-
wise fashion. This gates the ion channels and changes the current
according to how the channels open and close.

Examples of Naþ current and Kþ current activated by a series of
voltage steps are shown in Fig. 16.5. Both Naþ and Kþ channels are
mostly closed at the resting potential and open as the voltage steps

20

–2000

–20
–1500

–  40

–1000

I Na
 (

µ 
A cm

–2
) 

–500

0

60

40

20

0

500

Na +  current(a)

4
Time (ms)

6 8 1 0

Fig: 16:5: Ionic currents

computed for the squid axon

from the Hodgkin–Huxley

representations (Section 16.3).

Time¼ 0 marks the onset of a

step in voltage from �70 mV

to the indicated level.

2 4 6
Time (ms)

8

–  40

–  20

0

20

40

60

100
0

1000

2000

3000

4000

5000 (b) K +  current

I K
 (

µ 
A cm

–2
)

440 ACTION POTENTIALS



are made more positive. With Kþ current (Fig. 16.5 b) the voltage is
always above EK (�77 mV) so the current gets larger and larger as
the voltage increases. The value of ENa is 50 mV for these calcula-
tions so the Naþ current is negative as long as the voltage is below
50 mV (following the convention that positive charge leaving a cell
produces positive current). Once the voltage steps are large enough
to open all the Naþ channels, further increases make the Naþ

current smaller as the voltage gets closer to ENa. For the one pulse
shown above ENa the current is positive.

The Naþ and Kþ currents are shown separately in Fig. 16.5. The
actual current recorded when the squid giant axon was bathed in
normal seawater was a sum of these two ionic components. To
separate these two currents seawater was prepared in which cho-
line replaced the Naþ. Choline does not pass through Naþ channels,
so with this solution only Kþ current was seen. Subtracting the
isolated Kþ current from the total current recorded in normal sea-
water gave the Naþ current. In later years, much better methods
were developed for separating different ionic components of mem-
brane current. In addition to improved ion substitution methods,
pharmacological agents were found that bind to specific channel
proteins and block them. For example, tetrodotoxin blocks most
Naþ channels and tetraethylammonium blocks most Kþ channels.
Currently, there is a huge arsenal of highly specific channel block-
ers available for use in these kinds of experiments.

The Naþ and Kþ currents shown in Fig. 16.5 have exactly the
right properties to account for the action potential. These currents
reveal directly the three basic voltage-dependent processes invoked
in the preceding qualitative discussion of the action potential’s
rising and falling phases. Figure 16.5 a sho w s that depo la r iz atio n
makes Naþ channels open rapidly. The actual rate depends on
voltage but for pulses above �20 mV the peak is reached in less
than one millisecond. By contrast, the Kþ currents are activated
more slowly. This leaves a brief window in time during which the
Naþ channels are the dominant permeation pathway in the axonal
membrane. So the Naþ channels are initially unopposed and Naþ

can push the voltage toward ENa.
After p eaking, the Naþ current in Fig. 16 . 5 a d ecays. The decay is

due to the inactivation process discussed in the preceding section. It
is distinct from activation and represents a separate effect of voltage
on the Naþ channel. Both the inactivation p rocess in Fig. 16 . 5 a and
the activation o f Kþ current in Fig. 16.5b occur after Naþ channel
activation. These two later processes contribute jointly to the repolar-
ization of the action potential, and as illustrated in Fig. 16.2, both are
necessary. Without the voltage-dependent Kþ current, Naþ channel
inactivation leaves only the resting Kþ channels and the current
through this pathway is too small to change the voltage rapidly.
Without Naþ channel inactivation, the repolarizing action of the
voltage-activated Kþ current meets too much resistance from open
Naþ channels so the voltage settles at a level closer to ENa than to EK.
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16.3 The Hodgkin–Huxley equations

The current recorded in a voltage clamp experiment provides the
essential information for a quantitative understanding of action
potentials. We will now see how quantitative descriptions of the
kinetics of channel gating can be used to reconstruct the basic
action potential wave-form. Section 16.5 will show how these
ideas can be extended to understand propagation.

The quantitative description of Naþ and Kþ channels introduced
by Hodgkin and Huxley (1952) is still in wide use today. They fitted
the separate components of Naþ and Kþ current in Fig. 16.5 to
appropriate empirical functions. For example, the decay of the Naþ

current of the squid axon looks like a single exponential (Fig. 16.5a),
and an exponential function fits this part of the data very
well. An exponential decay indicates that we have a two-state kinetic
process (Section 7.1). We therefore define inactivation as a
transition from an activatable/open state, A, to an inactivated closed
state, I.1

A
�h ��! I
�h

(16A)

In Schem e (16A) �h and �h are the forward and reverse rate
constants. The subscript for these rate constants, h, is also a variable
that denotes the fraction of channels in A (h ¼ [A]/([A]þ [I])). This
scheme is a simple two-state process, so we can use Eq. (7.4) for
the time dependence of h. In the present notation we have

h ¼ ðhi � h1Þe�t=�h þ h1 (16:3)

where h1 is the equilibrium value of h, equal to �h/(�hþ �h), and �h is
the time constant, equal to 1/(�hþ �h). Following a voltage step,
h relaxes from its initial value, hi, defined by the voltage prior to
the step, to a new value, h1, defined by the voltage stepped to.

In contrast to inactivation, the activation of Naþ channels is
not exponential but sig moidal (Fig. 16.5 a). The r ising phase
looks like an exponential raised to the third power. This suggests
that there are three independent subunits within the Naþ channel
protein, all of which must be turned on to open a channel. The
term ‘‘gating particle’’ is widely used for these voltage sensing units.

1 The letter A actually includes both the closed state that can open in response to

voltage and the open state. The inactive state is a distinct closed state that remains

closed at positive voltage. Thus, the kinetic process of inactivation includes transi-

tions from either the closed or open states to the inactive state. This idea is imbedded

in the expression below of the conductance as proportional to m3h (Eq. (16.5)). The

mechanistic basis for this model is generally recognized as inadequate for a full and

detailed kinetic description of the Naþ channel, but it is entirely adequate for a

quantitative modeling of the Naþ current for the purpose of understanding action

potentials.
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With a two-state mechanism such as S cheme (16A) for each o f t hese
gating particles, we use the variable m to denote the fraction of
these particles in the activated state, and write an expression corre-
sponding to Eq. (16.3)

m ¼ ðmi �m1Þe�t=�m þm1 (16:4)

We can raise m to the third power to obtain the fraction of channels
with all three gating particles activated. This is then the fraction of
activated channels.

To obtain the fraction of channels that have undergone activa-
tion but have not yet inactivated, we multiply m3 by h. The Naþ

current is then equal to the number of open channels times the
driving force V � ENa. If the number of Naþ channels is NNa, and each
has a single-channel conductance of �Na, then we can write the Naþ

current, INa, as

INa ¼ðV � ENaÞNNa�Nam3h

¼ðV � ENaÞGNa-maxððmi �m1Þe�t=�m þm1Þ3ððhi � h1Þe�t=�h þ h1Þ
(16:5)

where the second step used Eqs. (16.3) and (16.4) to replace m and h.
Note that NNa�Na was replaced by GNa-max because this product is
the maximum possible conductance of the membrane to Naþ, rea-
lized when all of the channels are simultaneously open. In the squid
giant axon GNa-max¼ 120 mS cm�2. With a single channel conduc-
tance of 4 pS, we can estimate the channel density as 300 mm�2

(Hille, 1991).
The representation of Kþ current is simpler since we only have

an activation process to deal with. Like Naþ channel activation, Kþ

channel act ivat ion is sigmoidal (Fig. 16.5 b). It is w ell described by
raising the two-state kinetics expression to the fourth power, as
though this channel protein contains four gating particles. Using n
to represent the fraction of Kþ channel gating particles in the
activated state, the same logic that lead to Eq. (16.5) gives the Kþ

current as

IK ¼ðV � EKÞNK�Kn4

¼ðV � EKÞGK-maxððni � n1Þe�t=�n þ n1Þ4 (16:6)

In the squid giant axon GK-max ¼ 36 mS cm�2. With a single channel
conductance of 20 pS the density of these channels is 18 mm�2 (Hille,
1991).

Current traces recorded under voltage clamp are readily fitted to
Eqs. (16.5) and (16.6), yielding values for m1, h1, and n1, as well as
values for the time constants, �m, �h, and �n. These are plotted as a
function of voltage in Fig. 16.6. The m1, h1, and n1 plots resemble
the plot of the Boltzmann equation (Fig. 1.5), as expected for a
voltage-dependent two-state equilibrium (Section 1.8). Likewise,
the �m, �h, and �n plots resemble Fig. 7.9 (Section 7.5).
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The plots of the Hodgkin–Huxley parameters in Fig. 16.6 pro-
vide another tour through the basic features of the action poten-
tial. Near the resting potential, h1 is high and m1 is low. The
product m1

3h1 is therefore low so Naþ channels are closed.
A sudden change in the voltage to the neighborhood of �50 mV
raises m, and the small value for �m means that the change is rapid.
This starts the cycle of Naþ channels opening and upward move-
ment in voltage. The changes in h and n would oppose this process,
but the longer values of �h and �  n compared to �  m (Fig. 16.6 b) insure
that the initial opening of Naþ channels can dominate at the ear-
liest time. When h and n catch up with m, their processes of Naþ
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channel inactivation and Kþ channel activation, respectively, initi-
ate the recovery of the action potential and the return of the
voltage toward its resting value.

For any voltage, we can take the measured values of �m and m1,
and using the simple expressions written in the text just below
Eq. (16.3), solve for �m and �m. The same can be done for h and n.
Hodgkin and Huxley (1952) did this and found that their �s and �s
were empirically fitted by the following expressions

�mðVÞ ¼
0:1ðV þ 40Þ

1� e�ðV þ 40Þ=10
�mðVÞ ¼ 0:108e�V=18 (16:7a)

�hðVÞ ¼ 0:0027e�V=20 �hðVÞ ¼
1

1þ e�ðV þ 35Þ=10
(16:7b)

�nðVÞ ¼
0:01ðV þ 55Þ

1� e�ðV þ 55Þ=10
�nðVÞ ¼ 0:055e�V=80 (16:7c)

It is important to realize that these equations were not derived
from physical principles, but are empirical representations of the
voltage-dependent gating processes. Although a satisfactory physical
interpretation for the expressions for �m and �n has been developed
in terms of Kramers’ theory (Goychuk and Hänggi, 2002), the utility
of these expressions derives from their role in accounting for elec-
trical impulses in terms of these conductances, rather than explain-
ing the actual conductance mechanisms.

These voltage-dependent rate constants can now be used to
calculate the precise trajectory of an action potential. For each of
the different gating particle transitions, we can write the rate of
change of the state variable in terms of these rate constants. With
reference to the differential equation for this kind of process (see
Eq. (7.2)), we have the rate of change of each gating variable as the
sum of the forward and reverse velocities

dm

dt
¼ �mð1�mÞ � �mm (16:8a)

dh

dt
¼ �hð1� hÞ � �hh (16:8b)

dn

dt
¼ �nð1� nÞ � �nn (16:8c)

Finally, we need an equation that describes the rate of change
of V. The change in voltage depends on the current through the
channels, so we can combine Eqs. (16.5) and (16.6)

C
dV

dt
¼ GNa-maxm3hðV � ENaÞ þ GK-maxn4ðV � EKÞ þ GLðV � ELÞ þ Istim

(16:9)

The additional ‘‘leakage’’ current, GL(V � EL), represents curr-
ent through channels that maintain the resting potential. It is
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essentially like the linear term in Eq. (16.1). In the squid giant
axon the measurements gave GL ¼0.3 mS cm�2 and EL ¼ �54 mV.
Here, Istim is a current provided by an electrode under experimental
control. If Istim is small, the voltage remains near rest where m3h
and n4 are small. The channels do not open so nothing happens.
Making Istim large and positive moves V to a level where m3h
becomes large. The large value of CdV/dt means that the voltage
will change.

Equations (16.8a)–(16.8c) and (16.9) are a system of coupled
differential equations that can be solved with a computer. To visua-
lize how a computer solves this problem, take an initial condition in
which n, m, h, and V are specified. For a very small increment in time,
�t, the changes �n, �m, �h, and �V can be calculated from the right-
hand sides of the relevant equation by simply multiplying by �t.
The slightly changed values of the �s and �s are then calculated for
this new voltage, Vþ �V, with Eqs. (16.7a)–(16.7c). This completes
one time step. Now the calculation can be repeated for another
time step and so on. The computer code for this iterative stepping
through time is actually quite short and simple. A computer is essen-
tial for practical work with these equations as there is no analytical
solution.

The action potentials shown in Figs. 16.1 and 16.2 were gene-
rated by this process of integrating Eqs. (16.8a)–(16.8c) and (16.9).
The close resemblance of these computed action potentials to
experimental recordings from the squid axon represents an
impressive success of the theory. It is important to appreciate
that the Hodgkin–Huxley equations were all based on voltage
clamp analysis, so the generation of an action potential is a bona
fide theoretical prediction. Section 16.5 describes the additional
success of calculating the action potential propagation velocity
when the Hodgkin–Huxley equations are combined with the cable
equation.

Before moving on it is worth pointing out that the solution to
these equations not only yields the voltage as a function of time, it
also yields the values of m, h, and n as a function of time. Thus, we
can reconstruct not only the action potential, but also the time
course of the Naþ and Kþ currents. Figure 16.7 a shows an action
potentia l, and Fig. 16.7b plots the time course of the normalized
conductances for Naþ and Kþ computed as the action potential
progresses: GNa/GNa-max is m3h and GK/GK-max is n. We see that
GNa/GNa-max rises rapidly, and this coincides with the upstroke of
the action potential; GK/GK-max rises later, and this coincides with
the repolarization and undershoot.

Values of m and h are plotted in Fig. 16.7 c to show how the rise in
m corresponds well with the rise in GNa/GNa-max and the fall in h
corresponds well with the decay in GNa/GNa-max. Figure 16.7 shows
how the Naþ and Kþ channels change their activity during an action
potential and how the m and h gating processes relate to the Naþ

current.
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16.4 Current–voltage curves and thresholds

Two special limiting cases of the Hodgkin–Huxley equations help to
illustrate how the threshold for action potential generation arises.
When a constant current is applied to an axonal membrane for a
long time, all the kinetic processes will eventually settle to an end
point. To describe this situation, we take Eq. (16.9), set dV/dt ¼ 0, and
set m, h, and n equal to m1, h1, and n1. The result is a steady-state
current–voltage relation. Calling this voltage Vs-s, we have

�Istim ¼ðVs-s � ENaÞGNa-maxm1ðVs-sÞ3h1ðVs-sÞ
þ ðVs-s � EKÞGK-maxn1ðVs-sÞ

4 þ GLðVs-s � E1Þ (16:10)

On the other hand, immediately after turning Istim on, m, with
the fastest time constant, will change before h and n. If the initial
voltage is V0, then we will have h and n still at their initial values
h1(V0) and n1(V0). The peak current will be close to that described by
m1(V) for a new voltage, V, and h1(V0) and n1(V0) for the prior
voltage. We call this voltage Vfast

�Istim ¼ðV fast � ENaÞGNa-maxm1ðV fastÞ3h1ðV0Þ
þ ðV fast � EKÞGK-maxn1ðV0Þ4 þ GLðV fast � E1Þ (16:11)
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Although Eqs. (16.10) and (16.11) look quite similar, the use of V0

for n and h makes a big difference. Equation (16.11) applies to a time
soon after the stimulus. We do not know exactly when, but it
is generally <1 ms, because �m is a l w a y s < 1 ms  (Fig.  16.6 b).
The important thing is that it approximates the voltage that gives
the peak current reasonably well.

These two equations define current–voltage relations with fun-
damentally different properties. A plot of Eq. (16.10) in Fig. 16. 8a
shows that the curve crosses the zero current axis only at the resting
potential of �65 mV (see inset). This is the only voltage for which
the current is zero, so no matter where the voltage is moved to
initially, it ultimately returns to the resting potential after Istim is
turned off. The rapid voltage-dependent channel gating transitions
do not change the resting potential. Because Naþ channels inact-
ivate, the Kþ channels dominate in the long term at any voltage.
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Now we turn to the fast current–voltage curve (plot of Eq. (16.11)
in Fig. 16 . 8 b). Expanding this plot around the r es ting potential (inset
of Fig. 16.8 b) shows t hat for small displacements away from the
resting potential, the positive, outward current will pull the voltage
back. However, slightly above �64 mV the current peaks and curves
down. At � �62.5 mV the current is zero again and above this point
the current is negative. This marks the threshold for action poten-
tial generation. If the voltage is displaced past this point, even
slightly, the negative, inward current through newly opened Naþ

channels will move the voltage in the positive direction, further
away from the resting potential. This will open more Naþ channels
and initiate an action potential. Figure 16.8 b is very useful for this
purpose, as it gives a good picture of what happens at the threshold.

The precise voltage at the threshold is not an absolute property
of the axon. This cu rve in Fig. 16 . 8 b i s based on the a ssumpt i on used
to derive Eq. (16.11) that m changes instantaneously as the voltage
changes while n and h do not change at all. If the voltage is changed
slowly, then n and h will have time to keep up with m and this will
alter the current. In fact, if the voltage is changed very slowly, then
the curve will follow Eq. (16. 10 ) and  Fig. 16.8a. There will be no action
potential. A very slow depolarization, by inactivating Naþ channels,
renders the axon inexcitable. This is called accommodation and is a well-
known property of excitable membranes. The concept of a voltage
threshold is thus somewhat fluid. The actual threshold voltage
depends on the nature of the stimulus as well as the initial voltage.

The shape of the current–voltage curve in Fig. 16.8 b is one of the
hallmarks of an excitable membrane. Taking the electrical resis-
tance as the slope of the current–voltage plot, a negative slope
means a negative resistance. In membrane biophysics, this only
occurs when voltage gates a channel. When the slope is positive
everywhere (Fig. 16. 8a), then c urr ent always pulls the v oltage back
to the resting potential. The membrane is stable and returns to its
resting state in response to any perturbation. By contrast, a region
of negative slope can be unstable. When the voltage is displaced to
such a point, then the current will move the voltage further away
rather than returning it to its original state. That is what makes the
downward crossing of the V -axi s in t he inset o f Fig. 16.8b so critical.

In addition to the threshold just discussed, the Hodgkin–Huxley
equations provide a clear explanation for the refractory period. This is
an increase in threshold following an action potential. With Naþ chan-
nels inactivated and more Kþ channels open, it takes more stimulus
current to produce an action potential. The recovery of Naþ channels
from inactivation (Fig. 16. 7c) and the closure of voltage-gated Kþ chan-
nels (Fig. 16.7b) jointly describe the decay of the refractory period.

After the refractory period an axon is supernormal (Swadlow et al.,
1980). During this time the axon has a lower threshold than it did
before the action potential. This period varies quite a bit between
different animals and types of axons but is usually maximal
between 7 and 20 ms after an action potential. One can imagine
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either a reduction in Naþ channel inactivation (increase in h) or a
reduction in Kþ conductance (decrease in n) giving rise to an
increase in excitability. An analysis of their relative contributions
indicated that the decrease in n has a greater impact and can
account for most of the reduction in threshold of the supernormal
period (Stockbridge, 1988).

16.5 Propagation

The analysis of m embrane c urrents in Sections 16.2–16.4 did n ot
treat spatial variations in voltage. In fact, the most important pro-
perty of the action potential is that it propagates (Fig. 16.3). Now
that we have seen how the voltage-dependent gating of Naþ and Kþ

channels can generate an action potential we can use these proper-
ties to achieve a quantitative understanding of propagation. The
starting point for spatial variations in voltage is the cable equation
from the preceding chapter. We take Eq. (15.7) and divide through
by rm as follows

cm0
qV

qt
¼ 1

ra

q2V

qx2
� V

rm
(16:12)

In this form we see that the change in voltage with time at a
particular position depends on two terms. The first is the axial term,
reflecting an imbalance of axial current flowing in from the left and
out to the right. The second term is the current through the mem-
brane. To incorporate current through the channels into the cable
equation, we replace this second term, V/rm, with the sum of the
membrane current terms from Eq. (16.9)

cm0
qV

qt
¼ 1

ra

q2V

qx2
� ðV � ENaÞGNa-maxm3h� ðV � EKÞGK-maxn4 � GLðV � ELÞ

(16:13)

The variables m, h, and n now vary with x, the position along the
cable, in addition to being functions of voltage and time. The
numerical procedure for computing how V, m, h, and n evolve
through time must be extended to include the spatial dependence.
The axon must be subdivided into many tiny segments of length �x
(Fig. 15.2). The increments in V, m, h, and n in each segment must be
calculated as outlined in Section 16.3. But an additional contribu-
tion arising from neighboring segments must be computed by eval-
uating (1/ra)(q2V/qx2). Computer programs can readily perform this
integration by extending the compartmental model methods of
Section 15.9.

Hodgkin and Huxley had a calculating machine but no computer
when they studied axons around 1950 so they modified Eq. (16.13)
to facilitate hand calculations. Their method also provides an
important insight into the velocity of action potential propagation
so it will be examined closely here.
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If one accepts the fact that an action potential preserves its shape
as it propagates, then the solution to Eq. (16.13) must have the form

Vðx; tÞ ¼ Vðx� �tÞ (16:14)

where � is the velocity. This is a very general mathematical expres-
sion that arises in the physics of waves. If V(x, 0) has some complex
shape centered around x0, then Eq. (16.14) says that at some later
time V will have the same shape, but centered at a new value of
x ¼ x0þ �t. Equation (16.14) is a general solution to a partial differ-
ential equation known as the wave equation

q2V

qx2
¼ 1

�2

q2V

qt2 (16:15)

as is easily checked by substitution.
Equation (16.13), along with expressions for m, h, and n

(Eqs. (16.8a)–(16.8c)), form a system of partial differential equations
in space and time. Using Eq. (16.15) allows us to eliminate the
second derivative with respect to x, replacing it with the second
derivative with respect to time. In this way we reduce this differ-
ential equation to a dependence on only one independent variable

cm0
dV

dt
¼ 1

ra�
2

d2V

dt2 þ ðV � ENaÞGNa-maxm3hþ ðV � EKÞGK-maxn4 þ GLðV � ELÞ

(16:16)

With time as the only independent variable, performing the numer-
ical integration by hand becomes practical. In a few hours one can
integrate in small steps (as small as 0.01 ms) for a few milliseconds.

The only number not known in Eq. (16.16) is �, the conduction
velocity. Hodgkin and Huxley found that for most choices of � the
numerical solution goes to V ¼ �1 as time evolves. If � is too large
or too small V blows up. After repeated attempts with different
values of �, they found that one particular value resulted in a V(t)
that returns to the resting potential after producing an impulse that
looks like the experimentally recorded action potential; �¼ 18.8 m s�1

was the value that produced a stable result. This compares well with
the experimental propagation velocity of 21.2 m s�1.

This determination of the propagation velocity from an analysis
of Eq. (16.16) represents a remarkable success of the ionic theory of
membrane excitability. It must be emphasized that the parameters
used as input in the calculation were based on voltage clamp mea-
surements. Although the use of Eq. (16.15) in the derivation of
Eq. (16.16) assumes a wavelike solution, the velocity of the wave
was not known. Thus, the similarity between the experimental and
theoretical values of � provides a stringent test of the theory.

Equation (16.16) cannot be solved analytically to obtain the
propagation velocity in terms of the parameters that represent the
channel properties. However, the dependence of conduction velo-
city on the cable parameters can be explicitly derived. We collect
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the basic parameters of Eq. (16.16) together by dividing through by
cm0. This yields 1/(�2racm0) as the factor multiplying q2V/qt2. The
factors multiplying the specific channel current terms are now all
of the form Gx/cm0. Since the densities of all the channels are fixed,
then each Gx will scale with the area; cm0 scales with area as well so
the ratios Gx/cm0 are constant. This makes the constant 1/(�2racm0)
invariant with respect to axon diameter. Once the value of this
factor that gives a stable solution to Eq. (16.16) is found, it will
work for any other axonal diameter. Denoting this factor as k gives

� ¼

ffiffiffiffiffiffiffiffiffiffiffi
k

racm0

s
(16:17)

Recall from Chapter 15 that ra ¼ �c/pa2 (Eq. (15.1)), where a is the
radius. Note that cm0 is the capacitance of the membrane of a unit
length of axon; cm0 ¼ 2pacm. These substitutions give

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ka

2�ccm

s
(16:18)

This is an important result because it tells us that the velocity
increases with the square root of the axon radius. In fact, this is
an old experimental result, as shown in a plot of conduction velo-
city versus diameter for many different squid and cuttlefish giant
axons (Fig. 16.9).

Equation (16.18) and Fig. 16.9 illustrate that, for axons, bigger
is faster. Since speed helps an organism in many ways, evolution
will favor large axons. The giant axon of the squid is a perfect
example. This axon runs through the mantel, triggering a contrac-
tion to generate a rapid burst of locomotion. This motion is part of
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an escape reflex of the animal to avoid predators, and the conduc-
tion velocity of this axon contributes to the speed of this response.

16.6 Myelin

The advantage of speed provided by a large axon weighs against the
disadvantage of size and energy cost. In a complex nervous system
with billions of neurons, too many large axons would make the
nervous system unmanageably huge and consume an inordinate
amount of metabolic energy. Invertebrates such as the squid gen-
erally have fewer neurons, but vertebrates have much more elabo-
rate nervous systems and need another strategy to speed up axonal
conduction. They have achieved this with myelin, a thick insulating
sheath that wraps around axons to increase their membrane resis-
tance and reduce their c apacitance (Fig. 16.10a). This increases the
conduction velocity. With myelin, a 10-mm diameter nerve fiber of a
frog conducts at about 20 m s�1 (Hodgkin, 1964), which is roughly
three times faster than a 100-mm diameter axon in the squid
(Fig. 16.9).

Myelin sheaths do not cover the entire axon surface. There are
bare spots, called nodes of Ranvier, spaced at regular intervals
(Fig. 16.10b ). At the node there is no myelin, so ions have unob-
structed access to the membrane. Electrical recordings from myeli-
nated axons showed that the nodes are the sites of action potential
generation. Extracellular fields recorded near a node showed that
action potentials are accompanied by active inward currents
(Huxley and Stämpfli, 1949). Recordings at other sites detected
only passive outward currents. The Naþ channels, which are essen-
tial to the initiation and propagation of action potentials, are con-
centrated at the nodes of Ranvier.

The high resistance of the myelin allows the depolarization at
one node to spread over a great distance without much current loss.
One way to think about this is that increasing the membrane resis-
tance increases the length constant, l. Myelin also reduces the
capacitance so that charge entering a node can change the voltage
of a greater area of axonal membrane. Both the increased resistance
and reduced capacitance work together to promote rapid spread of
an action potential from one node to the next. Because this entails

(a) (b) Fig: 16:10: (a) Myelin wraps itself

around an axon in a spiral form.

(b) Between the sheaths of myelin

are nodes of exposed axonal

membrane. The nodes are spaced at

regular intervals. Arrows indicate

ion entry. Action potentials

propagate by jumping from

node to node.
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jumping from node to node, this type of conduction in myelinated
axons is referred to as saltatory.

The geometry of myelinated axons shows a remarkable scaling
property in which the inner diameter, outer diameter, and inter-
node distance are in the same proportion for nerve fibers of differ-
ent sizes. This scaling has been shown to optimize conduction
velocity (Rushton, 1951). This can be understood in terms of the
length constant and time constant of the myelinated axon. First,
consider the length constant l ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
rm=ra

p
(Eq. (15.10)). A longer l

means the action potential will spread a greater distance, so we will
consider how this number can be maximized for a given outer
diameter, do, of the myelin. As the inner diameter, di, is reduced
the layer of myelin will become thicker, so rm will increase. The
value of rm can be calculated as the resistance of many concentric
cylindrical resistors in series. The membrane resistance of one of
these cylinders of diameter s is �m/(ps) for a unit length of axon
(Eq. (15.2)). We can therefore take rm as an integral from the inner
diameter to the outer diameter

rm ¼
�m

p

Zdo

s¼ di

1

s
ds ¼ �m

p
ln ðdo=diÞ (16:19)

However, as di gets smaller ra decreases because the area of the
axial cytoplasmic core goes down. With ra ¼ �c/(4pdi

2) (Eq. (15.1)) we
use Eq. (15.10) to write

l ¼
ffiffiffiffiffiffi
rm

ra

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�m=pÞ ln ðdo=diÞ

�c=ð4pdi
2Þ

s
¼ 2di

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m

�c
ln ðdo=diÞ

r
(16:20)

The value of di that maximizes l can be found by differentiating with
respect to di and setting the derivative equal to zero. The result is

di

do
¼ e�1=2 ¼ 0:607 (16:21)

Thus, scaling the inner and outer diameters of myelin so they keep
to this ratio maximizes l. Furthermore, fixing the ratio di/do in
Eq. (16.20) makes l proportional to di (or do). So scaling the inter-
nodal distance, l, with di or do, means that l will have the same
electrotonic length for different axonal diameters.

Now we can use the cable equation to extend this scaling rule to the
velocity of propagation. First, note that adding myelin leaves the
membrane time constant, �m¼ rmcm, unchanged. Just as rm/ ln (do/di)
(Eq. (16.19)), we have cm/1/(ln(do/di)) by the same kind of reasoning.
So the product remains the same. Recall from Chapter 15 that the
cable equation becomes dimensionless when expressed in units of
l and �m. Thus, the myelinated section between two nodes is equiva-
lent for any axonal diameter because �m is the same and the scaling
rule makes l the same when expressed in units of l. An action
potential at a node produces a voltage that spreads through the
myelinated portion of the axon. Because the spread is passive, the
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cable equation applies. Even though the time course of the voltage
change at the node is complicated and cannot be expressed mathe-
matically, the solution of the dimensionless cable equation describ-
ing the spread through the myelinated region will be the same for
different sized axons of equivalent electrotonic lengths. The time it
takes for a neighboring node to reach threshold will therefore be the
same. Denoting this time as tl, we can write the conduction velocity
as l/tl. With the scaling of l/ di and do, we have the result that the
conduction velocity increases linearly with diameter in myelinated
axons. This linear relationship has been demonstrated experimen-
tally (Waxman and Swadlow, 1977). The theoretical basis was pointed
out by Huxley and Stämpfli (1949) and the general principles of
scaling were elaborated by Rushton (1951).

Quantitative descriptions of Naþ and Kþ currents in the node
membrane follow the same basic form as the Hodgkin–Huxley
equations (Eqs. (16.7a)–(16.7c)), although in some instances the
exponents of m and n are lower (Hille, 1977). Computations of action
potentials with these representations gave reasonable velocities,
which increased linearly with diameter, provided that l and di

were scaled as specified by Rushton (Goldman and Albus, 1968).
Ultrastructural studies determined that the ratio di/do ranges

between 0.64 and 0.87, with a mean of 0.77 (Waxman and
Swadlow, 1977). This may be significantly greater than the optimal
value of 0.607 obtained above (Eq. (16.21)). However, the functional
dependence on di in Eq. (16.20) actually has a broad maximum so
that a deviation of this magnitude will hardly change l. The variable l
is also somewhat larger than optimal for conduction velocity, and
it has been argued that increasing l may have another advantage in
conserving energy. Each node is a site where energy is dissipated so
that spacing them out over greater distances will reduce the energy
cost of an action potential (Rushton, 1951).

Tradeoffs between speed and processing power bring up some
very interesting biological questions. Rushton (1951) pointed out
that increasing the velocity from 30 to 90 m s �1 might gain a rabbit
about 2 or 3 ms. This is not a significant advantage in a complex
behavior involving sequential activation of many neurons, because
the accumulated synaptic delays may consume much more time,
say �50 ms. On the other hand, a 3-fold reduction in diameter
allows an animal to put 9 times as many axons into the same
space, providing 29 ¼ 512 possible on–off combinations. Thus, mye-
lination will be selected for axons carrying a sensory input that
requires minimal interpretation. When subtle differences must be
discerned, speed will be sacrificed in favor of more information.

16.7 Axon geometry and conduction

Although long cables are a fundamental structural unit of axons,
there are many variations on this geometry. Axons branch
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extensively, change diameters either abruptly or gradually, and
have swellings or varicosities. As an action potential approaches a
point of increased diameter, the axial current encounters a larger
membrane capacitance. This mismatch will reduce the voltage
change. A region of axon enlargement thus acts as an obstacle to
action potential propagation and a number of interesting things can
occur (Goldstein and Rall, 1974; Swadlow et al., 1980). The various
possibilities are illustrated in Fig. 16.11. This figure shows simu-
lated action potentials in an unmyelinated axon with a diameter of
0.5 mm and with a single spherical varicosity of varying diameter.

The traces for swellings of 10 and 20 mm illustrate how the action
potential can be delayed by the obstacle (Fig. 16.11). Thus, we see a
longer time delay between the peaks at sites 1 and 2 compared to the
delay between the peaks at sites 2 and 3. Increasing the varicosity
diameter increases the delay. Charging of the varicosity membrane is
slowed by its greater capacitance. The voltage at the swelling (site 2
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propagation along an axon with a

swelling. Voltage at the sites
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in the sketch (Fig. 16.11a)) clearly shows the slower onset of the
action potential. When this delay outlasts the refractory period, the
continuing depolarization in the swelling initiates an action poten-
tial both in the forward and reverse directions (d¼ 22 mm). This
process is known as reflection. Finally, a varicosity can be so large
that the axial current can no longer drive the voltage to threshold.
Propagation then fails. So depending on the size of the varicosity,
the action potential will either be delayed, or reflected, or blocked.

Action potential failure has been documented at axonal enlarge-
ments, branch points, and varicosities (Swadlow et al., 1980). In
most cases, it is a close call so that small changes in excitability
will alter the outcome. Repeated action potentials can reduce excit-
ability by mechanisms such as Naþ channel inactivation or accu-
mulation of extracellular Kþ. This will then make action potentials
fail at the obstacles. When swellings are borderline for action
potential propagation, changes in membrane properties can tip
the balance toward success (Obaid and Salzberg, 1996), or failure
(Segev, 1990; Jackson and Zhang, 1995).

The delays of a few milliseconds seen with 10–20 mm varicosities
may be important for neural functions that involve precise timing.
These delays will vary if a neurotransmitter activates receptors on
the varicosity membrane. It is interesting that swellings actually
slow propagation since a uniformly larger diameter will conduct
more rapidly (Section 16.5).

Reflections are quite strange and one can imagine a dumbbell-
like structure with an action potential reverberating back and forth
indefinitely. Reflection has been demonstrated directly in record-
ings from molluscan neurons. Action potentials generated in the
axon propagate into the large cell body and bounce back (Tauc,
1962). Reflection is a rare occurrence in normal biological function,
but this form of recurring electrical activity is a major factor in
cardiac arrhythmias (Antzelevitch, 2001).

16.8 Channel diversity

The voltage-gated Naþ and Kþ channels that generate the action
potential belong to an enormous superfamily of related proteins
(Ashcroft, 2000; Caterall et al., 2002). There are at least nine mam-
malian Naþ channels that show qualitatively similar behavior but
differ quantitatively in the details of their voltage dependence and
kinetics. There are at least 50 Kþ channels and they are divided into
four distinct families. There are also at least ten voltage-gated Ca2þ

channels. They are related to the Naþ channels and in some types of
cells they generate an inward current that produces impulses,
which can propagate in the same way as an action potential.

The threshold, duration, shape, refractory period, velocity, and
other properties of an action potential vary according to the specific
properties of the ion channels present in the cell membrane. It is
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easy to see that a positive shift in the voltage dependence of activa-
tion of a Naþ channel (the m1 plot in Fig. 16. 6a) will increase t he
threshold. Slower kinetics of Kþ channel closure at negative vol-
tages will prolong the refractory period and delay the onset of the
supernormal period. In the case of Ca2þ channels, inactivation is
slow or in some cases almost nonexistent, and Ca2þ spikes generally
have a much longer duration. The diversity of the voltage-gated ion
channels translates directly into a rich diversity of electrical signal-
ing processes in biology.

Many of these channels have been subjected to voltage-clamp
analysis and in some cases quantitative representations of their
gating have been rendered in the same form used by Hodgkin and
Huxley. The methods developed in Sections 1 6 . 3– 16 . 6 readily inco r-
porate these different channels. So we have a very powerful general
method to relate the biophysical properties of these proteins to
their biological function. The biophysical properties in turn can
be understood in terms of their molecular structure, and ion chan-
nels were used to illustrate many principles in earlier chapters of
this book. In the following sections we will see how the biophysical
representations of membrane conductance illuminate aspects of
complex electrical activity in neurons and muscle fibers.

16.9 Repetitive activity and the A-current

A single pulse of current will usually evoke one action potential, but
when the stimulus current is sustained, action potentials can keep
firing repetitively. As the level of constant current increases, the
squid axon jumps from firing only one spike to firing more than
50 spikes per second. This frequency does not increase much with
further increases in current (Fig. 16.12). So the squid axon loses the
information about how strong the stimulus current was. That may
not matter for the escape reflex triggered by this giant axon, but
other functions may by improved be smarter neurons.

Just as the ion channels of the squid axon determine the shape of
the action potential, they also determine the frequency response.
Naþ channel inactivation and Kþ channel closure determine the
refractory period, which limits how high the frequency can get.
Naþ channel inactivation also makes the axon accommodate, or
lose its sensitivity, when a small stimulus current induces a slow
depolarization. That is what limited the response to a single spike
when the stimulus current was 5 mA (Fig. 16.12). Other excitable cells
have very different frequency response characteristics, due to differ-
ences in the kinetic properties of their voltage-gated channels.
Various forms of repetitive activity and the theories used to under-
stand them are reviewed in chapter 11 of Jack et al. (1983). Here we
will develop one important example to illustrate how adding a
different kind of Kþ channel, originally named the ‘‘A-current,’’
can dramatically alter the electrical behavior of a neuron. This
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channel enables neurons to vary their frequency of repetitive activity
linearly over a wide range.

Voltage clamp experiments in the cell body of the Anisidoris snail
revealed three ionic currents (Connor and Stevens, 1971a, b). There
was a Naþ current with qualitatively similar behavior to the squid
axon Naþ current, and two Kþ currents. One of the Kþ currents,
IK, bore some resemblance to that of the squid axon, but the other,
IA (the A-current), was very different. Figure 16.13 reproduces the
calculated currents under voltage clamp. A voltage step from �80 to
40 mV opens the IK channels with sigmoidal activation kinetics.
Note that IA is also activated with sigmoidal kinetics, but this cur-
rent inactivates with a time constant of about 200 ms. The inactiva-
tion increases as the voltage goes from �80 to �40 mV. That means
that when the starting potential is �40 mV (before the step
toþ40 mV), IA is already inactivated and the pulse toþ40 mV cannot
open a significant number of these Kþ channels.

The A-current accounts for some very distinctive forms of elec-
trical activity seen in the Anisidoris snail neuron. The consequences
of these channel properties can be explored using quantitative
expressions for the rate constants (the �s and �s) for each activation
and inactivation process. Such expressions with the same general
form as Eqs. (16.7a)–(16.7c) were developed by de Schutter (1986).
These expressions can be substituted in place of the Hodgkin–
Huxley expressions for Naþ and Kþ channels. The solutions to
these equations for sustained current (Fig. 16.14) look quite differ-
ent from those for the squid axon (Fig. 16.12). Now, increases in
the stimulus current produce a proportional increase in action
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Fig: 16:12: Simulations of

repetitive activity in the squid axon.

The Hodgkin-Huxley equations

were integrated with a stimulus

current (indicated on the left)

starting at 1 ms and continuing

during the entire simulation.
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potential frequency. The time interval between action potentials is
determined largely by the inactivation kinetics of the A-current.
Stronger stimulus currents move the voltage through the inactiva-
tion range (�80 to�40 mV, Fig. 16.13) more rapidly, so the A-current
inactivates faster and another action potential can fire sooner. The
relation between current and frequency is almost linear (Connor
and Stevens, 1971b; Jack et al., 1983), although there is no simple
mathematical analysis that explains this result.

The A-current is widespread and confers neurons with a number
of interesting characteristics (Rogawski, 1985). In addition to the
capacity for repetitive firing over a wide frequency range,
A-currents make the response of a cell very sensitive to small voltage
changes around rest. For a cell near�70 or�80 mV, there is little
inactivation so the A-current will be fully primed. It will then serve as
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Fig: 16:13: A comparison of the

kinetics of activation of IK, the

conventional Kþ current, and IA,

the transient Kþ current of a snail

neuron, plotted using the equations

of de Schutter (1986). The voltage

is held at levels ranging from�80

to�40 mV (indicated for each IA

trace), and then stepped to 40 mV.

Voltage steps are sketched below.
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a powerful brake to sudden excitatory impulses. A sustained stimulus
will only fire an action potential after a long delay during which
the A-current inactivates. If a cell has been above�50 mV for more
than �200 ms, then the A-current will have largely inactivated, so
the cell will be much more sensitive to stimulation. In addition, the
A-current, and other Kþ channels with similar properties, can be
inactivated by repetitive activity. Once these channels have inacti-
vated, there is less Kþ current to repolarize the action potential.
Action potentials then become broader, (Aldrich et al., 1979),
and when this happens in a nerve terminal, more Ca2þ enters
during a spike to trigger more neurotransmitter release (Jackson
et al., 1991).

Although the term A-current is still widely used, it has become
somewhat obsolete. A number of distinct Kþ channel proteins show
the requisite transient behavior. These include the product of the
Drosophila Shaker gene and its mammalian homologue Kv1.4. The
mammalian Kþ channels Kv3.2, Kv3.3, and Kv4.1 show similar
behavior and auxiliary Kþ channel subunits (b subunits) can com-
bine with the channel forming a subunits to convert a noninactivat-
ing form into an inactivating form.

16.10 Oscillations

Oscillations in voltage regulate a wide range of biological processes.
Biologically realistic oscillations can be generated by a minimal
complement of two channels with very different rates of activation.
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If the channels conduct ions with very different Nernst potentials,
then they will compete for control and the voltage will swing back
and forth. To illustrate this we will look at a model of Morris and
Lecar (1981), which was developed to explain voltage oscillations in
barnacle muscle fibers.

This model is based on two voltage-activated channels, one
permeable to Ca2þ and the other permeable to Kþ. The Nernst
potential for Kþ in the barnacle muscle fiber is �70 mV so opening
Kþ channels moves the voltage in the negative direction. The Nernst
potential for Ca2þ is 100 mV so opening Ca2þ channels moves the
voltage in the positive direction. Both channels open as the voltage
becomes more positive, but the Ca2þ channels open rapidly and at
slightly more negative voltages so that a stimulus that moves the
voltage in the positive direction opens the Ca2þ channels first. The
voltage is then pulled toward ECa ¼100 mV. The Kþ channels open
more slowly, but when they do they produce a larger conductance
that pulls the voltage back down. Both channels then close. A con-
stant stimulus current will then move the voltage up to repeat the
cycle.

With Ca2þ channels, Kþ channels, and a leakage pathway, we can
write a differential equation to describe how currents make the
voltage change.

C
dV

dt
¼ Istim þ GCaðV � ECaÞ þ GKðV þ EKÞ þ GLðV þ ELÞ (16:22)

The change in voltage reflects the sum of the various currents. Note
the resemblance to Eq. (16.9). Here EL ¼ �50 mV.

One of the attractive features of the Morris–Lecar model is that it
builds on the simplest picture of voltage gating of ion channels.
Recall that the curves for m1, h1, and  n1 (Fig. 16.6 a) resemble plots
of the Boltzmann equation used to describe voltage gating in
Section 1.8 (Fig. 1.5), and the curves for �m , � h , and  � n (Fig. 16 . 6 b)
resemble plots for voltage dependent rates in Section 7.5 (Fig. 7.9).
It is therefore appealing to replace the purely phenomenological
equations t hat d escr ibe m , h , and n (Eqs. (16.7a )–(16.7c)) w i t h s im p l er
equations based on elementary models of channel gating.

A Boltzmann function (Eq. (1.28)) is used to express the equili-
brium voltage dependence of the Ca2þ channel open probability,
m1, as follows

m1 ¼
1

1þ e�V=7:5
(16:23)

The Kþ channels open at a more positive voltage, so the Boltzmann
equation for n1, the Kþ channel open probability, is offset by 10 mV

n1 ¼
1

1þ e�ðV�10Þ=7:5 (16:24)

As already noted, an essential feature of this model is that the
Ca2þ channels gate much more rapidly than the Kþ channels.
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We can therefore assume that the open probability for Ca2þ  channels
tracks the voltage perfectly with no delay (in the spirit of the
instantaneous response of m in Eq. (16.10)). The time constant for m
is thus zero.

The Kþ channel responds more slowly to a change in voltage, so
we have

d n

d t
¼ ðn1 � nÞ=� n (16: 25)

This is like Eqs. (16.8a)–(16.8c) only in a slightly different form
(Problem 1). This t ells us that n , the Kþ channel gating p arameter,
changes with exponential kinetics, and �n is the time constant. So �n

will depend on the voltage, and we can use the model for barrier
crossing transitions in a membrane. With the open probability in
Eq. (16.24), inspection of Eq. (7.17) gives us

� ¼ �n

eðV�10Þ=15 þ e�ðV�10Þ=15
(16:26)

where �n is a parameter reflecting the height of the energy barrier of
the transition in the absence of a voltage. Here a value of�n¼ 0.05 ms�1

is chosen to give oscillation frequencies in the desired range.
Equatio ns (16. 22)–(16.26) are all we need to determine how the

voltage will vary with time. This set of equations is like the
Hodgkin–Huxley equations, only it is simpler because there are
only two independent variables. The same numerical method can
be used to solve these equations. We calculate the derivatives of n
and V with respect to time for an initial condition and then calculate
new values of n and V for a tiny time increment. The new n and V
values are used to calculate the derivative again and the cycle is
repeated for as long a time as necessary to simulate the behavior of
interest. The results are shown in Fig. 16.15 for four different sti-
mulus currents.

A subthreshold stimulus current, 35 nA, simply displaces the
voltage to a new value (one of the upper traces of Fig. 16.15; rest
is �50 mV and the new steady-state value is �27 mV). A suprathres-
hold stimulus current of 40 nA sends the system into a regular
oscillation, and a larger stimulus current, 80 nA, makes the system
oscillate faster. Finally, when the stimulus exceeds a critical value
near 115 nA, the oscillation starts but then dies out, settling to a new
stable voltage of �7 mV.

There are very powerful mathematical theories for oscillations,
so we will study the equations a bit more to touch on some of these
ideas. One can set the time derivatives of V and n equal to zero to
obtain two conditions of stability. Setting Eq. (16.22) equal to zero
and solving for n gives

n ¼ �Istim � GLðV � VLÞ � GCa-maxmðVÞðV � VCaÞ
GK-maxðV � VKÞ

¼ �Istim � GLðV � VLÞ � ðGCa-max=ð1þ e�V=7:5ÞÞðV � VCaÞ
GK-maxðV � VKÞ

(16:27)

16.10 OSCILLATIONS 463



where we have taken GK ¼GK-maxn, GCa ¼GCa-maxm(V), and used
Eq. (16.23) for m(V) in the second step. Setting Eq. (16.25) equal to
zero gives

n ¼ n1 ¼
1

1þ e�ðV�10Þ=7:5 (16:28)

where Eq. (16.24) was used for n1.
These two relations between n and V are called nullclines. They are

plotted in Fig. 16.16. The stimulus current was varied, using some of
the same values used to generate the traces in Fig. 16.15. The
nullclines for dV/dt (Eq. 16.27) climb upward as Istim is increased.
There is only one nullcline drawn for dn/dt because Istim does not
affect it.

We can hope to find a stable point where both the nullclines are
satisfied. Satisfying just one is clearly not good enough because the
other quantity will change. But the intersection of the two null-
clines is a place where both variables can remain constant. For
I ¼35 nA the nullclines intersect in three places. The lowest
is �27 mV, which is the stable endpoint of the corresponding simu-
lation in Fig. 16.15. The other intersections are not stable even
though the time derivatives are both zero. The reason is that
when infinitesimal displacements from these points in n–V space
make the derivatives nonzero, the signs of these derivatives are
such that n and V will always move away from those intersection

0

120 nA

80 nA

35 nA
40 nA

50 mV

100 200

Time (ms)

300 400

Fig: 16:15: Voltage oscillations

in the barnacle muscle fiber were

simulated with the Morris–Lecar

model. The threshold is between 35

and 40 nA and the two traces are

plotted together for these stimulus

currents; 80 nA gives sustained

oscillations and 120 nA gives

damped oscillations. All simulations

were started at a resting potential

of�50 mV.
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points. These points are like a chair balanced on one leg. The
slightest disturbance will tip it over.

It is worth mentioning that the threshold voltage for generation
of an action potential has the same unstable property. Look at the
point in the inset of Fig. 16.8 b where the current crosses zero
near �62 mV. There is zero current so the voltage will not change.
But the smallest perturbation to the left returns the membrane to
the resting potential and the smallest perturbation to the right fires
an action potential.

Reducing Istim below 35 nA moves the dV/dt nullcline down, so
the stable intersection point moves to the left. However, increasing
Istim moves the curve to the right and eventually removes this
intersection point. For Istim ¼80 nA there is only one intersection
point and it is unstable. The oscillations for this stimulus current
reflect the absence of a stable point in n–V space. There is no pair of
values of n and V that holds still for this value of Istim. Increasing Istim

further moves the one intersection point to the right, and as the two
curves intersect at or past the local peak in the dV/dt nullcline,
stability becomes possible. The final settling voltage of the 120 nA
trace in Fig. 16.15 corresponds with the intersection of the 120 nA
nullclines in Fig. 16.16.

The concept of n–V space provides a useful method of visualizing
oscillations. Figure 16.17 plots n versus V together with the null-
clines. The oscillating voltage for Istim ¼ 80 nA settles into a closed
loop that cycles endlessly in the counterclockwise direction. The
direction is evident from the way the loop is approached from the
initial point at �50 mV. Note that the loop encloses the intersection
of the two nullclines.

0.0

0.2

n

0.4
d V/d t  =  0

d n/d t =  0

80 nA

35 nA

–40 –20 0 20
V (mV)

120 nA

Fig: 16:16: Nullclines for the two

time-dependent variables of the

barnacle muscle oscillation model.

Plots are based on Eqs. (16.27)

and (16.28).
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The damped oscillation seen with Istim ¼120 nA gives an n–V plot
that spirals inward to the nullcline intersection point. This relates
directly to the damping of the oscillations in the lowest trace of
Fig. 16.15.

Much more can be done in the mathematical analysis of oscilla-
tions. For any set of parameters controlling the voltage dependence
of m, n, and �n, one can partition parameter space into regions with
qualitatively different dynamic behavior. Morris and Lecar (1981)
illustrate this and provide references to additional work in this area.

16.11 Dendritic integration

The dendrites of a neuron shape its synaptic inputs. This topic
commanded quite a bit of attention in Chapter 15, where it was
assumed that the cell membrane was passive. Although investiga-
tors had serious reservations about this assumption, it was widely
used because rigorous tests were difficult. In 1994 Stuart and
Sakmann used patch recording to demonstrate directly that dendri-
tic membranes have voltage gated Naþ channels. This changed the
way neurophysiologists study dendritic integration. Now the pas-
sive theory has been replaced by more realistic models with voltage-
gated channels. Passive theory still explains the integration of very
small subthreshold inputs, and it still serves as a useful baseline for
the development of active theories.

Now we will revisit the analysis of the preceding chapter, and
add channels to the membrane to see what changes. Experiments
such as those of Stuart and Sakmann showed that while the den-
dritic membrane contains voltage-gated ion channels, their density
is quite low, just a few percent of the density in the squid giant axon
membrane. The low density makes it difficult to initiate action
potentials by injecting current into the dendrite. In fact, when
large currents are injected into the dendrite, the voltage change
spreads to the cell body and to the initial segment of the axon. The
action potential is then triggered in the axon and propagates back
out into the cell body and dendrites.

20
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0.6

n 0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0
20

I stim  =  80 nA I stim  =  120 nA

40–40 –20 0

V (mV) V (mV)

20 40–40 –20 0

Fig: 16:17: Plots of n–V

trajectories for two of the traces

in Fig. 16.15, together with the

corresponding nullclines (dotted

curves) from Fig.16.16.
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The sim ulations in Fig. 16. 18b illustrate these po i nts, using t he
same neuronal morphology employed in the analysis of passive
synaptic integration (Fig. 15.14a), but with an added stretch of axon.
These simulations were produced using a compartmental model
(Section 15.9) to which voltage-gated ion channels were added
(Mainen et al., 1995; Rapp et al., 1996). The dendrites and soma
contained a dendritic Naþ channel and the axon contained Naþ

channels with a lower threshold and slower kinetics at a 40-fold
higher density compared to dendritic channels. Kþ channels were
present at 30% of the density of Naþ channels. A very slow synaptic

(a)

distant
site

input
site

axon

100 µm
20

50 mV

40

Time (ms)

60 800

distant 
siteinput

site

(b) axon

20 40

distant 
site

input
site

(c) axon

Time (ms)

60 800

Fig: 16:18: (a) The neuron is the same one used in Fig. 15.14a, except that a 500 mm axon has been artificially added to the

structure. (b) Simulated responses to a synaptic current at the input site produce an action potential, initiating in the axon and

propagating back into the dendrites. The density of voltage gated channels is 40 times higher in the axon than in the dendrites and

cell body. (c) With voltage-gated channels removed from the dendrites and cell body, the action potential is still triggered in the axon

but does not propagate out into the dendrites. Simulations were performed with NEURON (Hines and Carnevale, 1997), using

channel parameters from Migliore et al. (1999).
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input was applied to a site in the dendritic shaft indicated in
Fig. 16.18a. This produced a slow depolarization that spread to the
axon where the threshold was low enough for a spike to be triggered.
The action potential then spread throughout the dendrite.

Figure 16.18c shows the results of a simulation in t he same cell,
but with the channels removed from the dendrites. A synaptic input
can still generate an action potential in the axon but there is almost
no spread into the dendrites.

Simulations such as these defined the biophysical properties
that are essential for the replication of the experimentally observed
behavior (Mainen et al., 1995; Rapp et al., 1996). The low density
of channels in the dendrites and the high density in the axon creates
a large disparity in the thresholds in these two regions. If this
difference exceeds the attenuation of voltages as they spread
from the dendrites to the axon, then the threshold will be surpassed
in the axon before it is surpassed in the dendrite (Rapp et al., 1996). The
threshold difference is further amplified by differences in the voltage
dependence and kinetics of the Naþ channels in the two regions.

Although the low channel density in the dendrites prevents
action potential initiation, there are enough channels to enable
action potentials that start elsewhere to propagate into the den-
drites. Action potential spread through dendrites is especially
important because these voltage changes are sufficient to open
voltage-gated Ca2þ channels. The Ca2þ can then enter to initiate
signaling cascades that alter synaptic strength. Such activity-related
changes in synaptic function are what make it possible for the brain
to learn and to modify an organism’s response to outside influences.

This back-propagation of action potentials into dendrites can be
regulated by voltage-gated channels. The A-current, just discussed
in the context of repetitive activity, is present in dendritic mem-
branes. Recall that the degree of inactivation of these channels
varies with the resting voltage. The A-current can also be regulated
by phosphorylation. By keeping the membrane below threshold,
the A-current can limit how far an action potential will propagate
back into the dendrite, reducing the voltage change in remote
regions. But if the A-current has been inactivated, simulations sug-
gest that back-propagation can be quite pronounced (Migliore et al.,
1999). By varying the Ca2þ entry during electrical activity, this
mechanism can regulate how much the synapses of a neuron will
be modified by conditions and experience.

Problems for Chapter 16

1. Show that Eq. (16.8 a) can be expressed equivalently as d m/dt¼
(m1�m)/�m. (Of course, the other equations of this group can be
put in this form too.)

2. Why will the threshold by somewhat higher than the second zero-
crossing in the inset in Fig. 16.18b?
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3. Use Eqs. (16.7a)–(16.7c) and (16.9) to write a complete expression
that can be solved (numerically) to determine the resting
potential.

4. Plot Eq. 16.11 using an initial voltage of�75 mV instead of�65 mV
and use this plot to estimate the threshold. How does the value
differ from that indicated in Fig. 16.18b? First determine the
holding current to add to Istim to obtain �75 mV. The plotted
current must be corrected for this holding current.

5. Use any computer language or a mathematical modeling pro-
gram such as MATLAB, MATHCAD, or MATHEMATICA to write
code that integrates the Hodgkin–Huxley system of equations
with a stimulus current to generate an action potential (many
simulations here used MATHCAD). Do not use a modeling pro-
gram such as NEURON or GENESIS because these programs
already contain the code you should write.

6. For the case where Naþ channels do not inactivate (Fig. 16.2b,
trace c), use the Hodgkin–Huxley equations to calculate the final
value to which the voltage settles after the action potential.

7. Consider a squid axon where the Naþ channels have been com-
pletely blocked. A depolarizing current of 20 mA cm�2 is applied
for 50 ms. Sketch the voltage response and use the Hodgkin–
Huxley equations to estimate voltage at key time points both
during the stimulus and after it is turned off.
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Appendix 1

Expansions and series

A1.1 Taylor series

Any function can be approximated in the vicinity of a particular
point by a tangent line through that point. This approximation
takes the form

Fðxþ �xÞ � FðxÞ þ �x dFðxÞ
dx

(A1:1)

This is illustrated graphically in Fig. A1.1. The deterioration of this
approximation with distance is clear. As �x increases the curvature
pulls the function away from the line. The approximation can be
improved by incorporating the second derivative

Fðxþ �xÞ � FðxÞ þ �x dFðxÞ
dx
þ �x

2

2

d2FðxÞ
dx2 (A1:2)

Now we are using a parabola through the point at x instead of a line.
This works better but it too fails as �x grows.

This idea is generalized with the Taylor expansion, which can
approximate any continuous function at arbitrary distances from x
to any desired degree of accuracy, provided that all the derivatives
are defined at x, as follows

Fðxþ �xÞ ¼ FðxÞ þ �x dFðxÞ
dx
þ �x

2

2

d2FðxÞ
dx2

þ �x
3

6

d3FðxÞ
dx3

� � �

¼ FðxÞ þ
X1
n¼ 1

�xn

n!

dnFðxÞ
dxn (A1:3)

Taylor expansions of functions to first or second order are
encountered very often and are extremely useful in theoretical
analysis. The expansions of the following functions are especially
common. They were calculated directly from Eq. (A1.3) to third
order. They are generally valid for small values of x

ex ¼ 1þ xþ x2

2
þ x3

6
� � � (A1:4)

lnð1þ xÞ ¼ x� x2

2
þ x3

3
� � � (A1:5)

ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

¼ 1þ x

2
� x2

8
þ 3x3

48
� � � (A1:6)

x

F ( x)

x +  δ x

Fig: A1:1: An arbitrary function

is approximated in the vicinity of x

by a line through that point with a

slope equal to the derivative at that

point (Eq. (A1.1)).



A1.2 The binomial expansion

This takes the form

ð�þ �ÞN ¼
XN

i¼ 0

N!

ðN � iÞ!i!�
i� N� i (A1:7)

This is easily checked by trying out small values of N. For arbitrarily
large N the combinatoric term N!/(N � i)!i! represents the number of
ways of selecting � i times from N factors.

A1.3 Geometric series

It is easy to check by multiplying out the product that

ð1� �Þð1þ �þ �2 þ �3 � � � �nÞ ¼ 1� �nþ1
(A1:8)

The sum of a geometric series is the second factor on the left, so

Xn

i¼ 0

�i ¼ 1� �nþ 1

1� � (A1:9)

Differentiating this expression with respect to � and then multi-
plying by � gives

Xn

i¼ 0

i�i ¼ �ð1� �
nþ 1Þ

ð1� �Þ2
� ðnþ 1Þ�nþ 1

1� � (A1:10)

For n!1 and 0<�< 1, we have

X1
i¼ 0

�i ¼ 1

1� � (A1:11)

X1
i¼ 0

i�i ¼ �

ð1� �Þ2
(A1:12)

from Eq. (A1.9) and Eq. (A1.10), respectively.
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Appendix 2

Matrix algebra

A2.1 Linear transforms

Matrices simplify the mathematical analysis of problems with mul-
tiple linear equations and variables. For example, four linear equa-
tions with four unknowns take the form

a11x1 þ a12x2 þ a13x3 þ a14x4 ¼ y1 (A2:1a)

a21x1 þ a22x2 þ a23x3 þ a24x4 ¼ y2 (A2:1b)

a31x1 þ a32x2 þ a33x3 þ a34x4 ¼ y3 (A2:1c)

a41x1 þ a42x2 þ a43x3 þ a44x4 ¼ y4 (A2:1d)

Using matrices and vectors, we can compress this into one equation

Ax ¼ y (A2:2)

where x and y are vectors of the form (x1, x2, x3, x4) and (y1, y2, y3, y4),
and A is a matrix

A ¼

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

0
BB@

1
CCA (A2:3)

The vectors are expressed in column form so that Eq. (A2.2) is

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

0
BB@

1
CCA

x1

x2

x3

x4

0
BB@

1
CCA ¼

y1

y2

y3

y4

0
BB@

1
CCA (A2:4)

where the multiplication of a matrix times a column vector means
treating each row of the matrix as a vector and then taking vector
dot products of each row with the column vector. This gives each
entry of y as the sums in Eqs. (A2.1a)–(A2.1d) .

The compactness of this notation is maintained when we con-
sider a series of successive transformations. After taking Ax ¼ y, in
which x is transformed to y, we can perform a second transform
By ¼ z . I f we ke pt t he notatio n of Eq s. (A2.1a)–(A2.1d) and wrote out
z1, z2, z3, and z4 in terms of x1, x2, x3, and x4, the result would be
exceedingly complicated. But matrix form makes it simple.

BAx ¼ z (A2:5)

This works because multiplication of matrices follows the rule that
each element of the product BA is given by the vector dot product of



the appropriate row of B and the appropriate column of A. For the
element at the intersection of the ith row and jth column of BA

ðBAÞij ¼
X4

k¼ 1

bikakj (A2:6)

A2.2 Determinants

The determinant is defined for a square matrix as the sum of all the
products that can be formed by multiplying together elements, where
each column and each row index is used only once in each product. The
sign of each term is negative if an odd number of index swaps makes all
elements have the form ii; otherwise the sign is positive. The determi-
nant of A is denoted as |A|. In the case of a 2�2 matrix, we have

jAj ¼ a11 a12

a21 a22

����
���� ¼ a11a22 � a12a21 (A2:7)

For a 3 �3 matrix,

jAj ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

������
������

¼ a11a22a33 � a11a32a23 � a21a12a33 þ a21a13a32 þ a31a12a23 � a31a22a13

(A2:8)

If one row (or column) can be formed by a linear combination of
the other rows (or columns) then the determinant is zero. Thus, the
condition of a nonzero determinant tells us whether the rows (and
columns) are linearly independent. For example, consider a matrix
A with the fourth column all zeroes. Now, make a new matrix A0,
and replace the zeroes in the fourth column with y obtained as Ax.
The determinant of A0 would be zero because the fourth column is a
linear combination of the other three. This makes the fourth col-
umn redundant. It can be absorbed into the other three columns
and the transformation can be expressed with a matrix consisting of
only three columns.

If there is redundancy in a matrix then the corresponding linear
equations are also redundant. That means that when we trans-
formed the four elements of x to four elements in y, one of the
four elements of x was unnecessary, and we could have calculated
the four elements of y with just three xs. That means we cannot use
y to recover the four values in x because that would entail solving
for four unknowns with only three equations.

If the matrix is not redundant, then we can return from y back
to x. This reverse transformation defines the inverse matrix.

A�1y ¼ x (A2:9)
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This has the same basic form as Eq. (A2.2), and A�1 is a square
matrix of the same dimensions as A. A matrix can be inverted if
and only if |A| 6¼ 0.

If we multiply Eq. (A2.9) on the right by A

AA�1 y ¼ Ax (A2:10)

The product AA�1 ¼ I, where I is the identity matrix (such that
Ix ¼x). The matrix I has ones along the diagonal, and zeros every-
where else

I ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BB@

1
CCA (A2:11)

An important general theorem for matrices with nonzero deter-
minants is that the determinant of a product is equal to the product
of the determinants.

jABj ¼ jAjjBj (A2:12)

For 2 �2 matrices

jAjjBj ¼
a11 a12

a21 a22

����
���� b11 b12

b21 b22

����
���� ¼ ða11a22 � a12a21Þðb11b22 � b12b21Þ

¼ a11a22b11b22 � a11a22b12b21 � a12a21b11b22 þ a12a21b12b21

(A2:13)

and

jABj ¼
a11b11 þ a12b21 a11b12 þ a12b22

a21b11 þ a22b21 a21b12 þ a22b22

�����
�����

¼ ða11b11 þ a12b21Þða21b12 þ a22b22Þ � ða11b12 þ a12b22Þ
� ða21b11 þ a22b21Þ
¼ a11b11a21b12 þ a11b11a22b22 þ a12b21a21b12 þ a12b21a22b22

� a11b12a21b11 � a11b12a22b21 � a12b22a21b11 � a12b22a22b21

¼ a11b11a22b22 þ a12b21a21b12 � a11b12a22b21 � a12b22a21b11

(A2:14)

The final results of Eqs. (A2.13) and (A2.14) are equal. Equation
(A2.12) can be proven for square matrices of any dimension.

A2.3 Eigenvalues, eigenvectors, and diagonalization

Consider an equation where a matrix times a vector equals a scalar
times the same vector

Ax ¼ lx (A2:15)
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In this equation l is known as an eigenvalue (or characteristic value)
of matrix A, and x is known as an eigenvector (or characteristic
vector) of matrix A. This kind of equation appears quite often so
we will outline how to solve for the eigenvalues, and explore some
properties of the eigenvectors.

Since lx ¼ lIx, we can rearrange Eq. (A2.15) to give

ðA � lIÞx ¼ 0 (A2:16)

Because this is equal to zero, we could express one of the columns of the
matrix A� lI as minus the sum of the others.1 So the columns of this
matrix are not linearly independent, and its determinant must be zero

jA � lIj ¼ 0 (A2:17)

This is called the characteristic equation of A. It is a polynomial in l
of order equal to the dimension, n, of the matrix. This can be seen
using the above comments on determinants. A product of n ele-
ments taken from different rows and columns can have up to n
diagonal elements. The determinant includes the product of the
diagonal elements

Qn
i¼ 1ðaii � lÞ, and this is an nth order polynomial

in l. Other terms of the determinant will be lower order poly-
nomials in l. There will also be a term without l (it equals |A|). So
the determinant will be a sum of powers of l with the highest order
term being ln.

The eigenvalues of a matrix can thus be determined as the roots
of Eq. (A2.17). An nth order polynomial has n roots, so an n � n
matrix has n eigenvalues. Sometimes, some of the eigenvalues are
identical, and they are called degenerate. Eigenvalues can also be
complex.

Each eigenvalue is assumed to have an associated eigenvector
which satisfies Eq. (A2.15). We give the eigenvalues and eigen-
vectors indices to keep track of them. So there are then n equations
like Eq. (A2.15)

Axi ¼ lixi (A2:18)

Now construct an n � n matrix, the columns of which are the
eigenvectors

X ¼ ðx1;x2; . . .xnÞ (A2:19)

The transpose of this matrix, defined by switching the rows into
columns or, equivalently, the columns into rows, can be written as

Xt ¼

x t
1

x t
2

�
�
x t

n

0
BBBBB@

1
CCCCCA (A2:20)

where each vector xi
t is xi transposed from a column to a row.

1 Note that x¼ 0 also solves Eq. (A2.14), but this result is of no interest.
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With no loss of generality, we can stipulate that each x has a
length of one in an n-dimensional space; xi

2 ¼1 (an eigenvector
scaled by a factor still satisfies Eq. (A2.15)). Furthermore, it can be
shown that the xi form an orthogonal set of vectors such that the
product of any two is zero; xi

t xj ¼0, if i 6¼ j. Note that multiplying a
row vector by a column vector follows the convention for matrix
multiplication but is equivalent to taking a vector dot product.
Because of the way the products of the vectors work out to zero or
one, Xt and X are inverses; Xt X ¼ I.

Multiplying A by X and using Eq. (A2.18) gives

AX ¼ ðl1x1; l2x2; . . . l�xnÞ (A2:21)

Multiplying this equation on the left by Xt gives a matrix on the
right-hand side of the equation for which each element has the form
xi

tljxj. The off-diagonal elements on the right-hand side are all zero
because xi

txj ¼0, and the diagonal elements are the eigenvalues,
because xi

2 ¼1. So we have

XtAX ¼ L (A2:22)

where L is a diagonal matrix with �ii ¼ li.
The operation shown in Eq. (A2.22) of multiplying on the left and

right by matrices to obtain a matrix with the eigenvalues of the
original matrix along the diagonal and zeroes everywhere else is
called diagonalization. Recall that XtX ¼ I. Because of the product
rule (Eq. (A2.12)), that means that diagonalizing a matrix does not
change the determinant. The determinant of L is just the product of
its elements. since it is the only nonzero product that can be formed
from elements from different rows and columns. Since the deter-
minant of A and L are the same, we have

jAj ¼ jLj ¼
Yn

i¼1

li (A2:23)

Thus, once the eigenvalues of a matrix have been found, the deter-
minant is readily calculated.
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Appendix 3

Fourier analysis

Fourier analysis enables one to express functions as sums of the
trigonometric sine and cosine functions. We will first show how
this works with an example. Take the periodic function that flips
betweenþ1 and �1 at regular intervals of p (Fig. A3.1). This function
is perfectly represented by the sum

FðxÞ ¼ 4

p

X1
i¼ 1

sinðð2i� 1ÞxÞ
2i� 1

 !
(A3:1)

The first four terms of this series are plotted on the left in Fig. A3.2 and
the sums produced by successive addition of each term are plotted
on the right. With the addition of each higher frequency term the sum
looks more and more like the function plotted in Fig. A3.1.

Equation (A3.1) is an example of a Fourier series. In general, we
can express any function in the interval [�p, p] as a sum of the form

FðxÞ ¼ A0

2
þ
X1
i¼ 1

ðAisinðixÞ þ BicosðixÞÞ (A3:2)

To put this representation to use we need to know the values for Ai

and Bi. These are derived by multiplying Eq. (A3.2) by sin( jx) or cos( jx)
and integrating over the interval (where j is a positive integer). The
right-hand side then becomes a sum of integrals of the form

Zp
�p

sinð jxÞsinðixÞdx ¼ 0 for i 6¼ j

¼ p for i ¼ j (A3:3a)

Zp
�p

cosð jxÞcosðixÞdx ¼ 0 for i 6¼ j

¼ p for i ¼ j (A3:3b)
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y

Fig: A3:1: Plot of an alternating

step function.



and

Zp
�p

sinð jxÞcosðixÞdx ¼ 0 (A3:3c)

For each equation produced from Eq. (A3.2) by this multiplication
and integration, only one of the terms is nonzero. For the equations
produced by multiplying Eq. (A3.2) by sin(jx), the only nonzero term
gives

Aj ¼
1

p

Zp
�p

FðxÞsinð jxÞdx (A3:4)

For the equations produced by multiplying by cos(jx), we have

Bj ¼
1

p

Zp
�p

FðxÞcosð jxÞdx (A3:5)

To obtain A0, integrate Eq. (A3.2) as is. The integrals of sin(ix) and
cos(ix) in this interval are all zero, so we are left with the integral of
A0 from �p to p. This gives 2p, so

A0 ¼
1

p

Zp
�p

FðxÞdx (A3:6)

i = 1

i = 2

i = 3

i = 4

Fig: A3:2: Left: plots of the first

four terms in the sum in Eq. (A3.1).

Right: plots showing the result

of adding each of the four terms

one by one.
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Equatio ns (A3.4 )–(A3.6) p rovide a general method for d eriving
explicit forms for the coefficients in Eq. (A3.2). Virtually any func-
tion can be expressed in this way. Fourier coefficients for a large
number of commonly encountered functions have been derived,
and the results can be found in mathematical tables.

It is worth noting that it is usually easy to see when a Fourier
series should consist of either sines only or cosines only. If F(x) is
even, with F(x) ¼ F(�x), then it will be constructed from cosines,
which are also even. If F(x) is odd, with F(x) ¼ �F(�x), then it will
be constructed from sines, which are odd.

Now look at the closely related Fourier transform. Instead of
using a sum of trigonometric functions, we can go to the limit of
infinitesimal spacing between the frequencies of the sine and
cosine waves. This leads to the representation of our function as
an integral

FðxÞ ¼
Z1
0

AðsÞsinðsxÞdsþ
Z1
0

BðsÞcosðsxÞds (A3:7)

This is like the sums in Eq. (A3.2), but the continuous variable s has
replaced our summation index i.

For Fourier transforms it is common to take advantage of Euler’s
formula

eix ¼ cosðxÞ þ isinðxÞ (A3:8)

Now we express our function F(x) as an integral

FðxÞ ¼
Z1
�1

GðsÞeixsds (A3:9)

The cosine integral in Eq. (A3.7) is the real part of this expression,
except that the limits of integration have been extended to �1.
The �1 limit facilitates the analysis without abandoning the spirit
of adding together wave-like trigonometric functions.

An expression for G(s) is derived by multiplying by e�ixs0 and
integrating over x

Z1
�1

FðxÞe�ixs0dx¼
Z1
�1

Z1
�1

GðsÞeixse�ixs0dsdx

¼
Z1
�1

GðsÞ
Z1
�1

eixðs�s0Þdx

0
@

1
Ads (A3:9)

The second integral in brackets over x is 1/2p times a well-known
representation of the delta function, �(s � s0).

Z1
�1

FðxÞe�ixs0dx ¼ 1

2p

Z1
�1

GðsÞ�ðs� s0Þds (A3:10)
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Integrating over s on the right-hand side pulls out the value of G(s)
for which s ¼ s0

Z1
�1

FðxÞe�ixs0dx ¼ 1

2p
Gðs0Þ (A3:11)

This is the inverse Fourier transform. Note the symmetry between
this expression and the Fourier transform (Eq. (A3.9)). We can thus
go back and forth between representations in terms of the two
continuous variables x and s. In practice, these two variables are
often time and frequency.

Fourier transforms are particularly useful in solving differential
equations. This is because of the simple results obtained when
taking the Fourier transformation of a derivative. Use the notation
�(G) to denote the Fourier transform of G. In this notation, the
Fourier transform of the derivative of G(s) is

�
dG

ds

� �
¼
Z1
�1

dG

ds
eixsds (A3:12)

Integrating by parts gives

�
dG

ds

� �
¼ GðsÞeixs

��1
�1 �ix

Z1
�1

GðsÞeixsds (A3:13)

One often knows that the value of G(s) at �1 is zero, so

�
dG

ds

� �
¼ �ix

Z1
�1

GðsÞeixsds ¼ �ix�ðGÞ (A3:14)

In words, the Fourier transform of the derivative of a function is �ix
times the Fourier transform of the function. It is easy to extend this
to higher order derivatives. Multiplying by �ix again gives

�
d2G

ds2

 !
¼ �x2�ðGÞ (A3:15)
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Appendix 4

Gaussian integrals

The integral of a Gaussian function cannot be evaluated for arbi-
trary limits

# ¼
Zb

a

e��x2

x (A4:1)

However, it can be evaluated for the limits �1 to1. This is accom-
plished by taking the product of two such integrals

#2 ¼
Z1
�1

e��x2

dx

Z1
�1

e��y2

dy ¼
Z1
�1

Z1
�1

e��x2

e��y2

dxdy (A4:2)

We now transform to polar coordinates, with x2þ y2 ¼ r2,
dxdy ¼ rdrd�

#2 ¼
Z2p

�¼ 0

Z1
r¼ 0

e��r2

rdrd� (A4:3)

The integral over � is simply 2p. The integral over r is solved by
transforming to u ¼ r2 to give 1/2�. So #2 ¼ p=�. Taking the square
root gives

# ¼
Z1
�1

e��x2

dx ¼
ffiffiffiffi
p
�

r
(A4:4)

Of course, the integral from x ¼ 0 to1 is just half this because the
integrand is symmetrical around x ¼0.

Additional useful integrals can be generated by differentiation of
Eq. (A4.4) with respect to�. Differentiating once gives the first of these

Z1
�1

x2e��x2

dx ¼
ffiffiffi
p
p

2�3=2
(A4:5)

This can be continued to get the integral of any even power of
x times a Gaussian function.

Integrals of the form
R1
�1 e��x2��xdx are often encountered.

They are converted to the form of Eq. (A4.4) by multiplying by
1 ¼ e��2/4�e�2/4�. This completes the square in the exponent

Z1
�1

e��x2��xdx¼ e�
2=4�

Z1
�1

e��ðx
2 þ �x=� þ �2=4�2Þdx

¼ e�
2=4�

Z1
�1

e��ðx þ �=2�Þ2 dx (A4:6)



Now with a new variable u ¼ xþ �/2� the integral is solved

Z1
�1

e��x2��xdx ¼ e�
2=4�

Z1
�1

e��u2

du ¼ e�
2=4�

ffiffiffiffi
p
�

r
(A4:7)
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Appendix 5

Hyperbolic functions

The hyperbolic cosine is defined as

coshðxÞ ¼ ex þ e�x

2
(A5:1)

The hyperbolic sine is

sinhðxÞ ¼ ex � e�x

2
(A5:2)

It is easy to see that the two are interconverted by differentiation.
The hyperbolic tangent is defined as the ratio of the two, just as
the trigonometric tangent is defined as the ratio of the sine to the
cosine

tanhðxÞ ¼ sinhðxÞ
coshðxÞ ¼

ex � e�x

ex þ e�x
(A5:3)

In contrast to trigonometric functions hyperbolic functions can
be inverted. Multiplying Eq. (A5.1) by ex and rearranging gives

e2x � 2coshðxÞex þ 1 ¼ 0 (A5:4)

This is a quadratic equation in ex, so the solution is

ex ¼ coshðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ðxÞ � 1

q
(A5:5)

and x ¼ lnðcoshðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ðxÞ � 1

q
Þ (A5.6)

Thus, we have inverted the hyberbolic cosine. Replacing cosh(x)
by u gives

x ¼ cosh�1ðuÞ ¼ lnðu�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1
p

Þ (A5:7)

Likewise,

sinh�1ðuÞ ¼ lnðu�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

p
Þ (A5:8)



Appendix 6

Polar and spherical coordinates

In many problems everything revolves around a central point and
the key variable is the distance, r, to this center. In these cases one
uses polar or spherical coordinates, and writes an equation as a
function of r. The standard operations in calculus must then be
modified. When everything lies in one plane, then we go from
x and y to the polar coordinates r and �. In a three-dimensional
space, we go from x, y, and z to spherical coordinates r, �, and �

(Fig. A6.1).
If a function f (x, y) is transformed to polar coordinates, it is

expressed as f (r, �). A function f (x, y, z) transformed to spherical
coordinates becomes f (r, �, �). This book deals with isotropic situ-
ations where the function depends only on r and does not vary with
the angles. So we are left with functions of r only, f (r).

To integrate the function over all space we must transform the
differential to the new coordinate system. In polar coordinates, dxdy
becomes rdrd�, so we can write

Z1
x¼�1

Z1
y¼�1

f ðx; yÞdxdy ¼
Z1

r¼0

Z2p
�¼ 0

f ðr; �Þrdrd� (A6:1)

When f depends only on r, the integral over � can be performed to
give Z1

r¼ 0

Z2p
�¼ 0

f ðr; �Þrdrd� ¼
Z1

r ¼ 0

f ðrÞ2prdr (A6:2)

Note that the factor 2prdr is the area of a circular shell of radius r
and thickness dr.

In spherical coordinates the differential dxdydz becomes
r2sin�drd�d�, so the integral is

Z1
x¼�1

Z1
y¼�1

Z1
z¼�1

f ðx; y; zÞdxdydz ¼
Z1

r¼ 0

Zp
�¼0

Z2p
�¼ 0

f ðr; �Þsin� r2drd�d�

(A6:3)

y y

x

z

r

φ

θ

Polar Spherical

r

xθ

Fig: A6:1: Polar and spherical

coordinate systems are shown

on a cartesian background.



Again in an isotropic situation we can integrate over the angles

Z1
r¼ 0

Zp
�¼ 0

Z2p
�¼0

f ðr; �; �Þsin� r2drd�d� ¼
Z1

r¼ 0

f ðrÞ4pr2dr (A6:4)

Now note that the factor 4pr2dr is the volume of a spherical shell of
radius r and thickness dr.

A coordinate transformation also has an impact on a derivative.
Of particular importance is the Laplacian differential operator,
which appears in many equations of this book, including the diffu-
sion equation, the Poisson and Poisson–Boltzmann equations, and
the cable equation. In spherical coordinates the full Laplacian is a
complicated expression, but in an isotropic system the derivatives
with respect to � and � are zero so we have

r2f ¼ q2f

qx2
þ q2f

qy2
þ q2f

qz2
¼ 1

r2

q
qr

r2qf

qr

� �
(A6:5)

An alternative version is

r2f ¼ 1

r

q2ðrf Þ
qr2

(A6:6)

The two expressions can be shown to be equivalent by applying the
product rule to the derivatives.
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Huxley, A. F. and Stämpfli, R. (1949). Evidence for saltatory conduction in

peripheral myelinated nerve fibres. J. Physiol., 108, 315–339.

Imoto, K., Busch, C., Sakmann, B. et al. (1988). Rings of negatively charged

amino acids determine the acetylcholine receptor channel conductance.

Nature, 335, 645–648.

Itzhaki, L. S., Otzen, D. E. and Fersht, A. R. (1995). The structure of the transition

state for protein folding of chymotrypsin inhibitor 2 analysed by protein

engineering methods: evidence for a nucleation condensation mechanism

for protein folding. J. Mol. Biol., 254, 260–288.

Jack, J. J. B. and Redman, S. J. (1971). An electrical description of the moto-

neuron and its application to the analysis of synaptic potentials. J. Physiol.,

215, 321–352.

Jack, J. J. B., Noble, D. and Tsien, R. W. (1983). Electric Current Flow in Excitable

Cells. Oxford: Oxford University Press. [Cited in Chapters 15 and 16. This is

a comprehensive textbook that covers cable theory and excitability

very well.]

Jackson, J. D. (1975). Classical Electrodynamics. New York: John Wiley & Sons.

Jackson, M. B. (1985). The stochastic behavior of a many channel membrane

system. Biophys. J., 47, 129–137.

(1992). Cable analysis with the whole-cell patch clamp: theory and experi-

ment. Biophys. J., 61, 756–766.

(1993a). Passive current flow and morphology in the terminal arborizations

of the posterior pituitary. J. Neurophysiol., 69, 692–702.

(1993b). Binding specificity of receptor chimeras revisited. Biophys. J., 63,

1443–1444.

(1993c). On the time scale and time course of protein conformational

changes. J. Chem. Phys., 99, 7253–7259.

(1994). Single channel currents in the nicotinic receptor: A direct demon-

stration of allosteric transitions. TIBS, 19, 396–399.

(1997a). Adding up the energies in the acetylcholine receptor channel: relev-

ance to allosteric theory. In The Nicotinic Acetylcholine Receptor: Current Views and

Future Trends, ed. F. Barrantes. Austin: Landes Bioscience, pp. 61–84.

REFERENCES 493



(1997b). Inversion of Markov processes to determine rate constants from

single channel data. Biophys. J., 73, 1382–1394.

(1998). Allosteric mechanisms in the activation of ligand-gated channels.

Biophysics Textbook of the Biophysical Society. Rockville: Biophysical Society.

[Cited in Chapter 5. A discussion of allosteric mechanisms using ligand-

gated channels to illustrate important concepts.]

Jackson, M. B. and Zhang, S. J. (1995). Action potential propagation and

propagation block by GABA in rat posterior pituitary nerve terminals.

J. Physiol., 483(3), 597–611.

Jackson, M. B., Wong, B. M., Morris, C. E., Lecar, H. and Christian, C. N. (1983).

Successive openings of the same acetylcholine receptor channel are

correlated in open time. Biophys. J., 42, 109–114.

Jackson, M. B., Konnerth, A. and Augustine, G. J. (1991). Action potential

broadening and frequency-dependent facilitation of calcium signals in

pituitary nerve terminals. Proc. Natl Acad. Sci., 88, 380–384.

Jacobson, K., Ishihara, A. and Inman, R. (1987). Lateral diffusion of proteins in

membranes. Ann. Rev. Physiol., 49, 163–175.

Jeffrey, G. A. and Saenger, W. (1991). Hydrogen Bonding in Biological Structures.

Berlin: Springer–Verlag.

Jencks, W. P. (1975). Binding energy, specificity, and enzyme catalysis: the

Circe effect. Adv. Enzymol., 43, 219–410.

Jencks, W. P. and Carriuolo, J. (1961). General base catalysis of ester hydrolysis.

Journal of the American Chemical Society, 83, 1743–1750.

Jentsch, T. J., Stein, V., Weinreich, F. and Zdebik, A. A. (2002). Molecular struc-

ture and physiological function of chloride channels. Physiol. Rev.,82, 503–568.

Jones, S. W. (1989). On the resting potential of isolated frog sympathetic

neurons. Neuron, 3, 153–161.

Jordan, P. C. (1990). Ion-water and ion-polypeptide interactions in a gramicidin-

like channel. A molecular dynamics study. Biophys. J., 58, 1133–1156.

Jordan, P. C., Bacquet, R. J., McCammon, A. J. and Tran, P. (1989). How electrolyte

shielding influences the electrical potential in transmembrane ion

channels. Biophys. J., 55, 1041–1052.

Kallenbach, N. (2001). Breaking open a protein barrel. Proc. Natl Acad. Sci.,

98, 2958–2960. [Cited in Chapter 2. This presents a clear presentation of the

oil-droplet versus jigsaw puzzle pictures of a protein interior.]

Kao, J. P. Y. and Tsien, R. Y. (1988). Ca2þ binding kinetics of fura-2 and

azo-1 from temperature jump relaxation measurements. Biophys. J., 53,

635–639.

Karplus, M. (2002). Molecular dynamics simulations of biomolecules. Acc. Chem.

Res., 35, 321–323. [Cited in Chapter 2. This is the editorial for a special issue

that covers a wide range of applications.]

Katz, B. (1966). Nerve, Muscle, and Synapse. New York: McGraw-Hill.

Kaya, H. and Chan, H. S. (2000). Polymer principles of protein calorimetric two-

state cooperativity. Proteins: Structure, Function, and Genetics, 40, 637–661.

Keizer, J. (1987). Diffusion effects on rapid bimolecular chemical reactions.

Chem. Rev., 87, 167–180.

Kell, M. J. and DeFelice, L. J. (1988). Surface charge near the cardiac inward-

rectifier channel measured from single-channel conductance. J. Membrane

Biol., 102, 1–10.

Kellermayer, M. S. Z., Smith, S. B., Granzier, H. L. and Bustamante, C. (1997).

Folding–unfolding transitions in single titin molecules characterized with

laser tweezers. Science, 276, 1112–1116.

494 REFERENCES



Khanin, R., Parnas, H. and Segel, L. (1994). Diffusion cannot govern the

discharge of neurotransmitter in fast synapses. Biophys. J., 67, 966–972.

Kijima, S. and Kijima, H. (1987). Statistical analysis of channel current from a

membrane patch I. Some stochastic properties of ion channels or molecu-

lar systems at equilibrium. J. Theor. Biol., 128, 423–434.

Kittel, C. (1958). Elementary Statistical Physics. New York: John Wiley & Sons.

Kolinski, A., Godzik, A. and Skolnick, J. (1993). A general method for the

prediction of the three dimensional structure and folding pathway of

globular proteins: Application to designed helical proteins. J. Chem. Phys.,

98, 7420–7433.

Kolinski, A., Galazka, W. and Skolnick, J. (1996). On the origin of the

co-operativity of protein folding: implications from model simulations.

Proteins: Structure, Function, and Genetics, 26, 271–287.

Koshland, D. E., Nemethy, G. and Filmer, D. (1966). Comparison of experimental

binding data and theoretical models in proteins containing subunits.

Biochemistry, 5, 365–384.

Kramers, H. A. (1940). Brownian motion in a field of force. Physica, 7, 284–304.

Kuyucak, S., Andersen, O. S. and Chung, S. -H. (2001). Models of permeation in

ion channels. Reports of Progress in Physics, 64, 1427–1472.

Latorre, R., Labarca, P. and Naranjo, D. (1992). Surface charge effects on

ion conduction in ion channels. In Ion Channels (Methods in Enzymology),

ed. L. Iverson and B. Rudy, vol. 207, pp. 471–501. [Cited in Chapter 11.

A very clear overview of surface charge effects in ion channels.]
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energetics 127, 127–128, 128

enzymes 257

one binding site and one allosteric

interaction 112–115, 113

phosphofructokinase 130–132, 131,

132

subunit–subunit interactions 134,

134–136

Szabo–Karplus (SK) model 137–140,

139

a-helices 49, 73, 85

capping 81

mathematical analysis 74

proteins 49, 49, 50

stability 73

amino acids

helix continuation parameters 81
side chains 268

Anisidoris snail 459, 461

arginine 17, 18, 119, 283

arginine (arg), helix continuation

parameter 81
Arrhenius equation 169

Arrhenius plot 170

asparagine (asn), helix continuation

parameter 81
aspartate 8, 42, 119, 206, 272

aspartic acid (asp), helix continuation

parameter 81
ATP 130

axial resistivity 401

axons

geometry and conduction 455–457,

456

reflections 457

speed and size 452

supernormal 449

varicosities 456, 456, 457

bacteriorhodopsin 208

barnacle muscle fibers 462, 464

barnase 86, 189, 189, 190, 192

b–sheets in proteins 49, 68–71, 70, 189

binding energy in enzymes 258–259

binomial distribution 154, 156, 243,

309, 320

binomial expansion 124, 138, 155, 471

Bohr effect 127, 140

Boltzmann constant 4

Boltzmann distribution 2, 4, 5, 17, 56,

161, 182, 260, 277, 288, 307,

313, 362, 378

activation energies 169

reaction coordinate 179

Boltzmann equation 17, 22, 293, 443,

462

Boltzmann weight 2, 32, 57, 74, 96

bond vibrations 3

frequency 44

kinetic energy 3

normal modes 46, 102, 103

Born energy 28

Briggs–Haldane mechanism 254

Brønsted equation 174, 270

Brønsted slopes 268–270

Brownian motion 142, 283, 336

buffers 269, 269

burst analysis 232, 232

n-butane 56–58, 57

cable equation 403, 403–406, 454

cable length constant (l) 405

cable theory 400

analysis of neurons 418, 418–422,

420, 421

branches and equivalent cylinder

representation 412–413, 413

steady-state 413–415, 415

time constants 415–418



cable parameters 406
compartmental models 428,

428–431, 450, 467

current steps in a finite cable

411–412

current through membranes and

cytoplasm 401, 401–403

steady-state in a finite cable

406–407, 408

synaptic integration in dendrites

analytical models 422–423, 423

compartmental models 430–433,

431, 432

impulse responses 423–425, 424

realistic synaptic inputs

425–428, 427

calcium chloride, activity coefficient

281, 281

calcium ion channels 207, 208, 392,

458, 462

calmodulin, ligand association rate

204
capacitance

circuit 329

ionic layers 290

carbamylcholine 118, 119

carbon–carbon bonds 44

force constant 261

carbonic anhydrase 177, 273–275,

274, 355

carboxypeptidase 268

catalytic efficiency of enzymes 253

cation–p interactions 33, 33–35, 47

central-limit theorem 65, 156

channel noise 186, 321, 323, 327–328,

328

channel structure 367

Eisenman selectivity sequences

374–376, 375, 398

energy barriers and channel

properties 371–374, 372

gramicidin A 370, 378–380, 384, 393

KcsA channel 71, 394, 394–399, 396

Ohmic channels 370, 370–371, 372,

376, 384

rate theory for multibarrier

channels 380, 380–384, 383

single–file channels 371, 390,

390–394, 397

single–ion channels 384–390

structural parameters and

conductances 371
characteristic equation of a matrix

223, 242, 475

characteristic ratio 62, 63

charge–dipole interactions 31, 31–32

choline 291, 441

chymotrypsin 248, 250, 256, 258,

259, 272

hydrolysis rates 250
ligand association rate 204

chymotrypsin inhibitor-2 190,

191, 192

circuit noise 329, 329–331

mean-square voltage 329

classical configuration integral 3,

46, 301

closed-time distribution 185, 232,

233, 236, 237, 240, 241

coils, random 72, 73, 106, 107,

163–164

frictional coefficients 163

molecular behavior 68

statistics 60, 60–62

stretching 67–68

collision frequency 198, 200

compartmental models 428, 428–430

synaptic integration in dendrites

430–433, 431, 432, 450, 467

concerted binding 91–93

configurational entropy 71, 72, 107

configurational free energy 94,

106–107, 107, 129

configurational partition functions

58–60

conservation of total number of

moles 227, 228

loss of 237–240, 240

constant-field equation 353, 360

extended form 361

cooperative units 11, 16, 79, 123, 303

cooperativity within systems

allostoric transitions 123, 130

helix–coil transitions 53, 78, 79, 79

hydrogen bonds 41, 43

molecular associations 91

concerted binding 91–93

nearest–neighbor interactions 94

sequential binding 93–94

protein folding 72, 86–87

thermal transitions 11–12

voltage-induced transitions

19–21, 20

correlation function 322–328,

331–338

Coulomb’s law 25

contribution to potential energy

280

Coulomb potential 25–27, 31, 276,

277, 279–282, 298, 300, 302,

375

Coulombic interactions 32, 34, 177,

206, 398

counterions see ions and counterions

cratic contribution 100

creatine kinase 334, 335, 335

critical assessment of protein structure

prediction (CASP) 52

cysteine (cys), helix continuation

parameter 81
cytoplasm 401, 401–403

resistance 401, 429

viscosity 335, 406

de Broglie wavelength, thermal 99,

179

Debye length 277–278, 287, 289

Debye–Hückel limiting law 281, 282

dilute solutions 282

exact at infinite dilution 283

ionic atmospheres 281, 282

Debye–Hückel screening 297–305

degeneracy 57, 75, 84, 138

delta function 144, 423, 479

denaturants of proteins 11, 13, 48,

187–192

dendrites 419

action potentials 466–468, 467

synaptic integration

analytical models 422–423, 423

compartmental models 430–433,

431, 432

impulse responses 423–425, 424

realistic synaptic inputs

425–428, 427

desensitization 133

detailed balance 116

kinetics of multi-state systems 228

loss of 237–240, 240

rate processes 170–182

dielectric constant 25, 30, 31, 35, 36,

38, 41, 47, 51, 272, 276, 287,

363, 368, 376, 402, 406

diffusion 142

diffusion equation 66

from microscopic theory

159–160

diffusion-limited associations

197–200, 198

diffusion-limited dissociations

200–201

friction 160–162, 336
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diffusion (cont.)

Gaussian distribution 156–159, 157

lateral diffusion in membranes

164–165

macromolecules, diffusion

constants 163–164, 164

deviation from Stokes–Einstein

relation 163

macroscopic diffusion and Fick’s

laws 142–143

solving the diffusion equation

143–144

diffusion across an interface

146–148, 147, 148

diffusion with boundary

conditions 148–150, 149

one-dimensional diffusion from

a point 144–146, 145

three-dimensional diffusion

from a point 146

steady-state 150–151

long pipe 151

porous membrane 153–154

small hole 152, 152–153

Stoke’s law 162, 162–163

dimensionality, reduction in

107–108, 108, 212–214

dipicrylamine 369, 369

dipole–dipole interactions 32, 49, 398

dipole moment 26, 31, 31, 32, 35, 49,

395, 396

dipoles

induced dipoles 32–33

interactions with charges 31, 31–32

dispersion force (London force) 35, 39,

43, 52

lipid bilayers 54

DNA 52–53, 62

binding 94, 112, 214

electrostatic repulsion 298, 298

flexibility parameters 63
formation of circular form from

linear form 67

melting 302–305, 305

random coil behavior 68

Donnan potentials 341–343, 342,

344, 346

effective segment length of

macromolecules 62–63

eigenvalues 46, 223, 474–476

multisubunit kinetics 244

eigenvectors 223, 224, 474–476

three-state model 225

Einstein’s equation for diffusion and

friction 161, 267, 347

Eisenman theory of selectivity

374–376, 375, 376, 398

elastase 248, 250

electrogenic membrane pumps

354, 355

electroneutrality 288, 342,

343, 346

electrophoresis 294–297, 295

mobility of ions 295

sheer force 295

velocity of ions 294

electrostatic self-energy 27–29

electrostatic stress 267

elementary weight 57

partition function 58

enthalpy 6, 37, 41

Coulomb’s law 26

hydration 28, 28

ions in water 27

thermal denaturation of proteins

9–12, 10, 72, 87

entropy 6

of electrostatic interactions 26

ions in water 27

protein denaturation 71–73

unfolding entropy 72

rotational entropy 263–264

translational entropy 260,

260–263, 263

enzyme catalysis 248

acid–base catalysis 268–270

b-galactosidase 270–271, 271

allosteric enzymes 257–258

friction in an enzyme-substrate

complex 267–268

hydrolysis rates 250
Kramers rate theory 259–260

Michaelis–Menten kinetics

251–254

pre-steady-state kinetics 256–257

proton transfer in carbonic

anhydrase 273–275, 274

proximity and translational

entropy 260, 260–263, 263

rotational entropy 263–264

serine proteases 272–273

steady-state approximations

254–256

transition state complementarity

264–267, 266

utilization of binding energy

258–259

equipartition of energy 23, 104,

313–317, 329

equivalent cylinder representation

412–413, 413

steady-state 413–415, 415

time constants 415–418

Euler’s formula 479

excluded volume effect 43, 63, 64, 70,

72, 281

theta solvents 65

exponential relaxations 167–169, 169

extended constant-field equation 361

eye, light detection 311–313, 312, 313

Eyring theory 179–180

Fick’s laws 142–143

first law 142

second law 143

fluctuations 307

channel noise 327, 328

circuit noise 329, 329–331

deviations from the mean 307–308

energy fluctuations in

macromolecules 315–317

equipartition of energy 313–315

fluorescence correlation

spectroscopy 164, 332, 332

friction and the fluctuation-

dissipation theorem 336, 338

Poisson distribution 309,

309–311, 310

protein ionization 317–319

single-channel current

320–322, 321

statistics of light detection by the

eye 311–313, 312, 313

two-state systems 319–320

correlation function 322–324

Wiener–Khintchine theorem

324–327, 331

fluorescence correlation

spectroscopy 164, 332,

332, 335

fluorescence recovery after

photobleaching (FRAP)

164, 165

fluorescent proteins 334, 335

flux 198, 200, 347

Ussing flux ratio 351–352, 390

definition 352

folding of proteins 46, 82–86

cooperativity 86–87

good-folding amino acid

sequences 84
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hydrophobic interactions 47, 48

native state 46, 71, 82, 85, 85

jigsaw puzzle picture 86

molten-globule 82

oil droplet picture 86

time taken 72

Fourier analysis 477, 477–480, 478

Fourier integral 324, 423

Fourier transform 144, 149,

150, 324, 325, 408,

410, 423

additive noise 324, 325

fluctuations 324, 326

inverse 327

Lorentzian 328

free energy

change in 5

electrostatic 15

pressure-induced transitions 12

protein ionization 284

thermal denaturation of

proteins 6

configurational free energy 94,

106–107, 107

global states of proteins 2, 3, 4

interactions 21

linear analysis 192

linear relations 172–175,

173, 175

Marcus relation 177–178, 178

molar free energy 5

standard state 95

rotational free energy 101–102, 263

translational free energy 98–101,

260–263

change in 101

translation contribution to �G8
99, 100

vibrational free energy 102–104

change in 104

vibrational contribution 102

freely jointed chains 60, 60

freely rotating chains 61

friction 160–162

electrophoretic mobility 294

enzyme–substrate complexes

267–268

fluctuation–dissipation theorem

336, 338

frictional coefficients 163

Stoke’s law 162, 162–163

fructose-1,6-diphosphate 130

fructose-6-phosphate 130, 131

fura-2 196, 197

GABA 183, 236, 374

b–galactosidase 270, 271

gas constant 4

gating current 18, 18–19

gating particle 442

gauche conformation of n–butane 56,

57, 57

Gaussian distribution

polymers 65

random walks 156–159, 157

Gaussian integrals 481–482

geometric series 471

Gibbs–Helmholtz equation 10

global states of proteins 1, 4

allosteric transitions 112, 113, 117,

121, 174

compliance 21–23, 22

definition 2–4

equilibrium between two global

states 4–5

free energy 2, 3, 4

partition function 3

transitions 12–14

transitions induced by

denaturants 13

transitions induced by temperature

5–7, 6

transitions induced by voltage 14,

14–17

cooperativity 19–21, 20

steepness factor 16, 16

transition voltage 16, 16

glutamate 85, 206, 270–271, 271, 283,

292, 355

glutamic acid (glu), helix

continuation parameter 81
glutamine 17, 18, 85

glutamine (gln), helix continuation

parameter 81
glycine (gly) 38, 81, 85, 394

helix continuation parameter 81
glycine receptors 374

Goldman–Hodgkin–Katz current

equation 348, 357–360,

359, 361, 362, 363, 364,

372, 434

Goldman–Hodgkin–Katz voltage

equation 349, 350, 352–354,

354, 357, 360, 387

good-folding amino acid sequences 84

Gouy–Chapman equation 287

Gouy–Chapman theory 285–288, 294,

296–297, 302

Stern’s improvements 288–291

G–protein coupled receptors

117–121, 120, 122

gramicidin A 374, 378–380, 393

channel structural parameters and

conductances 371
green fluorescent protein (GFP) 70, 71

guanine–cytosine basepairs,

hydrogen bonding 52

harmonic oscillators 21, 44, 100,

103, 104

harmonic potentials 22, 44–46

heat capacity 37, 41, 315, 316

helix–coil transition/theory 53, 60,

73–74, 74, 87, 94, 303

helical propensities 80–82

mathematical analysis 74–78

mean number of helical

residues 76

results 78, 78–79

Helmholtz–Smoluchowski

equation 296

hemoglobin 70, 70, 137–140, 164,

267, 319

allosteric interactions 126, 126–127

iron–heme binding sites 140

linear free energy relation 174, 174

oxygen binding 92

pH sensitivity 140

Hill coefficient 92, 93, 94, 125–126

sequential binding 93

Hill equation 92, 92, 126, 126, 135, 136

Hill plot 92

hippocampal neuron 406, 430, 431

histidine (his) 249–251, 266, 272,

272–275

helix continuation parameter 81
Hodgkin–Huxley equations 442–446,

444, 447

Hodgkin–Keynes model 390, 392

horseradish peroxidase 206–207

ligand association rate 204
H–P (hydrophobic–polar amino acids)

lattice model 83

modeling 83, 83

oil droplet picture 86

sequences 84

good–folding 84

hydration force 39

hydrogen bonds 39–43

energies 42
enzyme–substrate 41, 42

energies 42
force constant 261
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hydrogen bonds (cont.)

nucleic acids 52

adenine–thymine base pairs 52

double-helix formation 52

guanine–cytosine base pairs 52

proteins 48, 49, 83

a–helices 49, 49, 50

b–sheets 49

stretching force constant 45

strong bonds 272–273

histidine–aspartate 272

pK of histidine 272, 273

water 41, 82

hydrophobic forces 36–39, 38, 48, 54,

85, 105–106

protein folding 47, 72, 83–86, 190

hydrophobic matching 53

ideal polymer chains 64

central-limit theorem 65

ideal solutions

deviation from 279

infinite dilution 281

inactivation of ion channels 442

insulin 103, 104

image forces 29 , 29 –31, 30, 38, 283, 363,

368–371, 377, 377, 379, 395

internal motions in proteins 267

inverse Fourier transform 480

ion hydration energy 28, 28

ion size 376

ion hydration shell 281

ion permeation 339, 368 see also

channel structure

Donnan potentials 341–343, 342

forces within ion channels 376,

376–378, 377

Nernst potentials 339–341, 340

permeation without channels

367–369, 369

ionic atmosphere 279, 282

Debye–Hückel limiting law 281

ionic double layer 287

ions and counterions 276–277

activity coefficient 279,

279–283, 353

contribution of screening to

potential energy 280

counterion condensation 300–302

Debye–Hückel screening 297–305

DNA melting 302–305, 305

electrophoretic mobility

294–297, 295

velocity 294

ionization of proteins 283–285

membrane surface charge 285–288,

361–362

Stern’s improvements of

Gouy–Chapman theory

288–291

Poisson–Boltzmann equation and

Debye length 277–278

surface charge and channel

conductance 291–293

surface charge and voltage gating

293–294, 294

isoleucine (ile), helix continuation

parameter 8, 9, 81

jigsaw puzzle picture for protein

folding 86

Johnson noise 331

K system of enzymes 257, 258

KcsA channel 71, 71, 394, 394–399, 396

kinetics of associations 194

bimolecular associations 194–195

binding to DNA 214

binding to membrane receptors

208–211, 209

diffusion-limited associations

197–200, 198

diffusion-limited dissociations

200–201

protein–ligand association rates

203–205, 204
acetylcholinesterase

205–206, 206

evolution of speed 205

horseradish peroxidase 206–207

proton transfer 207–208

rates 207
reduction in dimensionality

212–214

site binding 201–203, 202

small perturbations 195–196, 197

kinetics of multi-state models 216

general solution to multi-state

systems 221–225

general treatment of single-channel

kinetics 234–236, 236

initial conditions 219–220, 220

loss of stationarity, conservation

and detailed balance

237–240

multisubunit kinetics 242–244, 243

random walks and stretched

kinetics 244–246, 246

relation between single-channel

and macroscopic kinetics

236–237

separation of time scales 220–221

single-channel kinetics 232, 232

single-channel correlations

240–242, 241

stationarity, conservation and

detailed balance 226–228

three-state model 216–219

matrix notation 225

single-channel kinetics

229–232, 231

Kirchoff’s law 404

Koshland–Nemethy–Filmer (KNF)

model 134, 134–136

Kramers’ theory 180–183

enzymes 259–260, 267–268

ion channels 445

b-lactamase, ligand association

rate 204
Langevin equation 336, 397

Laplacian differential operator 143,

146, 285, 485

Lennard–Jones potential 43, 44,

51, 95

leucine 38, 85, 86

leucine (leu), helix continuation

parameter 81
Levinthal’s paradox 73

ligand-gated channels 132–133, 133

ligands 202, 203

frequency of binding to receptors

211

protein–ligand association rates

203–205, 204
acetylcholinesterase

205–206, 206

evolution of speed 205

horseradish peroxidase 206–207

reduction in dimensionality

212–214

light detection by the eye 311–313,

312, 313

like–dissolves–like rule 36

Linderstrøm–Lang model of protein

ionization 283

linear transformations of matrices

472–473

linkage 122

lipid bilayers 14, 23, 30, 39, 53–54, 54,

108, 164–165, 357, 363,

367–369
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dispersion force (London force)

36, 54

hydration forces 39

melting 54

lobster axon 406
lock-and-key stereospecific

interactions 43

London force see dispersion force

loop formation 66–67

Lorentzian 328

lysine 18, 85, 250, 283

lysine (lys), helix continuation

parameter 81
lysozyme 70, 71, 156, 264

diffusion constant 156, 164

unfolding by thermal denaturation

7–9, 8, 12

melting curves 8, 9

macromolecules, conformations of 56

backbone rotations in proteins

68–71, 69

n–butane 56–58

trans and gauche conformations

56, 57, 57

configurational partition functions

and polymer chains 58–60

effective segment length 62–63

energy fluctuations 315–317

entropy of protein denaturation

71–73

flexibility parameters for chain

molecules 63
helix continuation parameters for

amino acids 81
helix–coil theory 78, 78–79

helical propensities 80–82

helix–coil transition 73–74, 74

mathematical analysis 74–78

loop formation 66–67

nonideal polymer chains and theta

solvents 63–65

probability distributions 65–66

protein folding 82–86

cooperativity within 86–87

random coil behavior of

molecules 68

statistics of random coils 60–62

stretching of random coils 67–68

macroscopic additivity 128–130

Marcus theory 177–178, 178

enzyme catalysis 273–275, 274

Markov processes 160, 184

matrix algebra

determinants 473–474

eigenvalues, eigenvectors and

diagonalization 46, 77, 225,

474–476

linear transformations 472–473

positive semidefinite 45

Maxwell time constant 402, 403

mean capture time 213

mean number of helical residues 76

mean-square displacement 23, 145,

155, 160, 314

mean-square end-to-end length 61

membrane capacitance 402, 405, 428,

429, 452, 456

membrane conductance 21, 348, 370,

400, 429, 440

membrane potentials 339, 343

cells 343–344

muscle, skeletal 345–346

neurons 345, 345, 350–351

divalent ions 360–361

Goldman–Hodgkin–Katz current

equation 357–360, 359,

360–363, 364

Goldman–Hodgkin–Katz voltage

equation 350, 352–354,

354, 360

membrane pumps 354–355

membrane transporters 355, 358

permeability to sodium and

potassium ions 347, 347–349

rate theory 362–365, 363

surface charge 361–362

Ussing flux ratio and active

transport 351–352

membrane time constant 405

membranes

binding 108–109, 109

current flow 401, 401–403

lateral diffusion 164–165

protein associations 107–108, 108

proteins 53–54, 54

hydrophobic matching 53

pumps 354–355

receptor binding 208–211, 209

resistance 401

surface charge 285–288, 361–362

Stern’s improvements of

Gouy–Chapman theory

288–291

transmembrane voltage 14, 14

transporters 355, 358

methionine (met), helix continuation

parameter 81

Michaelis–Menten equation 91, 252,

253

enzyme catalysis 251

microscopic additivity 128–130

microstates of proteins 2, 3

entropy 3

partition function 2, 3

thermal denaturation 6, 6

minimum potential energy

conformation of

polypeptides 70, 71

mitochondria 355

molecular associations 89

association equilibrium in solution

89–91, 90

binding to membranes 108–109,

109

configurational free energy 94,

106–107, 107

contact formation 95–96

cooperativity 91

concerted binding 91–93

nearest-neighbor interactions 94

sequential binding 93–94

protein association in membranes

107–108, 108

rotational free energy 101–102

solvation effects 105–106

statistical mechanics of association

96–98

thermodynamics of associations

94–95

translational free energy 98–101

change in 101

translation contribution to �G̊

99, 100

vibrational free energy 102–104

change in 104

vibrational contribution 102

molecular crowding 165

molecular forces 25

bond flexing and harmonic

potentials 44–46

cation–p interactions 33, 33–35, 47

charge–dipole interactions 31–32

Coulomb potential 25–27

dispersive forces 35–36

electrostatic self-energy 27–29

hydration forces 39

hydrogen bonds 39–43

hydrophobic forces 36–39, 38

image energy 29–31

induced dipoles 32–33

protein force fields 50–52
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molecular forces (cont.)

stabilizing forces in nucleic acids

52–53

stabilizing forces in proteins 46–50

steric repulsions 43

molten-globule native state 82

Monod–Wyman–Changeux (MWC)

model 123 –126, 126, 284

energetics 127, 127–128, 128

enzymes 257

hemoglobin 126, 139 –140

phosphofructokinase 130–132

ligand-gatol channels 133

Morris–Lecar model 462, 464

muscl e, membr an e poten ti al s 345 –346

myelin 453, 453 –455

native states of proteins 46, 71, 82,

85, 85

jigsaw puzzle picture 86

molten-globule 82

oil droplet picture 86

Neher–Steinbach model 234

Nernst equation 340, 356

Nernst potentials 339–341, 340, 344,

344, 356, 357, 364

Nernst–Planck equation 162

NEURON computer program 430 , 467

neurons see also axons; dendrites

cable analysis 418, 418–422,

420, 421

compartmental model 428, 428

membrane potentials 345, 345,

350–351

neurotransmitters 34, 89, 118, 184,

205, 235, 351, 355, 393,

423, 457

neutrophils 355

Newton’s equation of motion 51, 397

nodes of Ranvier 453

nonideal behavior of ionic solutions

279, 280, 300, 353–354

nonideal polymer chains 63–65

normal modes of vibration 46,

102, 103

nucleic acids

acidic phosphate groups 53

stabilizing forces 52–53

hydrogen bonds 52

nullclines 464, 465

Nyquist’s theorem 331

Ohmic channels 370, 370–371, 372,

372, 376, 384

smallest channels 371

Ohm’s law 359, 403, 404

oil droplet picture for protein

folding 86

open-time distribution 184, 185,

229, 231, 234, 235, 236, 238,

240, 323

orotidine monophosphate

decarboxylase 266

ouabain 355

Overton theory 367

oxycarbenium intermediate 264

pancreatic trypsin inhibitor 267

Parseval’s theorem 326

partition coefficient

ion permeation 368

inorganic ions 368

partition function 58

association mechanics 96

N residue chain 76

polymers and monomers 59

protein global states 3

protein microstates 2, 3

thermodynamic stability 3

sum over elementary weights 58

translational partition function 99

passive voltage changes 400

pathway counting 240–242, 241,

387–388

Pauli exclusion principle 43

permeability ratio 350, 352–353, 360,

362, 387, 387–388, 389, 436

persistence length 53, 63, 298

phenylalanine 34, 38, 42, 42, 119, 205

phenylalanine (phe), helix

continuation parameter 81
phosphofructokinase 130–132,

131, 132

photoreceptor cells 312, 313

pi-electrons, interactions with cations

33, 33–35, 34, 47

Poisson distribution 309, 309–311, 310

definition 309

fluctuations in molecule number

311, 333

photon absorption 312

RMS deviations 311

Poisson equation 26, 277, 296, 402

Poisson–Boltzmann equation

277–278, 283, 292, 293

linearized form 279, 282, 283

membranes 285, 286

uniformly charged cylinder 297

polar and spherical coordinates 484,

484–485

polarizability of molecules 33, 35

poly–l–alanine, flexibility

parameters 63
polyelectrolyte solutions

counterion condensation 300–302

Debye–Hückel screening 297–305

polyethylene 59, 62
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