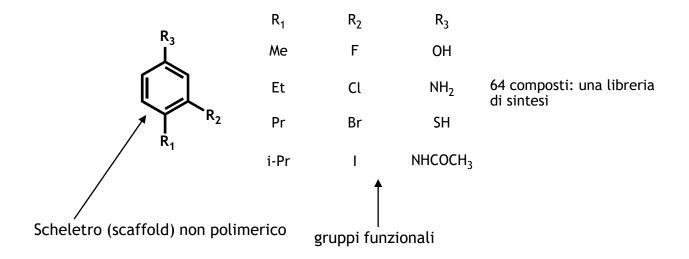
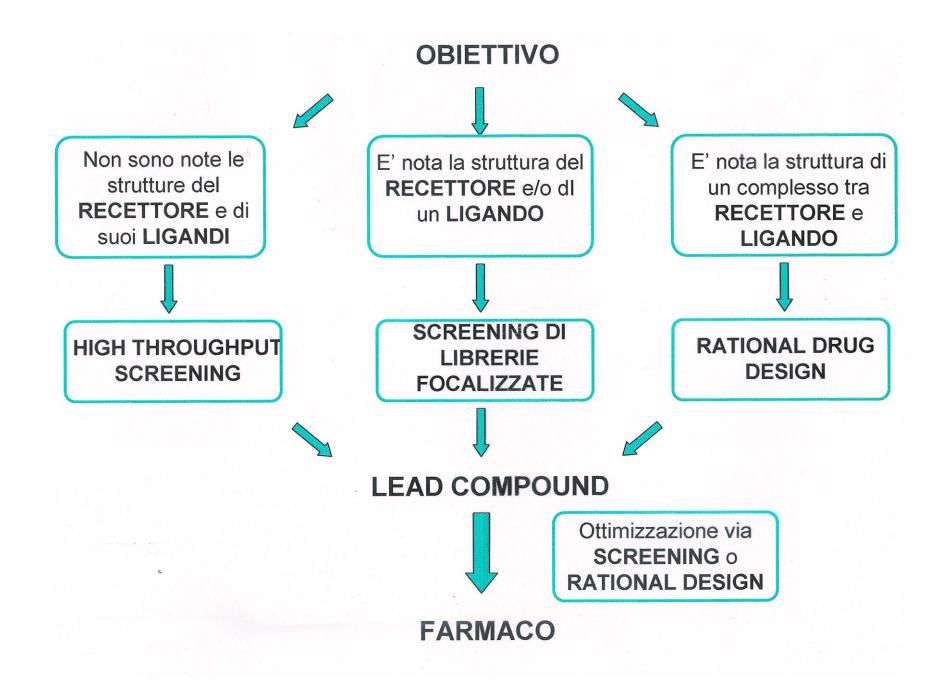
Laurea Magistrale in Chimica

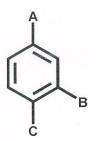
Laboratorio di Chimica Bioorganica

anno accademico 2020 – 2021

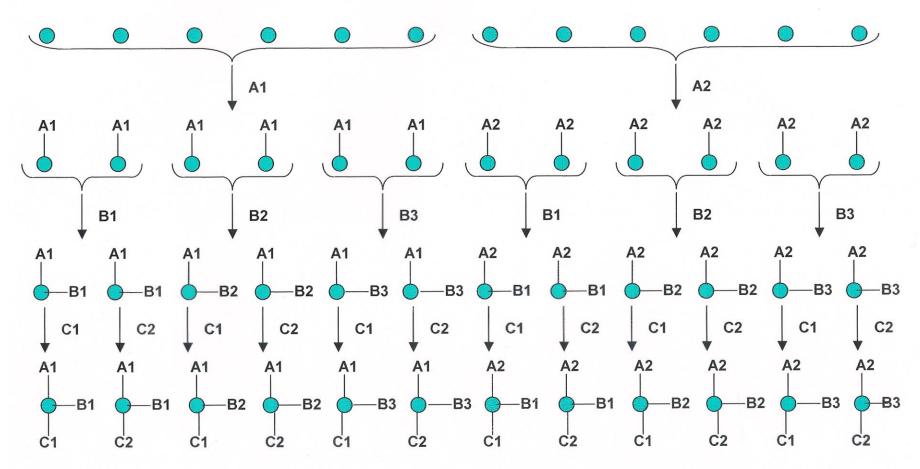

Prima esperienza

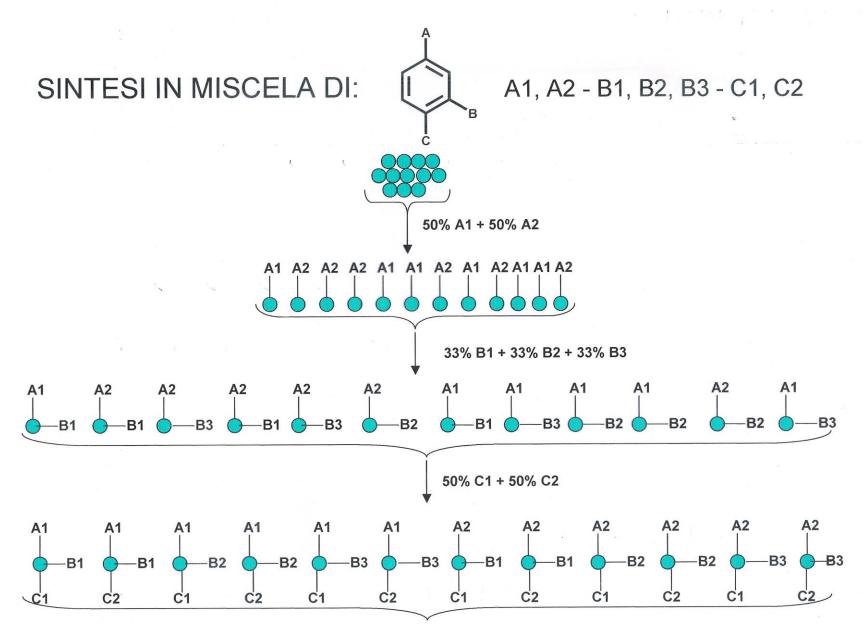

Due librerie ortogonali di accettori di Michael potenziali inibitori della calpaina 1 umana

Introduzione alla chimica combinatoriale

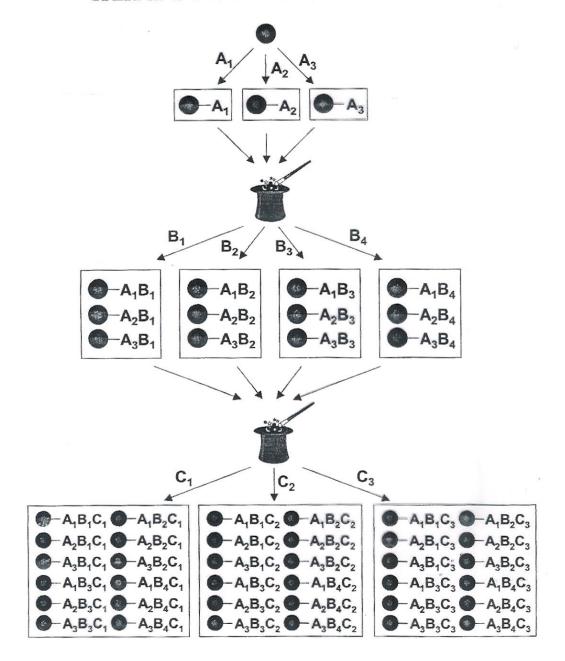

$$P_1 - P_2 - P_3$$
 $20^3 = 8000 \text{ tripeptidi}$ $P_1 - P_{100}$ $20^{100} = 1 \times 10^{130} \text{ peptidi}$

Una libreria di origine biologica, ad es. fagica: $10^6 - 10^8$ membri

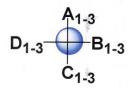



SINTESI PARALLELA DI:

A1, A2 - B1, B2, B3 - C1, C2



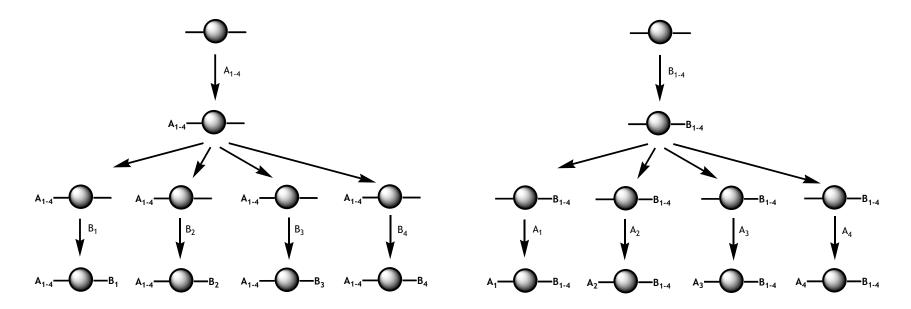
2+6+12=20 reazioni per 12 composti


Tre reazioni per una libreria di 12 composti

SPLIT AND COMBINE LIBRARY SYNTHESIS

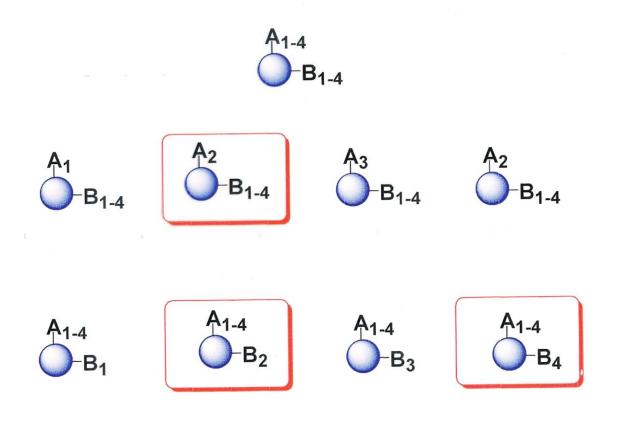
Sintesi in miscela di una libreria composta di una gerarchia di sottolibrerie

DECONVOLUZIONE ITERATIVA


$$D_{1-3}$$
 B_{1-3} D_{1-3} B_{1-3} D_{1-3} B_{1-3} D_{1-3} B_{1-3}

$$D_{1-3}$$
 B_1 D_{1-3} B_2 D_{1-3} B_3 C_{1-3}

$$D_{1-3}$$
 B_3 D_{1-3} B_3 D_{1-3} B_3 D_{1-3} C_3


$$D_1 \xrightarrow{A_2} B_3 \qquad D_2 \xrightarrow{A_2} B_3 \qquad D_3 \xrightarrow{A_2} B_3$$

Sintesi in miscela di librerie ortogonali

100 A, 100 B: 10000 composti, 10000 reazioni per la sintesi parallela pura. 202 reazioni in quattro passaggi per la sintesi di librerie ortogonali.

Deconvoluzione di librerie ortogonali

Attivi: A₂B₂ e A₂B₄

La calpaina 1

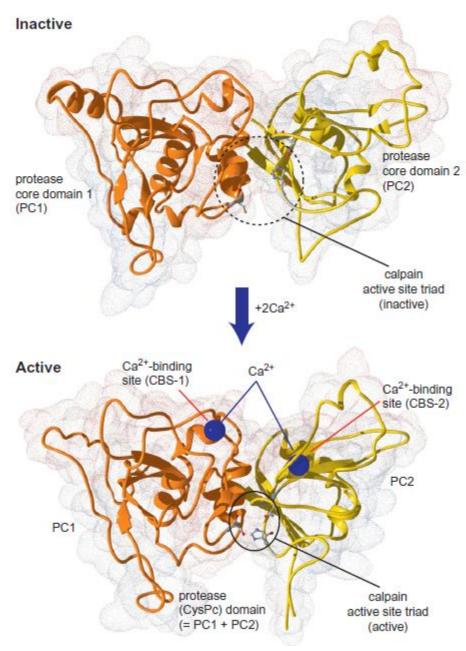
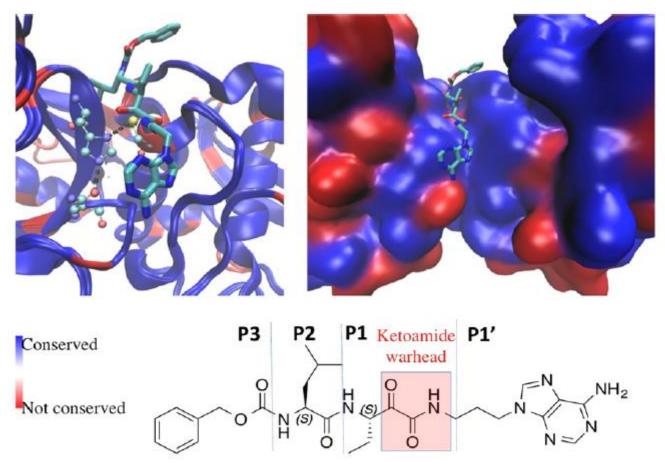



FIGURE 454.3 Schematic three-dimensional structures of inactive and active calpain CysPc domains. Schematic three-dimensional ribbon structures superimposed on the surface-type structures of the inactive (Ca²⁺-free) and active (Ca²⁺-bound) forms of human and rat m-calpain using PDB data, 1KFX and 3DF0, respectively [45,47]. The active protease (CysPc) domain is formed by fusion of the PC1 and PC2 core domains after each of these domains binds a single Ca²⁺. The active site is circled in black. Blue balls represent Ca²⁺.

Disease with a primary cause other	than calpains			
Atherosclerosis	Calpain-1 and -2 (human, mouse)	Aggravating or causative	Calpain inhibitors	25
Brain ischaemia	Calpain-1 and -2 (human, mouse)	Aggravating or causative	Calpain inhibitors	24,44
Cardiovascular disorders	Calpain-1 and -2 (human, mouse)	Aggravating or causative	Calpain inhibitors	23,39,114,116, 117,119
Cataracts	Calpain-1 and -2 (human, mouse)	Aggravating or causative	Calpain inhibitors	92,134,136-139
Neurodegenerative disorders (e.g. Parkinson disease, amyotrophic lateral sclerosis, spinocerebellar ataxia type 3 and lissencephaly)	Calpain-1 and -2 (human, mouse)	Aggravating or causative	Calpain inhibitors	14–17,19
Retinitis pigmentosa	Calpain-1 and -2 (human, mouse)	Aggravating or causative	Calpain inhibitors	141,142
Cancers	Calpain-1, -2, CAPN3 and CAPN9 (human, mouse)	Preventive, aggravating or causative	Calpain inhibitors and/or gene therapy	29,85,86,145, 147-159
Alzheimer disease	Calpain-1 and -2 (human, mouse)	May be aggravating or causative	Potentially calpain inhibitors	20,110
Muscular dystrophies	Calpain-1 and -2 (human, mouse)	May be aggravating or causative	Potentially calpain inhibitors	130
Disease model				
Cardiac scar	Calpain-1 and -2 (human, mouse)	Preventive	Potentially gene therapy	120
Dilated cardiomyopathy	Calpain-1 and -2 (human, mouse)	Preventive	Potentially gene therapy	121
Infectious disease				
Fungal infection (opportunistic infection)	PalB/Rim13 (fungus)	Aggravating or causative	Calpain inhibitors	181,182
Malaria	Calpain-1 and -2, Pf-calpain (human*, mouse*, parasite)	Aggravating or causative	Calpain inhibitors	41,178
Periodontitis	Tpr (bacteria)	Aggravating or causative	Calpain inhibitors	12
Trypanosomiasis and leishmaniasis (e.g. African sleeping sickness)	Calpain-1 and -2, ClpGM6 (human*, mouse*, parasite)	Aggravating or causative	Calpain inhibitors	180
Schistosomiasis	Smp-157500 (parasite)	Aggravating or causative	Vaccine (rSm-p80)	10,225
Calpainopathies				
Autosomal dominant neovascular inflammatory vitreoretinopathy	CAPN5 (human, mouse)	Aggravating or causative	Calpain inhibitors	34,167
Eosinophilic oesophagitis	CAPN14 (human, mouse)	Preventive	Potentially gene therapy	35,36
Gastric ulcer	CAPN8, CAPN9 (human, mouse)	Preventive	Potentially gene therapy	33
Limb-girdle muscular dystrophy type 2A	CAPN3 (human, mouse)	Preventive	Potentially gene therapy	32
Spastic paraplegia 76	CAPN1 (human, mouse)	Preventive	Potentially gene therapy	48
Type 2 diabetes	CAPN10 (human, mouse)	Not definable	Unclear	251,252

				но	^N [∆]	T [°]	F ₃					
					core MW	273.21						
		X1	X2	Х3	X4	X5	X6	X7	X8	X9	X10	
	MW aldeide ↓	75.07	89.1	117.15	131.18	131.18	114.89	165.2	132.12	174.2	104.12	← MW aa
Y1	106.12	418.36	432.39	460.44	474.47	474.47	458.18	508.49	475.41	517.49	447.41	
Y2	107.11	419.35	433.38	461.43	475.46	475.46	459.17	509.48	476.4	518.48	448.4	
Y3	152.12	464.36	478.39	506.44	520.47	520.47	504.18	554.49	521.41	563.49	493.41	
Y4	151.12	463.36	477.39	505.44	519.47	519.47	503.18	553.49	520.41	562.49	492.41	
Y5	120.15	432.39	446.42	474.47	488.5	488.5	472.21	522.52	489.44	531.52	461.44	
Y6	134.18	446.42	460.45	488.5	502.53	502.53	486.24	536.55	503.47	545.55	475.47	
Y7	112.17	424.41	438.44	466.49	480.52	480.52	464.23	514.54	481.46	523.54	453.46	
Y8	86.13	398.37	412.4	440.45	454.48	454.48	438.19	488.5	455.42	497.5	427.42	
Y9	86.13	398.37	412.4	440.45	454.48	454.48	438.19	488.5	455.42	497.5	427.42	
Y10	156.27	468.51	482.54	510.59	524.62	524.62	508.33	558.64	525.56	567.64	497.56	

	Tempo	Gruppo 1	Gruppo 2	Gruppo 3	Gruppo 4	Gruppo 5	Gruppo 6	Gruppo 7	Gruppo 8	Gruppo 9	Gruppo 10
19-ott lun					Ca	rico sulla r	esina				
	ON	Gly	Ala	Val	Ile	Nle	Pro	Phe	Gln	Arg	Gaba
20-ott mar	7 min	7 min Deprotezione Fmoc									
	ON			C	oupling co	n acido 4-t	rifluorome	til-fenilace	etico		
		Split &						Split &			
		Mix						Mix			
		Gly + mix	Ala + mix	Val + mix	Ile + mix	Nle + mix	Pro + mix	Phe + mix	Gln + mix	Arg + mix	Gaba + mix
21-ott mer	ON	aldeidi	aldeidi	aldeidi	aldeidi	aldeidi	aldeidi	aldeidi	aldeidi	aldeidi	aldeidi
		mix aa +	mix aa +	mix aa +	mix aa +	mix aa +	mix aa +	mix aa +	mix aa +	mix aa +	mix aa +
22-ott giov	ON	BA	PYA	VAN	PNBA	PAA	HCA	CHA	IVA	PIVA	C11A
24-ott ven	1 h	Stacco	Stacco	Stacco	Stacco	Stacco	Stacco	Stacco	Stacco	Stacco	Stacco
26-ott lun											
27-ott mar											
28-ott mer											
29-ott giov					Espe	rienza pro	f. Pengo				

aboratorio di chimica bioorganica 2020/21		-			uantità finale di prodotto richiesta nelle librerie è tale da poter preparare 10 µL di madre 10 mM, ono dunque 100 nmoli.	
		+	Ceplo di	Pacata in me	·	
leagenti a Disposizione				o vol in µL	riamo su una scala di 30 μmoli, per avere quantità pesabili di reagenti	
Merrifield Resin HL capacità di carico:	1.2	2 mmol/g		25	1. Procedura per il carico - Yajma et al., Tetrahedron 1988, 44, 805-819.	
					Basandosi sulla capacità di carico della resina, che è di 1.2 mmol/g, ed utilizzando 1.5 eq di ammino	oacido,
					si pesano le quantità in grammi indicate a fianco di ciascun ammir La quantità di resina necessaria	
		PM	densità		è 25 mg Gli amminoacidi vengono sciolti/sospe 250 μL di DMF.	
moc-Gly-OH		297.31		13	Si aggiunge la resina e un agitatore magnetico. Si aggiu 5 mg di potassio fluoruro.	
moc-Ala-OH		311.34		14	Si mantiene la miscela a 50°C per 24 ore. Si centrifuga e si lava il pellet di resina con DFM, poi con a	acqua e DMF 1:1,
noc-Val-OH		339.39	į	15	metanolo e acqua 1:1, e infine metanolo. La resina viene seccata.	
moc-Leu-OH		353.42	1	16		
moc-NIe-OH		353.42		16	2. Procedura per la rimozione della protezione Fmoc	
moc-Pro-OH		337.13		15	La resina viene sospesa in 450 μL di una miscela di piperidina e DMF 20:80 v/v	
noc-Phe-OH		387.44		17	La miscela viene agitata per 2 minuti, centrifugata, risospesa nella miscela piperidina/DMF, agitata	per 5 min, filtrata e lavata
moc-GIn-OH		354.36		16		
moc-Arg(Pbf)OH		634.75		29	3. Procedura per il coupling	
moc-Gaba-OH		325.36		15	La resina viene sospesa in 450 µL di DMF. 31 mg (5 eq) di TFPA vengono sciolti in 50-100 uL di DMF.	
not days or.					olica in pa 31 mg (5.5 eq) di HOBT vengono sciolti nel minimo volume di DMF e aggiunti alla resina. Infine vengo	ono aggiunti 32mg di EDC
A	_	106.12	2 1.04		15 e la sospensione viene lasciata in agitazione per 4 ore. La resina viene quindi lavata con DMF e me	
YA		107.11			14	, tuli, s. c.
AN	s	152.15			23 4. Condensazione aldolica	
NBA	5	151.12			23 Ogni gruppo suddivide in due aliquote di ugale peso la propria resina. Un'aliquota viene conservata	e tale e quale per le librer
AA	delig.	120.15			17 risolte in amminoacido. L'altra viene messa in comune con gli altri e le dieci aliquote vengono meso	
CA CA	ucirq.	134.18			20 Le dieci resine risolte in amminoacido (RAA) contengono in teoria 15 µmoli di un singolo amminoaci	
HA		112.17			18 RMIX viene risuddivisa in dieci aliquote che contengono in teoria una miscela di 1.5 µmoli di ciascui	
		-	-	-		T diminious Co.
/A		86.13			16 Le condensazioni aldoliche vengono condotte con un eccesso di aldeidi (5 eq).	
VA		86.13			16 Aldolica in miscela: ogni gruppo sospende la propria RAA in 400 uL di una soluzione 0.1 M di piperi	
11A		156.27	27 0.82	25	28 Vengono aggiunte 15 μmoli di ciascuna aldeide (quantità indicate a fianco). Le miscele vengono	•
					Aldolica in parallelo: ogni gruppo sospende un sesto della RMIX in 400 uL di una soluzione 0.1 M di	piperidina in etanolo an
F		58.1			Vengono aggiunte 150 μmoli di una delle aldeidi. Le miscele vengono lasciate in agitazione ON.	
FPA		204.15				
DC		191.7			5. Distacco dei prodotti dalla resina	
OBT		135.12	.2		Le resine vengono lavate con etanolo ed accuratamente essiccate.	
					Le resine vengono poste nel sintetizzatore per basse temperature, in bagno di ghiaccio. Vengono	
FMSA					e le miscele vengono lasciate in agitazione per 5 min. Vengono aggiunti 50 μL di TFMSA, e le misc	
FA					in agitazione per un'ora. Dopo questo tempo le resine vengono filtrate e scartate. Viene raccolta	la soluzione e si aggiung
MF					5 mL di etere etilico freddo.	
CM					Se si formano precipitati, questi vengono raccolti per centrifugazione a 15000 x g in provette eppe	
1eOH					Se non si formano precipitati, le soluzioni vengono evaporate a pressione ridotta in palloncini p	esati.
leun						
t20 ipe						