

AAV Vector Unit (AVU) facility at ICGEB Trieste: production of AAV vectors with different serotypes

Gene therapy of muscle

- For inherited disorders of muscle
- For the release of therapeutic proteins in the blood
- (To improve muscle function in adults) (Gene doping?)

e Therapy (2008) 15, 329-337

www.nature.com/at

blishing Group All rights reserved 0969-7128/08 \$30.00

REVIEW

Progress and prospects: gene therapy for performance and appearance enhancement

M Kiuru and RG Crystal Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA

•

AAV gene therapy clinical trials

- Melanoma
- Prostate cancer
- Cystic fibrosis
- Hemophilia B
- Muscular distrophies
- Amiotrophic lateral sclerosis
- Canavan disease
- Alpha 1-antitrypsin deficiency
- Healthy subjects (aerosol)
- Rheumatoid arthritis
- Parkinson disease

Malattic

Retinal degeneration

	malattia	Gene mutato				
Distrofie	Distrofia muscolare di Duchenne (DMD)	Distrofina; incidenza di circa 1/3500 bambini maschi				
muscolari	Distrofia muscolare di Becker (BMD)	Distrofina; incidenza di circa 1/20.000 bambini maschi				
	Distrofia muscolare di Emery- Dreifuss	Emerina, lamina A o lamina C				
	Distrofia dei cingoli (LGMD)	Piu' di 15 geni diversi				
edustroalyzer of stroalyzer bystrophin and the Dystrophin-Glycoprotein	Colleges Colleg	autosomiche dominanti LGMD 1A: miotilina LGMD 1B: lamina A/C LGMD 1C: caveolina 3 ed altre autosomiche recessive LGMD 2A: calpaina-3 LGMD 2B: disferlina LGMD 2C: γ -sarcoglicano LGMD 2C: α -sarcoglicano LGMD 2E: β -sarcoglicano LGMD 2F: δ -sarcoglicano ed altre				
Complex (DCG)	Distrofia facio-scapolo-omerale o di Lnadouzy-Dejerine (FSHD)	Non noto				
	Distrofia miotonica o malattia di Steinert (MMD)	DMPK (DM1) e ZNF9 (DM2)				
	Distrofia oculo-faringea (OPMD)	Poly(A)-binding protein nuclear 1 (PABPN1)				
	Distrofia muscolare distale (DD)	Almeno 8 geni diversi (disferlina, titina, desmina ed altri)				
	Distrofia muscolare congenita (CMD)	Geni diversi (Laminina $\alpha 2$ – merosina, fukutina, collagene di tipo VI, integrina a7, ed altri)				

Molecular defects in muscular dystrophies y1 Laminin-2 (Merosin) Sarcoglycans R1 **Basal Membrane Proteins** LGMD 2D (a) (CMD) 60 LGMD 2E (B) LGMD 2C (y) Dystroglycans LGMD 2F (8) > Syntrophins Caveolin 3 Dysferlin Dystrophin (LGMD2B) DMD/BMD/XLD (LGMD1C) Syncoilin Dystrobrevin _Desmin 7-line Actin Filaments **Contractile Proteins** NF-KB Telethonin (LGMD2G) FKRP Emerin (EDMD) Myotilin (LGMD1A) CMD/LGMD2 NF-kB/I-kB clear Membrane Complex Lamin A/C LGMD2A LGMD1B Chromosomal Domain EDMD-AD aya Hulloway Page 10

DMD: il problema clinico

La DMD ha un decorso ingravescente e devastante (esaurimento delle cellule satelliti).

Alla nascita, i bambini maschi affetti sembrano normali, ed i primi sintomi insorgono tra i 3 ed i 5 anni di vita sotto forma di blanda debolezza muscolare, che si manifesta con la difficolta' nel salire le scale, alzarsi nella posizione seduta o con l'incespicare di frequente. Con il passare del tempo, la muscolatura si indebolisce progressivamente. Solitamente entro i 10 anni di vita gli individui affetti sono costretti sulla sedia a rotelle, e molti decedono entro il 20° anno di eta'.

Non esistono attualmente terapie per la malattia, se non quelle di supporto.

Oltre al muscolo scheletrico, i pazienti con DMD mostrano un interessamento piu' o meno marcato del cuore che spesso evolve in una forma franca di cardiomiopatia dilatativa.

Molecular defects in dystrophin lead to Duchenne and Becker muscular dystrophy

427 kDa, gene 2.4 Mbp with 70 exons, mRNA 14 kb (coding region 11 kb) - transcription lasts 16 hrs 4 structural domains (N-terminal, rod, cystein-rich and C-terminal) N-terminal: binds actin, Cystein rich: binds b-dystroglycan

DMD: current treatment options

Only glucocorticoids have consistently demonstrated efficacy in DMD

daily prednisone in Duchenne muscular

Neurology[®] 2011;77:444-452

dystrophy Conclusions: Weekend dosing of prednisone is equally beneficial to the standard daily dosing of prednisone. Analysis of side effect profiles demonstrated overall tolerability of both dosing regimens.

Side effects:

- weight gain with cushingoid appearance, high risk for hypertension, cataract, loss of bone density, vertebral compression fractures and long bone fractures

- long term administration limited by steroid-induced behavioral problems

DMD: emerging drugs or small molecule therapies

- Exon skipping
- Mutation suppression
- Gene therapy
- Muscle building strategy

Molecular and functional efficacy Eteplirsen

Exon skipping

K 1

SAREPTA

THERAPEUTICS

transcription process and thereby

modifying protein structure."

Exon skipping is targeted at the pre-mRNA level, allowing one or more exons to be omitted to restore the dystrophin reading frame. This is accomplished with splice-switching oligomers (20-30 nt), complementary to sequences of the pre-mRNA transcript.

2 proof-of-principle clinical trials targeting exon51

Accelerated FDA approval of the exonskipping drug eteplirsen

Approval to market eteplirsen was given in September 2016 to pharmaceutical company Sarepta Therapeutics. Eteplirsen will be the first diseasemodifying drug on the market in the United States to treat DMD, and approximately 13 percent of DMD patients potentially may be eligible for treatment. Under the terms of the FDA's accelerated approval, Sarepta must conduct a clinical trial of eteplirsen to confirm clinical benefit. The approval is provisional, pending results of the ongoing phase III clinical trial,

EMA has not approved Eteplirsen as Duchenne MD Therapy in Europe

December 2016

Sarepta Therapeutics, Inc. (NASDA0:SRPT), a commercial-stage developer of innovative RNA-targeted therapeutics, today announced that the European Medicines Agency(EMA) validated the previously submitted Marketing Authorization application (MAA) for eteplirsen to treat Duchenne muscular dystrophy amenable to exon 51 skipping. Sarepta is seeking conditional approval of eteplirsen in the EU through the centralized procedure. Validation of the MAA confirms that the submission is accepted and starts the formal review process by the EMA's Committee for Human Medicinal Products (CHMP). The standard review period is 210 days (plus additional time for applicant to respond to questions from the agency).

Under the brand name Exondys 51, eteplirsen was approval by the U.S. Food and Drug and Administration (FDA) in September 2016, making it the first FDA-approved therapy specifically indicated to treat Duchenne MD. But Exondys 51's development and approval process was a prolonged one. The FDA decision also followed a campaign by muscular dystrophy advocacy groups urging access to a therapy offering some level of clinical improvement for a disease with no therapeutic options.

September 2018

Duchenne secondo "no" europeo per eteplirsen

Challenges to gene therapy for DMD

Gene therapy requires delivery of a new gene to the vast majority of muscles in the body and to the heart - a daunting challenge, since muscle tissues makes up >40% of body mass

The **dystrophyn mRNA** is **14 kb** in size. A delivery vector must be identify that can carry this expression cassette; alternatively, truncated version of the gene can be used

Muscle transduction must not trigger toxic or immunological reactions that are harmful to the patient or that lead to further muscle damage

DMD: emerging drugs or small molecule therapies

• Exon skipping

- Mutation suppression
- Gene therapy
- Muscle building strategy

Duchenne muscular dystrophy natural animal models

mdx mice (point mutation leading to a premature truncation)

xdm golden retriever dog (exon 7 skipping)

Vectors for muscle gene therapy

• *Plasmid DNA:* displays a remarkable ability to transfer genes to muscle, specially if coupled with high pressure injection and/or electroporation

The first clinical trial, closed in 2006, entailed the injection of a plasmid containing the whole dystrophin cDNA under the control of the CMV promoter into the radialis muscle of 9 DMD/BMD patients. However, dystrophin expression resulted too low and not homogenous.

Different strategies can be used to increased transduction efficiency, including polymeres, ultrasounds (with microbubbles), and electroporation

Distrofina e DGC

R254 Human Molecular Genetics, 2006, Vol. 15, Review Issue No. 2

Figure 1. Schematic outline of full-length dystrophin, minidystrophin and microdystrophin and their interaction with other cellular proteins. Spectrin-like repeats are numbered from 1 to 24 (positively charged repeats are in red color, other repeats are in yellow color). Proline-rich hinges are numbered from 1 to 4. Hinge 3 is in pink color to indicate that it can be cleaved by viral protease. Hinge 2 to repeat 19 are deleted in microdystrophin. Repeat 4–23 and the C-terminal domain are deleted in microdystrophin. Not drawn to scale.

minidistrofine (~6-7 kb) e microdistrofine (~4 kb)

Queste versioni ridotte della distrofina presentano delezioni comuni della regione centrale a bastoncello e nel dominio C-terminale della proteina parentale, lasciando intatti i domini funzionali essenziali della proteina, in particolare quello ricco in cisteine (CR)

Vectors for muscle gene therapy

Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart

Zhong Wang^{1,3}, Tong Zhu^{1,3}, Chunping Qiao¹, Liqiao Zhou¹, Bing Wang¹, Jian Zhang¹, Chunlian Chen¹, Juan Li¹ & Xiao Xiao^{1,2}

Figure 2 Systemic gene delivery to muscle of neonatal mice by different AAV scrotypes via i.v. injection. (a) Whole-body fluorescent photography taken one month after i.v. (temporal vein) injection of 2×10^{11} vg, of various dsAAV-CB-GFP at 3 d of age. (b) GFP expression seen in cryosections of hart, muscle and nonmuscle tissues one month after neonatal i.v. injection with 2×10^{11} vg, of dsAAV-CB-GFP at CB-GFP. Numbers in parentheses denote microscopy exposure time in seconds (s). Scale bar, 100 µm. Note the strong GFP expression in heart and muscles, and the minimal to undetectable GFP expression in nonmuscle tissues. (c) Quantitative analysis of average fluorescence intensity of cryosections from various muscles of AAV1, 2 and 8 treated mice (as shown in a).

Safety Study of Mini-Dystrophin Gene to Treat Duchenne Muscular Dystrophy

Study Type: Interventional

Study Design: Treatment, Randomized, Double-Blind, Placebo Control, Single Group Assignment, Safety Study Official Title: Phase 1 Clinical Trial of rAAV2.5-CMV-Mini-Dystrophin Gene Vector in Duchenne Muscular Dystrophy

Primary Outcome Measures:

Safety

Secondary Outcome Measures:

- mini-dystrophin gene expression at the site of gene transfer
- muscle strength evaluated by Maximal Volume Isometric Contraction Testing

This phase I randomized double blind dose escalation study investigates the safety and efficacy of the minidystrophin gene transferred to the **biceps** muscle for **Duchenne muscular dystrophy** patients, **ages 5 to 12 years** of age, using a recombinant adeno-associated virus. Eligible participants must have a known dystrophin gene mutation and may be concurrently treated with corticoid steroids. The mini-dystrophin gene or a placebo agent (normal saline or empty viral capsids) are injected directly into both biceps muscles while under conscious sedation. Following the gene transfer, patients are admitted to the hospital for 48 hours of observation followed by weekly outpatient visits at the Columbus Children's Hospital Neuromuscular Clinic. A **bilateral muscle biopsy** is preformed following 6 weeks with long term follow up will consisting of bi-annual visits for the next 2 years.

Principal Investigator: Jerry R. Mendell, MD Nationwide Children's Hospital

Phase 1 Gene Therapy for Duchenne Muscular **Dystrophy Using a Translational Optimized AAV** Vector

Dawn E Bowles¹, Scott WJ McPhee², Chengwen Li³, Steven J Gray¹, Jade J Samulski², Angelique S Camp⁴, Juan L², Bing Wang¹, Paul E Monahan⁴, Joseph E Rabinowitz⁴, Joshua C Grieger⁴, Lakshmanan Govindasamy?, Mavis Agbandje-McKenna?, Xiao Xiao! and Il Jude Samulski?

and Linear Division of Linear Tennes, Teda University Made of Castra Dealines, Marth Castra 10th Mathema & Manuscraw and Inammer di signi più anti a di suppi l'amme, Dale liverity Media Cimite, Daletta, Natri Cavla, UK, Aulgen, Elstrammaniai de ci-ini d'anti campi Divisi di suppi l'ammeri di Media Cimite Daletta, Natri Cavla, UK, Aulgen, Elstrammaniai de ci ci d'anti campi campi di suppi la suppi conse uti di Abhate Escle di Permani, unvento di Meti Cavina, Gazei Meti Meti Cavina Cimite di Stati Cavina di Astrono Dipartente el Media. Thema piletera l'anti di Stati Cavina, Gazei Meti Cavina Cimite di Stati Cavina di Astrono Dipartente el Metion, Thema piletera l'anti di Stati Cavina, Gazei Meti Metio Cimite di Stati Cavina di Astrono Dipartente el Metion, Thema piletera l'anti di Stati Cavina, Gazei Metio, Instati UK.

www.moleculartherapy.org vol. 20 no. 2 feb. 2012

Table 2 The clinical data in patients with AAV2.5/minidystrophin muscular delivery

Abbreviations: AAV, adeno-associated virus; ND, none detected; qPCR, quantitative PCR. *AAV2.5 minidvstrophin vector genome dose (vector genomes/patient). *Total capsid dose (minidvstrophin + empty capsid in subject's 5 and 6) capsid particles/ patient. "Vector genome copy number isolated per nucleus as determined by gPCR (skeletal muscle cells are multinucleated).

Dog	1	i c	njected forelimb n = 13 muscles)		Noninjected forelimb (n = 13 muscles)	Other muscles at distance (n = 17 muscles)	Heart	Diaphragm	
11	Mean of cMD1 + fibres	cv	Mean of cMD1 + fibres for the group	CV for the group	Mean of cMD1+ fibres	Mean of cMD1+ fibres	Mean of cMD1+ fibres	Mean of cMD1+ fibre	
LR1	51%	54%	50%	47%	3%	10%	< 0.5%	13%	
LR2	59%	30%			1%	10%	< 0.5%	< 0.5%	
LR3	49%	58%			3%	11%	< 0.5%	18%	
LR4	43%	49%			1%	7%	< 0.5%	1%	
LR C1	< 0.5%	NA	< 0.5%	NA	< 0.5%	< 0.5%	< 0.5%	< 0.5%	
LR C2	< 0.5%	NA			< 0.5%	< 0.5%	< 0.5%	< 0.5%	
LR C3	<0.5%	NA			<0.5%	< 0.5%	< 0.5%	< 0.5%	

Table 2 | Levels of cMD1-positives fibres found after immunostaining analysis (NCL-DYSB) within the muscles of GRMD dogs

ARTICLE

Received 18 Aug 2016 | Accepted 30 May 2017 | Published 25 Jul 2017

Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy

DOI: 10.1038/ncon

OPEN

Caroline Le Guiner^{1,2}, Laurent Servais³, Marie Montus², Thibaut Larcher⁴, Bodvaël Fraysse¹, Sophie Moullec⁵, Marine Allais¹, Virginie François¹, Maeva Dutilleul⁴, Alberto Malerba⁶, Taeyoung Koo⁶, Jean-Laurent Thibaut^{7,8}, Béatrice Matot⁷, Marie Devaux¹, Johanne Le Duff¹, Jack-Yves Deschamps⁵, Inès Barthelemy^{8,9}, Stéphane Blot^{8,9}, Isabelle Testault¹⁰, Karim Wahbi¹¹, Stéphane Ederhy¹², Samia Martin², Philippe Veron², Christophe Georger², Takis Athanasopoulos^{6,13,†}, Carole Masurier², Federico Mingozzi², Pierre Carlier⁷, Bernard Gjata², Jean-Yves Hogrel¹⁴, Oumeya Adjali¹, Fulvio Mavilio², Thomas Voit^{15,*}, Philippe Moullier^{1,16,*} & George Dickson^{6,*}

Duchenne muscular dystrophy (DMD) is an incurable X-linked muscle-wasting disease caused by mutations in the dystrophin gene. Gene therapy using highly functional microdystrophin genes and recombinant adeno-associated virus (rAAV) vectors is an attractive strategy to treat DMD. Here we show that locoregional and systemic delivery of a rAAV2/8 vector expressing a canine microdystrophin (cMD1) is effective in restoring dystrophin expression and stabilizing clinical symptoms in studies performed on a total of 12 treated golden retriever muscular dystrophy (GRMD) dogs. Locoregional delivery induces high levels of microdystrophin expression in limb musculature and significant amelioration of histological and functional parameters. Systemic intravenous administration without immunosuppression results in significant and sustained levels of microdystrophin in skeletal muscles and reduces dystrophic symptoms for over 2 years. No toxicity or adverse immune consequences of vector administration are observed. These studies indicate safety and efficacy of systemic rAAV-cMD1 delivery in a large animal model of DMD, and pave the way towards clinical trials of rAAV-microdystrophin gene therapy in DMD patients.

Atlantic Gene Therapies

6 month-old GRMD dog

Untreated

DMD: emerging drugs or small molecule therapies

- Exon skipping
- Mutation suppression
- Gene therapy
- Muscle building strategy
- Genome editing

CRISPR/Cas9 and Targeted Genome Editing: A New Era in Molecular Biology

The functions of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and CRISPR-associated (Cas) genes are essential in adaptive immunity in select bacteria and archaea, enabling the organisms to respond to and eliminate invading genetic material.

mature	LETTERS
medicine	https://doi.org/10.1038/s41591-019-0344-3

Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy

Christopher E. Nelson^{1,2}, Yaoying Wu¹, Matthew P. Gemberling^{1,2}, Matthew L. Oliver¹, Matthew A. Waller^{1,2}, Joel D. Bohning^{1,2}, Jacqueline N. Robinson-Hamm^{1,2}, Karen Bulaklak^{1,2}, Ruth M. Castellanos Rivera³, Joel H. Collier¹, Aravind Asokan^{4,5} and Charles A. Gersbach ^{(1),2,6+}

Duchenne muscular dystrophy (DMD) is a monogenic disorder and a candidate for therapeutic genome editing. There have been several recent reports of genome editing in preclinical models of Duchenne muscular dystrophy1-6, however, the long-term persistence and safety of these genome editing approaches have not been addressed. Here we show that genome editing and dystrophin protein restoration is sustained in the *mdx* mouse model of Duchenne muscular dystrophy for 1 year after a single intravenous administration of an adeno-associated virus that encodes CRISPR (AAV-CRISPR). We also show that AAV-CRISPR is immunogenic when administered to adult mice7; however, humoral and cellular immune responses can be avoided by treating neonatal mice. Additionally, we describe unintended genome and transcript alterations induced by AAV-CRISPR that should be considered for the development of AAV-CRISPR as a therapeutic approach. This study shows the potential of AAV-CRISPR for permanent genome corrections and highlights aspects of host response and alternative genome editing outcomes that require further study.

Genome editing is sustained for 1 year in neonatal mice treated by intravenous administration

In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy

pher E. Nelson,¹⁵ Chady H. Hakim,¹ David G. Ousterout,¹³ Pratiksha I. Thakore,¹³ Eirik A. Moreb,¹³ C. Castellanos Rivera, ²Sarina Madhavan,¹³ Xinfang Pan,² F. Ann Ran,⁴⁶ Winston X. Yan,⁵² Aravind ¹ Fenz Zhanz, ^{16,6411} Domeshere Duan.¹⁰ Charles A. Gerbach^{16,19} Ruth M. C

expression in a mouse model of muscular dystrophy Chengzu Long, ^{1,2,10} Leonela Amoasil, ^{10,24} Alex A. Mireault, ^{1,2,2} John R. McAnally, ^{12,2} Hui Li, ^{12,2} Efrain Sanche Ortiz, ^{12,4} Samadrita Rhattacharoon, ^{12,4} John M. Mireault, ^{12,2} John R. McAnally, ^{12,3} Hui Li, ^{12,2} Efrain Sanche

Postnatal genome editing partially restores dystrophin

In vivo gene editing in dystrophic mouse muscle and muscle stem cells

Mohammadsharif Tabebordhar,¹³⁸ Kexian Zhu,¹³⁸ Jason K. W. Cheng,¹ Wei Leong Chew,¹⁴ Jeffrey J. Widrick,¹ Winston X. Yan,¹⁴ Claire Maesner,¹ Elizabeth Y. Wu,¹⁴ Ru Xiao,¹ F. Ann Ran,¹⁴ Le Cong,⁵⁵ Peng Zhang,⁵⁵ Luk H. Vandenberghe,¹⁴ George M. Church,² Amy J. Wagerv¹

www.sciencemag.org First release: 31 December 2015

в

AAV-Cass

AAV-sgRNA

ITR

Structural domains of the human full-length dystrophyn, Becker mini- and micro-

L'utrofina e' una proteina, codificata da un gene posto sul cromosoma 6, vista funzionale sia strutturalmente. L'utrofina e' normalmente presente alla muscolari mature, ed e' anche muscolari fetali e del muscolo rigenerante. L'utrofina e' anche

N-terminal domain (red) binds to F-actin; the cysteine-rich domain (green) binds to -Dystroglycan (-DG) and the C-terminal domain (vellow) binds to Dystrobrevins and syntrophins. The central coiled-coil rod domain (blue) contains 24 spectrin -like repeats (R1-R24) and 4 'hinge' regions (turquoise; H1-H4).

SMT C1100 (Ezutromid)

dystrophyns, and utrophyn.

A Small Molecule Utrophin Modulator for Duchenne summit _{plc}

SMT C1100 has successfully completed a **Phase 1** clinical trial in healthy male volunteers in 2012.

The Phase 1b dose-escalating trial was conducted in 12 patients with DMD aged between 5 and 11 years old. These preliminary results show that SMT C1100 was safe and well tolerated at all doses tested in the study, and that there were no issues with patient compliance. All the boys had variable blood plasma concentrations of SMT C1100 with only two of the boys achieving concentrations similar to those of the adult volunteers in the 2012 Phase 1 study. Initial evidence suggests that the variability in drug uptake may be due to differences in diet and to other disease-related factors.

The non-placebo controlled trial also measured creatine kinase ('CK') levels, an enzyme that is associated with muscle fibre damage and elevated in boys with DMD. In the majority of patients there was a reduction in CK levels during dosing with SMT C1100. These data are consistent with non-clinical in vivo efficacy studies in the mdx model of DMD that showed SMT C1100 reduced CK levels after only 15 days.

Phase 2 trial initiated in 2016

SMT C1100 (also known as BMN 195) 5-(ethylsulfonyl)-2-(naphthalen-2-yl)benzo[d]oxazole

Successful Compensation for Dystrophin Deficiency by a Helper-dependent Adenovirus **Expressing Full-length Utrophin**

latinderpal R Deol^{1,2}, Gawiyou Danialou³, Nancy Larochelle¹, Mylène Bourget¹, Ioon-Shik Moon¹* An-Bang Liu1+, Rénald Gilbert⁴, Basil J Petrof^{2,3}, Josephine Nalbantoglu^{1,2,5} and George Karpati^{1,5}

a 40 First generation Ad vectors: good expression levels transient expression (10-15 days) impossible re-administration **Gutless Ad vectors:** not moved to the clinics yet

 Right TA (n = 15
 Left TA (n = 15) R< 0.001

1 2 3 4 5

Contraction number

Actin

9000-900-900-900-900-9000-90

Molecular Therapy vol. 15 no. 10, 1767-1774 oct. 2007

Summit Therapeutics Ends Development of Ezutromid Therapy for DMD After Trial Failure

48-week PhaseOut DMD trial which included 40 boys with DMD

Right TA (n = 15)
Left TA (n = 15)

P = 0.009

90 HZ 120 HZ

Tetanic

35

25

20

Twitch

Primary endpoint was the change from baseline in magnetic resonance parameters related to the leg muscles

Secondary endpoint consisted of biopsy measures evaluating utrophin and muscle damage, with patients having 2 biopsies, 1 at baseline and a second at either 24- or 48-weeks

Statistical decreases in developmental myosin and magnetic resonance T2 measures were seen after 24 weeks of treatment, but were not seen after 48 weeks

June 2018

DMD: emerging drugs or small molecule therapies

- Exon skipping
- Mutation suppression
- Gene therapy
- Muscle building strategy

Follistatin Gene Transfer to Patients With Becker Muscular **Dystrophy and Sporadic Inclusion Body Myositis**

Phase I Clinical Intramuscular Gene Transfer of rAAV1.CMV.huFollistatin (an antagonist to myostatin) Trial to Patients With Becker Muscular Dystrophy and Sporadic Inclusion Body Myositis.

Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12457–12461, November 1997 Genetics

Table 1

ACE

EPO

HGH

HIF

IGF-1

Myostatin

PPAR-delta

VEGE

Skeletal muscle

Vascular endothelium

Skeletal muscle and adipose tissue

ACTN3

Endorphins

Gene/product

Double muscling in cattle due to mutations in the myostatin gene

ALEXANDRA C. MCPHERRON AND SE-JIN LEE* Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205

FIG. 2. A fullblood Belgian Blue bull showing the double muscling phenotype.

Review

Suppression of body fat accumulation in myostatin-deficient mice

Alexandra C. McPherron and Se-Jin Lee

Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Address correspondence to: Se-Jin Lee, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA. Phone: (410) 614-0198; Fax: (410) 955-0831; E-mail: sjlee@hmi.edu.

Received for publication June 19, 2001, and accepted in revised form January 30, 2002.

Candidate genes for sports doping System/organ targets Gene product properties Skeletal muscles Peptidyl dipeptidase Skeletal muscle Actin-binding proteins related to dystrophin Central and peripheral nervous systems Widely active peptides Hematopoietic system Glycoprotein hormone Endocrine system 191-amino acid protein Hematologic and immune systems Multisubunit protein Endocrine/metabolic/skeletal muscle 70-amino acid protein

2-subunit protein

homodimers

Nuclear hormone receptor protein

Glycosylated disulfide-bonded

Physiologic response ACE-D is involved in fast twitch muscles ACE-I seems to correlate with endurance Involved in fast twitch muscles Pain modulation Increases RBC mass and oxygen delivery Increases muscle size, power, and recovery Regulates transcription at hypoxia response elements Increases muscle size, power, and recovery by increasing regulator cells Regulates skeletal muscle. Inhibition increases muscle size, power, and recovery Promotes fat metabolism and increases

number of slow twitch fibers Induces development of new blood vessels

Myostatin

Myostatin belongs to the TGF- β superfamily of signal proteins, and it is normally made and secreted by skeletal muscle cells, providing negative feedback to limit muscle growth.

Small amounts of the protein can be detected in the circulation of adult humans, and it has been reported that the amount is raised in AIDS patients who show muscle wasting. Thus, myostatin may act as a negative regulator of muscle growth in adult life as well as during development. The growth of some other organs is similarly controlled by a negative-feedback action of a factor that they themselves produce.

GH as a performance-enhancing drug

The use of GH and IGF-I is banned by the World Anti Doping Agency not only because of the principle of fair play in competitive sports, but also because of the adverse effects of supraphysiological doses on health. In addition, although rhGH has been available since 1985, GH extracted from the pituitary glands of human cadavers is still available in some countries. Administration from this source carries a significant risk of infection of transmissible brain diseases.

The use of GH in amateur and professional sports seems to be widespread, although the evidence is quite strong that supraphysiological GH administration does not potentiate the effects of exercise on muscle mass and strength in healthy individuals. IGF-I use is probably more limited as it is less readily available than GH.

Attraction of GH abuse:

GH is lipolytic

GH has known effects on collagen and bone turnover
 GH has anectodal side effects such as improving skin tone, eyesight and recovery time from injury
 combination of testosterone and GH leads to improved body composition and VO₂ max in elderly men

Genetically engineered metabolic factory to treat genetic diseases

Enhanced Athletic Performance on Multisite AAV-IGF1 Gene Transfer Coincides with Massive Modification of the Muscle Proteome

Antero Macedo^{1,*} Manuela Moriggi^{,2,*} Michele Vasso^{2,3} Sara De Palma², Mauro Sturnega¹, Giorgio Friso⁴, Cecilia Gelfi^{2,3}, Mauro Giacca¹, and Serena Zacchigna¹

8 40

ibers

20 ast

Λ

HUMAN GENE THERAPY 23:146–157 (February 2012) Mary Ann Liebert, Inc. DOI: 10.1089/hum.2011.157

Hemophilia

- Affects 1:5,000 males
 - 80% hemophilia A due to Factor VIII deficiency
 - 20% hemophilia B due to Factor IX deficiency
- · Results in spontaneous bleeding, which can be fatal
- · Treated with prophylactic or therapeutic infusion of the deficient factor
- · Correction to 1% of normal activity would reduce spontaneous bleeding
- Correction to 10% of normal activity would eliminate most spontaneous bleeding

Blood coagulation

Haemophilia gene transfer trials

1, 2, 5 - FVIII (>8 kb) 3, 4 - FIX (1.4 kb)

Sponsor	Trial No.	n	Vector/Route	Factor Level [†]	Side Effects
Chiron	1—Phase I	13	Retrovirus/IV	0–1%	None working only after
TKT	2—Phase I	6	Plasmid/omentum	0-4%	None hepatectomy
Avigen	3—Phase I	9	AAV2/IM 0-1% None		None
Avigen	4—Phase I	6	AAV2/intrahepatic	3–12%	Elevated transaminase [‡]
Genstar	5—Phase I	3	Adenovirus/IV	0–1%	Elevated transaminase, [‡] thrombocytopenia

One patient so far. At 7 days: persistent elevation of transaminases = low therapeutic index No additional patients enrolled

Historic Overview on Hemophilia Therapy

- Replacement therapy: blood transfusion since '70s
- **Recombinant FVIII/FIX infusion since '90s**

Gene Therapy Approaches for Hemophilia:

- Existence of small (KO mice) and large (dog) animal models
- Easy assessment of efficacy (coagulation tests)
- Small correction should be sufficient (1%)
- Liver-directed, Muscle-directed
- Expensive therapy available

AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B

Catherine S. Manno, Amy J. Chew, Sylvia Hutchison, Peter J. Larson, Roland W. Herzog, Valder R. Arruda, Shing Jen Tal, Margaret V. Ragni, Arthur Thompson, Margareth Ozelo, Linda B. Couto, Debra G. B. Leonard, Frederick A. Johnso Alan McCleiland, Claran Scallan, Erik Skarsgard, Alan W. Flake, Mark A. Kay, Katherine A. High, and Bertil Glader

Table 8. Bioactivity and efficacy studies in subjects treated with uler AAV-hEIX

	PCR on muscle biopsy	Southern blot on muscle biopsy*	F.IX immunohistochemistry	Max circ of F.IX	Decrease in F.IX infusion
A	Pos†	Neg	Neg	1.40%	50%
в	Pos†	ND	Pos	<1%	50%
С	Pos†	Pos (4)	Neg	<1%	None
D	Pos	Pos (1.5)	Pos	<1%	None
	Pos	Pos (2.5)	Pos	<1%	None
Е	Neg	Neg	Pos	<1%	None
F	Neg	Neg	Pos	1%	None
	Pos	Pos (0.5)	Pos	1%	None
G	Pos	Neg	Pos	<1%	None
H.	Pos	Pos (0.5)	Pos	<1%	None

BLOOD, 15 APRIL 2003 · VOLUME 101, NUMBER 8 Phase I Trial: 8 adult men with severe hemophilia B (<1% baseline

FIX) F.IX expression close to the site of injection up to 10 months after

treatment; no evidence for inflammation

Circulating levels of F.IX were less than what is required for therapeutic effect

Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector

	Pat	ient Ab		Patie	n t Bbc	
	F.IX	aPTT		F.IX	aPTT	
Baseline	<1%			< 0.3%		
Week 6	<0.3 %	82.9				
Week 8	1%	61		< 0.3%	102	
Week 10	1.6%	48		0.3%	91.2	
Week 12	1.4%	46.8		0.3%	102.3	
Week 14	3.7%	41.0	(post-EIX infusion)	3.0%	52.6	(post-EIX infusion
Week 17	1.3%	50.6		0.4%	72	
Week 18	0.8%	49.4				
Week 20	0.5%	54.1		0.4%	107	
Week 22	0.9%	53.7				
Week 24	0.5%	52.1		0.8%	65.5	

Dose	F.IX level	F.IX level	Predicted level	Predicted % normal
	in mice ^a	in dogs ^b	in humans ^c	levels in humans
2×10 ¹¹ vg/kg	6 ng/ml	2–4 ng/ml	2-6 ng/ml	≤0.1%
2×10 ¹² vg/kg	60 ng/ml	16 ng/ml	16-60 ng/ml	0.3-1.2%
1×10 ¹³ vg/kg	300 ng/ml	80 ng/ml	80-300 ng/ml	1.8-6%

Transient expression of FIX Partial correction of bleeding time Detection of antiM. Kay, K. High

AAV2 antibodies

Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response

Catherine \$ Manno^{1,2,15}, Glenn F Pierce^{3,15}, Valder R Arruda^{1,2,15}, Bertil Glader^{4,15}, Margaret Ragni⁵, John J E Rasko⁶, Margareth C Ozelo⁷, Keith Hoots⁸, Philip Blatt⁹, Barbara Konkle¹⁰, Michael Dake⁴, Robin Kaye^{1,2}, Mahmood Razavi⁴, Albert Zajko¹⁰, James Zehnder⁴, Pradip K Rustagi¹¹, Hiroyuki Nakai⁴, Amy Chew^{1,3}, Debra Leonard^{2,12}, J Fraser Wright³, Ruth R Lessard³, Jürg M Sommer³, Michael Tigges³, Denise Sabatino¹, Alvin Luk³, Haiyan Jiang³, Federico Mingozzi¹, Linda Couto³, Hildegund C Ertl^{1,13} Katherine A High^{1,2,14} & Mark A Kav⁴

ORIGINAL ARTICLE

Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B

A.C. Nathwani, U.M. Reiss, E.G.D. Tuddenham, C. Rosales, P. Chowday J. McIntosh, M. Della Peruta, E. Lheriteau, N. Patel, D. Raj, A. Riddell, J. Pie, 5. Rangarajan, D. Bevan, M. Recht, Y. M. Shen, K.G. Halka, E. Basner-Tschakarjan F. Mingozzi, K.A. High, J. Allay, M.A. Kay, C.Y.C. Ng, J. Zhou, M. Cancio, C.L. Morton, J.T. Gray, D. Srivastava, A.W. Nienhu uis, and A.M. Davidof

A Annual Use of Factor IX Concentral 8000

MARCH 2006 NATURE MEDICINE

F.IX activity assay and transaminase levels (AST, ALT) plotted as a function of time in weeks after vector administration in subjects E, F and G

N ENGLI MED 371:21 NEIM.ORG NOVEMBER 20, 2014

BACKGROUND

In patients with severe hemophilia B, gene therapy that is mediated by a novel selfcomplementary adeno-associated virus serotype 8 (AAV8) vector has been shown to raise factor IX levels for periods of up to 16 months. We wanted to determine the durability of transgene expression, the vector dose-response relationship, and the level of persistent or late toxicity.

METHODS

We evaluated the stability of transgene expression and long-term safety in 10 patients with severe hemophilia B: 6 patients who had been enrolled in an initial phase 1 dose-escalation trial, with 2 patients each receiving a low, intermediate, or high dose, and 4 additional patients who received the high dose (2×10¹² vector genomes per kilogram of body weight). The patients subsequently underwent extensive clinical and laboratory monitoring.

RESULTS

A single intravenous infusion of vector in all 10 patients with severe hemophilia B resulted in a dose-dependent increase in circulating factor IX to a level that was 1 to 6% of the normal value over a median period of 3.2 years, with observation ongoing. In the high-dose group, a consistent increase in the factor IX level to a mean (±SD) of 5.1±1.7% was observed in all 6 patients, which resulted in a reduction of more than 90% in both bleeding episodes and the use of prophylactic factor IX concentrate. A transient increase in the mean alanine aminotransferase level to 86 IU per liter (range, 36 to 202) occurred between week 7 and week 10 in 4 of the 6 patients in the high-dose group but resolved over a median of 5 days (range, 2 to 35) after prednisolone treatment

CONCLUSIONS

In 10 patients with severe hemophilia B, the infusion of a single dose of AAV8 vector resulted in long-term therapeutic factor IX expression associated with clinical improvement. With a follow-up period of up to 3 years, no late toxic effects from the therapy were reported. (Funded by the National Heart, Lung, and Blood Institute and others; ClinicalTrials.gov number, NCT00979238.)

Merry christmas for patients with hemophilia B.

ORIGINAL ARTICLE

Adenovirus-Associated Virus Vector-Mediated Gene Transfer in Hemophilia B

Amit C. Nathwani, M.B., Ch.B., Ph.D., Edward G.D. Tuddenham, M.B., B.S., M.D., Savita Rangarajan, M.B., B.S., Cecilia Rosales, Ph.D., Jenny McIntosh, Ph.D., David C. Linch, M.B., B.Chir., Pratima Chowdary, M.B., B.S., Anne Riddell, B.Sc., Arnulfo Jaquilmac Pie, B.S.N., Chris Harrington, B.S.N., James O'Beirne, M.B., B.S., M.D., Keith Smith, M.Sc., John Pasi, M.D., Bertil Glader, M.D., Ph.D., Pradip Rustagi, M.D., Catherine Y.C. Ng, M.S., Mark A. Kay, M.D., Ph.D., Junfang Zhou, M.D., Yunyu Spence, Ph.D., Christopher L. Morton, B.S., James Allay, Ph.D., John Coleman, M.S. Susan Sleep, Ph.D., John M. Cunningham, M.D., Deokumar Srivastava, Ph.D., Etiena Basner-Tschakarian, M.D. Federico Mingozzi, Ph.D. Katherine A. High, M.D. John T. Gray, Ph.D. Ulrike M. Reiss, M.D. Arthur W. Nienhuis M.D. and Andrew M. Davidoff, M.D. N Engl J Med 2011; 365:2357-2365 December 22, 2011

Patients suffering from severe hemophilia B (< 1% FIX) were injected by peripheral vein administration with an AAV serotype 8 vector (AAV8) encoding a codon-optimized FIX

AAV8 can efficiently transduce hepatocytes, does not interact as efficiently with antigen-presenting cells as AAV2, and has limited cross-reactivity with preexisting anti-AAV2 antibodies

This scAAV design is more efficient possibly because it obviates the need for second-strand synthesis or reannealing of positive and negative AAV strands to generate transcription-competent double-stranded DNA templates

Subjects received low (2 · 10^11 va/ka), intermediate (6 · 10^11 va/ka), or high (2 · 10^12 va/ka) scAAV8-FIX vector doses. with two participants in each cohort.

All subjects expressed FIX above the 1% threshold for several months (FIX levels varied between 2% and 11%) Four discontinued FIX prophylaxis and remained free of spontaneous bleeding episodes, although most of these subjects required prophylaxis to prevent bleeding upon trauma

One subject who received the highest vector dose developed grade III liver toxicity related to the vector itself, resulting in a significant increase in serum transaminase levels and a concomitant decrease of FIX levels from 7% to 3%. This was associated with the detection of AAV8 capsid-specific T-cells. The other subject had a slight increase in liver enzyme levels concomitant with an increase in AAV8 capsid-specific T-cells

and a slight decrease in FIX level.

Seven different pharma companies are currently developing gene therapy treatments for hemophilia:

UniQure presented results from an early study of AMT-060 (AAV5-hFIX). The first 2 hemophilia patients treated with January 7th, 2016 AMT-060, about 12 and 20 weeks after treatment, are now producing 4.5 percent and 5.5 percent, respectively, of normal Factor IX. To put that in context, these patients have severe or moderately severe hemophilia, meaning they

typically produce less than 1 to 2 percent of these levels, and rely on frequent infusions to get those numbers up. Baxalta reported continued progress on the Phase 1/2 open-label clinical trial assessing the safety and optimal dosing level of BAX 335, an advanced rAAV8-based gene therapy technology for FIX expression.

Some FIX expression was observed in the lowest dosing cohort (2x1011 vg/kg). In the second dosing cohort (1x1012 vg/kg), two patients have experienced no bleeds without regular infusions of FIX and one of these patients has had sustained FIX expression levels of 20-25 % for 12 months. In the highest dose cohort (3x1012 vg/kg), expression levels have peaked above 50 %, though the two patients in this cohort experienced an immune response which has led to decreased FIX expression, with one patient resuming regular FIX infusions

AAV8 and AAVrh10 are two forms of AAV that selectively target liver cells and have been optimized to deliver missing intact genes in diseases associated with the liver

With Pfizer we are developing novel bio-engineered AAV vectors utilizing a high-activity factor IX transgene and a treatment protocol designed to mitigate immune responses seen in other hemophila B gene therapy trials, including our own, that have limited the duration of efficacy. We initiated a Phase 1/2 trial in June of 2015.

September 28, 2015. BioMarin Enrolls First Patient in Phase 1/2 Trial of Gene Therapy Drug Candidate BMN 270 for 5) BIOMARIN' the Treatment of Hemophilia A

The Phase 1/2 study will evaluate the safety and efficacy of BMN 270 gene therapy in up to 12 patients with severe Hemophilia A. The primary endpoints are to assess the safety of a single intravenous administration of a recombinant AAV, human-coagulation Factor VIII vector and to determine the change from baseline of Factor VIII expression level at 16 weeks after infusion.

Sangam Biosciences is developing a ZFN-mediated Cell Trate genome editing approach to hemophilia A and B using Nemechalia B SELIX Instant Pix Lilver cells our proprietary In Vivo Protein Replacement Platform Insert FVIR (IVPRP)

7) biogen idec.

Biogen Idec, Fondazione Telethon and Ospedale San Raffaele Announce Global Collaboration to Develop Gene Therapies for Hemophilia Programs to apply lentiviral vector technology to hemophilia A and B

Factor IX Padua variant

- single point mutation, R338L
- •initially discovered in a thrombophilic patient
- possesses increased procoagulant activity due to an enhanced incorporation into the intrinsic tenase complex in the clotting cascade
- •pre-clinical studies of FIX Padua in gene therapy confirmed its benefit

AAV5–Factor VIII Gene Transfer in Severe Hemophilia A

Savita Rangarajan, M.B., B.S., Liron Walsh, M.D., Will Lester, M.B., Ch.B., Ph.D., David Perry, M.D.,
Ph.D., Bella Madan, M.D., Michael Laffan, D.M., Hua Yu, Ph.D., Christian Vettermann, Ph.D., Glenn
F. Pierce, M.D., Ph.D., Wing Y. Wong, M.D., and K. John Pasi, M.B., Ch.B., Ph.D.<u>et al.</u>

CONCLUSIONS The infusion of AAV5 hFVIII SQ was associated with the sustained normalization of factor VIII activity level over a period of 1 year in six of seven participants who received a high dose, with stabilization of hemostasis and a profound reduction in flactor VIII use in all seven participants. In this small study, no safety events were noted, but no safety conclusions can be drawn. (Funded by BioMarin Pharmaceutical; ClinicalTrials.gov number, NCI02576795; EudraCT number, 2014-003880 38.)

BOMARIN[®] December 2 N Engl J Me

December 28, 2017 N Engl J Med 2017; 377:2519-2530

Infusion of a **single** intravenous dose of a codon-optimized adeno-associated virus serotype 5 (AAV5) vector encoding a Bdomain-deleted human factor VIII (AAV5hFVIII-SQ) in nine men with severe **hemophilia A (the most common type)**

Hemophilia B Gene Therapy with a High-Specific-Activity Factor IX Variant

L.A. George, S.K. Sullivan, A. Giermasz, J.E.J. Rasko, B.J. Samelson-Jones, J. Ducore, A. Cuker, L.M. Sullivan, S. Majumdar, J. Teitel, C.E. McGuinn, M.V. Ragni, A.Y. Luk, D. Hui, J.F. Wright, Y. Chen, Y. Liu, K. Wachtel, A. Winters, S. Tiefenbacher, V.R. Arruda, J.C.M. van der Loo, O. Zelenaia, D. Takefman, M.E. Carr, L.B. Couto, X.M. Anguela, and K.A. High

- FIX levels not only sufficient to eliminate the risk of spontaneous bleeding but also to minimize the risk of bleeding from interventions and trauma
- persistence of FIX expression out to beyond one year - could a single administration of AAV-mediated gene therapy be curative for hemophilia?
- novel AAV vector that has bioengineered changes to the vector capsid to avoid preexisting immunity

N Engl J Med 2017;377:2215-27. DOI: 10.1056/NEJMoa1708538

CASE STUDY - Jake Omer, 29

James lives in Billericay and is married with two children, aged 3 years and a baby of 5 weeks. Diagnosed at two years old, he has had frequent injections of factor VIII to prevent bleeds ever since. Before he was treated with the gene therapy, Jake would wake up early before work to inject three times a week as well as injecting whenever he had an injury to stop the bleeding. As a result of of repeated bleeding Jake has arthritis in his ankles. His father is a Turk-Cypriot and as a child he and his family could never travel to visit relatives in case he needed medical care as the facilities wouldn't have been available.

"The gene therapy has changed my life. I now have hope for my future. It is incredible to now hope that I can play with my kids, kick a ball around and climb trees well into my kids' teenage years and beyond. The arthritis in my ankles meant I used to worry how far I would be able to walk once I turned 40. At 23 I struggled to run 100m to catch a bus; now at 29 I'm walking two miles every day which I just couldn't have done before having the gene therapy treatment. "It's really strange to not have to worry about bleeding or swellings. The first time I noticed a difference was about four months after the treatment when I dropped a weight in the gym, bashing my elbow really badly. I started to panic thinking this is going to be really bad, but after icing it that night I woke up and it looked normal. That was the moment I saw proof and knew that the gene therapy had worked."

The five UK trial sites included: The Royal London, Guys and St Thomas', Birmingham, Cambridge and Hampshire hospitals.

Sponsor Factor IX	NCT	Study	AAV	Vector Dose (vg/kg)	Phase	Patients (target)	ED	AAV Ab	Status
SJCRH/UCL	NCT00979238	n/a	scAAV2/8-LP1- FIXco-wt	2e11, 6e11, 2e12	1	14	≥50	Negative	Not recruiting
Shire (Baxalta)	NCT01687608	AskBio009	AAV8.sc-TTR- FIXco-Padua	2e11, 1e12, 3e12	1, 2	30	n/a	Negative	Not recruiting
Uniqure	NCT02396342	AMT-060-01	AAV5-FIXco-wt	5e12, 2e13	1,2	10	>150	Negative	Not recruiting
	NCT03489291	AMT-061-01	AAV5-FIXco-Padua	2e13	2	3	>20	Included	Not recruiting
	NCT03569891	AMT-061-02 (HOPE-B)	AAV5-FIXco-Padua	2e13	3	56	>150	Included	Recruiting
Pfizer (Spark)	NCT02484092	SPK-9001-101	AAV-SPARK100-	5e11	2	15	≥50	Negative	Not recruiting
,	NCT03307980	SPK-9001-LTFU- 101	FIXco-Padua	SPK-9001 extension study	2	20	n/a	n/a	Recruiting
	NCT03861273	BENEGENE-2		n/a	3	55	≥50	< 1:1	Not yet recruiting
UCL Freeline	NCT03369444	FLT-180a	AAVS3-FIXco-	6e11, 2e12	1	18	>150	Negative	Recruiting
	NCT03641703		Padua	FLT180a extension study	2,3	50	n/a	n/a	Recruiting
Factor VIII									•
Biomarin	NCT02576795	BMN-270-201	AAV5-FVIII-BDD	6e12, 2e13, 6e13	1, 2	15	>150	Negative	Not recruiting
	NCT03392974	BMN-270-302		4e13	3	40	>150	Negative	Recruiting
	NCT03370913	BMN-270-301		6e13	3	130	>150	Negative	Recruiting
	NCT03520712	BMN-270-203		6e13	1,2	10	>150	Included	By invitation
Spark	NCT03003533	SPK-8011-101	AAV-SPARK200- FVIII-BDD	5e11, 1e12, 2e12	1, 2	30	>150	Negative	Recruiting
	NCT03432520	SPK-8011-LTFU	n/a	SPK-8011 extension study	1,2	100	n/a	n/a	By invitation
	NCT03734588	SPK-8016-101		Dose finding pre FVIII inhibitor study	1,2	30	> 150	Negative	Recruiting
UCL	NCT03001830	GO-8	AAV2/8-HLP-FVIII- V3	6e11, 2e12, 6e12	1	18	>50	Negative	Recruiting
Sangamo	NCT03061201	SB-525-1603	AAV2/6-FVIII-BDD	9e11, 2e12, 1e13, 3e13	1,2	20	>150	Negative	Recruiting
Shire (Baxalta)	NCT03370172	BAX-888	AAV8-FVIII-BDD	n/a	1, 2	10	>150	<1:5	Recruiting
Bayer	NCT03588299	BAY2599023 (DTX201)	n/a	n/a	1, 2	18	>150	Negative	Recruiting

A, antbody; co, codon optimized; ED, exposure days to factor concentrate; sc, self-complementary; SJCRH, St. Jude Children's Research Hospital; UCL, University College London; vg, vector genomes; wt, wild-type; FVIII-BDD, B-domain deleted FVIII.

Human Molecular Genetics, 2019, Vol. 28, No. R1 | 899