Open Data Management & the Cloud
(Data Science & Scientific Computing / UniTS — DMG)

Data model implementation

@ Once we have designed a data model in UML, we need to convert the
diagrams into machine readable formats

@ To perform additional validations to the data model, e.g. homogeneity,
common naming rules

@ To be able to persist objects and relations which are compliant with the
designed data model

@ The implementation depends on the underlying technology:
@ For relational databases: database schema

@ For document oriented databases: the XML Schema Language (XSD) or
the JSON Schema (JavaScript Object Notation)

@ Document based systems can also be built on top of relational
databases

@ In this lecture we will focus on the relational database schema.

ODM&C 6 — Data Model Implementation 2/55

Object-relational impedance mismatch

@ A set of conceptual and technical difficulties that are often encountered when
a relational database management system is been served by an application
program written in an object oriented language

@ We have already discussed some solutions when comparing the UML model
with the IE model in the previous lecture

@ Additional difficulties:

@ Hierarchical structure:

@ In UML, we can define complex hierarchical structures. A class can “aggregate”
instances of other classes. The relational model only “accepts” atomic types for the
entity attributes and relations

@ In the relational model, children point to their parent, while in the hierarchical model
parents point to their children

@ Inheritance:

@ Not directly supported by the relational model. Several mappings can be implemented to
keep the inheritance information

@ Class normalization vs data normalization

ODM&C 6 — Data Model Implementation 3/55

® Many-to-many associations, when ,,
mapped to a relational schema,
require an additional table, i.e. an
additional relation "

@ |n the relational schema we cannot
define an upper limit on the
multiplicity

@ Abstract classes have multiple
mapping options, each one with
some limitations

Customer

customerName
loginName
encryptedPassword

Review

NispRawFrame

filterWheelPosition
grismWheelPosition

rater reviewDate
* |grade
comment

detectors

Customer Review Rating Review
customerlD rat?rID (FK) reviewlD
customerName review|D (FK) reviewDate
loginName (4 5O grade
encryptedPassword comment

NispDetector

1..16

detectorld

gain
readoutNoise
astrometry [0..1]

Specialization and generalization

@ We consider here only the single inheritance

@ To convert each specialization with m subclasses {S,, S,, ..., S,,} and
superclass C, where the attributes of C are {k, a,, a,, ..., a,} and k is the
primary key, into a relation schema, the options are:

@ Multiple relations - superclass and subclasses. Create a relation L for C with
attributes Attrs(L) = {k, a,, ..., a,} and PK(L) = k. Create a relation L, for each

subclass S;, with attributes Attrs(L;) = {k} U {attributes of S} and PK(L)) = k.

@ Multiple relations - subclass only. Create a relation L, for each subclass S;, with
the attributes Attrs(L,) = {attributes of S} U {k, a,, ..., a,} and PK(L) = k.

@ Single relation with one type attribute. Create a single relation schema L with
attributes Attrs(L) = {k, a,, ..., a,} U {attributes of S;} U ... U {attributes of S} U {t}

and PK(L) = k. The attribute t is called type (or discriminating) attribute whose
value indicates the subclass to which each tuple belongs

@ Single relation multiple type attributes. As above, but instead of a single type
attribute t, there is a set {t;, t,, ..., t,,} of m boolean type attributes indicating wether

or not a tuple belongs to subclass S..

ODM&C 6 — Data Model Implementation 5/55

Object-Relational Mapping (ORM)

@ Object-relational mapping (ORM) uses different tools, technologies
and techniques to map data objects in a target programming language
to relations and tables of a RDBMS

® An ORM solution consists of the following four pieces:

AP for performing basic CRUD operations on objects of
persistent classes

Language/API for mapping
Facility for specifying mapping metadata

Optimization functions such as dirty checking and lazy
association fetching.

ODM&C 6 — Data Model Implementation 6/55

ORM solutions

@ An ORM abstracts your application away from the underlying SQL database
and SQL dialect

@ |If the tool supports a number of different databases (and most do), this confers
a certain level of portability on your application

@ Several programming languages have at least one ORM solution

@ Java: it provides both a standard specification, named Java Persistence API (JPA),
and several implementations of the specification (Hibernate, EclipseLink)

@ C++: possible ORM solutions are
@ ODB: https://www.codesynthesis.com/products/odb
® QxOrm: https://www.gxorm.com/gxorm_en/home.html
@ Python:
@ SQLAIchemy: https://www.sglalchemy.org/

@ The Django framework: https://docs.djangoproject.com/en/2.1/topics/db/
@ Pony: https://ponyorm.com/

@ Ruby: ActiveRecord, DataMapper, Sequel

ODM&C 6 — Data Model Implementation 7/55

https://www.codesynthesis.com/products/odb
https://www.qxorm.com/qxorm_en/home.html
https://www.sqlalchemy.org/
https://docs.djangoproject.com/en/2.1/topics/db/
https://ponyorm.com/

@ Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic
design https://www.djangoproject.com

@ Django follows the model-template-view (MTV) architectural pattern
@ An object-relational mapper, defining a data model as python classes (Models)

@ A system for processing HTTP requests (Views) with a web templating sytem (Template)

&
pres.)

@ A regular-expression-based URL dispatcher (Url)

django o -
'{

user
o=l = -
- == o1

@ Django comes with a lightweight standalone web server for development and testing
@ A serialization system that can produce and read XML and/or JSON representation of Django models

@ Lot of reusable packages provided by the community:
https://djangopackages.org/

https://www.djangoproject.com/
https://djangopackages.org/

Data model case study: Euclid

@ M2 mission in the framework of ESA Cosmic Vision Program

@ Euclid mission objective is to map the geometry and understand the nature
of the dark Universe (dark energy and dark matter)

@ Federation of 8 European + 1 US Science Data Centers and a Science
Operation Center (ESA)

@ Large amount of data produced by the
mission
@ Due to reprocessing

@ |arge amount of external data needed
(ground based observations)

@ Grand total: 90 PB

@ Two instruments on board:
® VIS: Visible Imager

@ NISP: Near Infrared Spectro-Photometer

ODM&C 6 — Data Model Implementation 9/55

The NISP focal plane is
composed of a matrix of 4x4
2040x%2040 18 micron pixel
detectors

The photometric channel will be
equipped with 3 broad band
filters (Y, J and H)

The spectroscopic channel will
be equipped with 4 different low
resolution near infrared grisms
(three red and one blue) but no
slit

The three red grims will provide

spectra with three different
orientations (0°, 90°, 180°)

ODM&C

6 — Data Model Implementation

10/55

®
@@%’ &%&

%@g@“@

]

Metadata content (simplified) Ha

P

@ We need to define the metadata associated to a NISP image (a single exposure)

@ Since Euclid also needs images from ground-based telescopes, the dictionary of types used to
model the metadata information should be homogeneous among them and reuse a common
base set of type definitions

@ All images have a common set of information

@ Exposure time, image category and purpose (is it a simulation, a calibration image, a sky image, etc.)
and image dimensions, some statistics on the image, to quickly check if there are anomalies, and we
need to keep the information about the instrument used to acquire a given image

@ However, for ground-based telescopes we need also the geographical location of the telescope, so the
telescope information requires more properties.

@ Space telescopes can perform surveys of the sky, hence the observation can be identified by the
observation ID. Moreover, for a given field, they can execute a dithering pattern, in order to increase the
signal-to-noise ratio and reduce cosmic-ray hits. So we need also to store the dither number. Additional
information needed are the observation date and time and the commanded pointing (right ascension,
declination and telescope orientation)

@ Then we have information specific to the Euclid instruments. The NISP instrument has both a filter
wheel and a grism wheel. The images from all detectors should be stored in a single file, to
simplify its retrieval and the analysis. However, each detector has some specific properties: gain,
readout noise. Then, for each detector we need to compute the mapping from pixel indexes to
sky coordinates (RA, DEC), i.e. its own astrometric solution.

ODM&C 6 — Data Model Implementation 11/55

ImgBaseFrame ImgType
exposureTime ; category
imgNumber ’1 imgType 1 firstType
naxis2 secondType
naxis2 @

iy
ImageStatistics
min
max
0.1 |mean
stddev
median

ImgSpaceFrame Instrument
observationDateTime <x 1 |instrumentName
Observationld telescopeName
ditherNumber .ﬁ

Pointing
rightAscention
commandedPointing |declination
1 |orientation

NispRawFrame detectors NispDetector
filterWheelPosition R 1.1 |detectorld
grismWheelPosition gain

.'_ readoutNoise
astrometry [0..1]
frameFile
DataContainer
fileFormat
1 formatldentifier
formatVersion

url

Each class inherits models.Model

All fields use a Django Model Data Type
https://www.webforefront.com/django/modeldatatypesandvalidation.htmi

@ models.CharField(max_length = 20)
@ models.BooleanField()
@ models.FloatField()

@ models.DateTimeField()
o ..

Attributes in the Data Model Type are used to set options for fields
@ null = True

@ primary_key = True

Foreign keys
https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey

instrument = models.ForeignKey(Instrument)

Related names
https://docs.djangoproject.com/en/3.1/topics/db/queries/#backwards-related-objects

rawFrame = models.ForeignKey('NispRawFrame', related name='detectors', on delete=models.CASCADE)

https://www.webforefront.com/django/modeldatatypesandvalidation.html
https://docs.djangoproject.com/en/3.1/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/3.1/topics/db/queries/#backwards-related-objects

Django Implementation (2)

4 @
TS>

@ By enumerated type we mean a type that provides a set of possible
values through the choices parameter (option) available to all field
types

IMAGE CATEGORY = ('SCIENCE', 'CALIBRATION', 'SIMULATION')

category = models.CharField(max length=20, choices=[(d, d) for d in IMAGE_ CATEGORY]
@ Model Meta options is “anything that’s not a field”

class Meta:

Abstract True

class Meta:

@ Abstract class Ordering = ['surname']
: class Meta:
@ Ordering unique_together = (("fiscalCodel", "fiscalCode2"),)

@ Candidate key of multiple columns

@ |[tis a good practice to override the default name of objects

def str (self):
return self.name

ODM&C 6 — Data Model Implementation 14/55

Prerequisites

@ The simplest way to install Django is to download and install the Python
Anaconda Distribution, with Python version 3.x:
https://www.anaconda.com/download

@ Then you need to install some additional python packages for the following
exercise/hands-on:

@ To install the Django framework use the following command line:

conda create -n orm django django

@ Additional packages are needed, not available in Anaconda but installed with the
“pip” command:

pip install django-extensions djangorestframework
pip install django-composite-field django-url-filter
pip install django-phonenumber-field phonenumbers
pip install Pillow

@ The full Anaconda distribution already provides Jupyter notebooks, used in one
example

ODM&C 6 — Data Model Implementation 15/55

https://www.anaconda.com/download

ORM project example - Euclid

@ The entire examples can be retrieved at the following link:
https://www.ict.inaf.it/gitlab/odmc/orm_example

@ You can clone the project with the git version control system, i.e. with the
command:

git clone https://www.ict.inaf.it/gitlab/odmc/orm example.git
cd orm _example/django example euclid

@ The Diango project for the Euclid example has been already created using the
following commands (so you don’t need to execute them):

django-admin startproject euclid example ./
python manage.py startapp imagedb

which creates a project folder, named euclid_example, with additional files and
then an application, named imagedb, inside the project.
It automatically creates skeleton files needed by a django project and application

ODM&C 6 — Data Model Implementation 16/55

https://www.ict.inaf.it/gitlab/odmc/orm_example
https://www.ict.inaf.it/gitlab/odmc/orm_example.git

django example euclid/
— 1magedb

— admin.py

—— apps.py

— migrations

— models.py =

— tests.py

— views.py ==
— manage.py

— euclid example
— settings.py =

— urls.py

— wsgi.py

The Django ORM

@ From the data model class to a Django ORM model class

ImgBaseFrame ImgType
exposureTime im category
: gType 2
|mg!\|umber *l I firstType
naxis2 secondType
naxis2 ®
1

ImageStatistics
min
max
0..1 |mean
stddewv
median

from django.db import models

@ Each model is represented by a class ImageBaseFrame(models.Model):

exposureTime = models.FloatField()
class that subclasses imgNumber = models.PositiveSmallIntegerField()

django.db.models.Model naxisl = models.PositiveIntegerField()
naxis2 = models.PositiveIntegerField()
@ ImageBaseFrame here is imageType = ImageType()
_ . : stats = models.OneToOneField(
abstract: no table instantiated ImageStatistics,
, : models.SET NULL,
@ That's why we define the stats sl
attribute as a Foreign Key to null=True,
the ImageStatistics class and not)
vice versa
class Meta:

abstract = True

ODM&C 6 — Data Model Implementation 18/55

Composite fields

@ Sometime we would like to define a model class attribute as a multi-column
field in the same table (i.e. a non-atomic type) instead of creating a 1-to-1
relation (a second table with the attribute columns and a foreign key)

@ Many ORM systems provide such feature:

® JPA: named as embeddable classes
@ odb: named as Composite Value Types
® SQLAIchemy: named as Composite Column Types
@ Django ORM does not provide directly this feature. However there is a

package provided by the community, called django-composite-field, which
provides an “acceptable” solution

@ Composite fields provide an implementation of a “part-of” relationship, i.e.
what in the UML class diagram is called composition

ImgSpaceFrame Pointing

observationDateTime *Commandedlﬂointing rightAscention
1 |declination
orientation

ODM&C 6 — Data Model Implementation 19/55

The ImageType class

IMAGE CATEGORY = (
'SCIENCE',
'CALIBRATION',
'SIMULATION'

)

IMAGE_FIRST GROUP = (

‘OBJECT',
'STD ',
'BIAS',
'‘DARK",
'FLAT',
'LINEARITY',
'OTHER'

IMAGE SECOND GROUP = (

'SKY',
'LAMP',
'‘DOME ',
'OTHER'

ODM&C

from composite field import CompositeField

class ImageType(CompositeField):

category = models.CharField(
max_length=20,
choices=[(d, d) for d in IMAGE CATEGORY]
)

firstType = models.CharField(

max_length=20,

choices=[(d,d) for d in IMAGE FIRST GROUP]
)

secondType = models.CharField(

max_ length=20,

choices=[(d,d) for d in IMAGE SECOND GROUP]
)

6 — Data Model Implementation 20/55

®
@@g &%ﬂj

% @%@g@“@)

The ImageSpaceFrame class

© TERGS
o

TS>

class Instrument(models.Model):
instrumentName = models.CharField(max length=100)
telescopeName = models.CharField(max length=100)

class Pointing(CompositeField):

rightAscension = models.FloatField()

ImgSpaceFrame Instrument . . _ .
observationDateTime Q—linstmmenmame deC]‘lnatlon - mOde-l'S " FloatFlel‘d ()
Ob tionld tel N 1 1 — 1
Qbservationid - elescopeName orientation = models.FloatField()
Pointing
ightA: ti
commandegPointing gmggﬁm" class ImageSpaceFrame(ImageBaseFrame) :
onentation
observationDateTime = models.DateTimeField()

observationId = models.PositivelIntegerField()
ditherNumber = PositiveSmalllIntegerField()
instrument = models.ForeignKey(Instrument,

on delete=models.CASCADE)
commandedPointing = Pointing()

class Meta:
abstract = True

@ The same Instrument is associated to many images, hence here we use a Foreign Key from
ImageSpaceFrame to Instrument

@ If the Instrument instance is deleted, also all images referring to it are automatically deleted (option
on_delete set to models.CASCADE in ForeignKey)

ODM&C 6 — Data Model Implementation 21/55

NispDetector

NISP DETECTOR ID = (
'11','12','13",'14",

filtervl:rimse':l‘:o“:i:i;anme ‘% detect::lsdpnem“or I 21 I z I 22 I ’ I 23 I ’ I 24 I ’
grismWheelPosition : ?eaairt:loutNoise ‘31" ; '32' 5 '33" 5 '34" ;
astrometry [0..1] 41" ’ ' 42 ' ’ ' 43 ' ’ '44'
)
class NispDetector(models.Model):
¢ Many _deteCtorS (Up to 16) detectoEId = models.CharField(
associated to the same max_length=2,
raw frame choices = [(d,d) for d in NISP DETECTOR ID]

)
@ Sj : : gain = models.FloatField()
Since NispRawFrame Is readoutNoise = models.FloatField()

not yet defined, we pass rawFrame = models.ForeignKey ('NispRawFrame',
the class name as a related name='detectors"',
string to models.ForeignKey oSl leteiedisle LAt

@ But we want to access the
detector data using the
NispRawFrame class, i.e. the reverse relation.

@ This is the purpose of the related_name parameter. For instance we can access the
detector data using NispRawFrame.detectors

ODM&C 6 — Data Model Implementation 22/55

NispRawFrame class

NispRawFrame

filterWheelPosition
grismWheelPosition

frameFile

DataContainer

fileFormat
formatidentifier
formatVersion
url

1

NISP FILTER WHEEL = (

class DataContainer(models.Model):

fileFormat = models.CharField(
max_length=10

)

formatIdentifier = models.CharField(
max_length=20

)

formatVersion = models.CharField(
max_length=20

)

'Y, url = models.URLField()

IJI,

IHI,

'OPEN', class NispRawFrame(ImageSpaceFrame):
"CLOSE' filterWheelPosition = models.CharField/(

)

NISP GRISM WHEEL = (

max_ length=10,
choices = [(d,d) for d in NISP FILTER WHEEL]
)

'BLUEO ',

‘REDO ', grismwWheelPosition = models.CharField(

'RED9O ', max_length=10,

'RED180' choices = [(d,d) for d in NISP GRISM WHEEL]
'OPEN')

'CLOSE" frameFile = models.OneToOneField(DataContainer,

)

on delete=models.CASCADE)

@ A models.OneToOneField is analogous to models.ForeignKey with the option uniqgue=True but
the reverse side of the relation will directly return a single object

ODM&C 6 — Data Model Implementation 23/55

DB Schema creation 1/2

@ Once we have defined our data model in imagedb/models.py we
need Django to create the corresponding DB schema

@ First let’s check the the project settings includes the imagedb
application, i.e. that the file orm_example/settings.py contains the
the strings highlighted in red in the box on the bottom left

@ To do the first migration, i.e. generation INSTALLED APPS = [

of the DB schema, run the following

command

command python manage.py makemigrations imagedb

‘django.contrib.admin’,
‘django.contrib.auth"',
‘django.contrib.contenttypes’',
‘django.contrib.sessions',
‘django.contrib.messages’,
‘django.contrib.staticfiles’,
‘django extensions',

Migrations for 'imagedb': ‘imagedb’,
1magedb/mlgrat10ns/0001 initial.py 'rest framework',
Create model DataContainer 'url filter',

- Create model ImageStatistics] B
output - Create model Instrument

- Create model NispRawFrame

- Create model NispDetector Then run the command

- Create model Astrometry

python manage.py migrate
ODM&C 6 — Data Model Implementation 24/55

imagedb_datacontainel
id

fileFormat
formatldentifier
formatVersion
url

[table]
INTEGER NOT NULL
auto-incremented
VARCHAR(10) NOT NULL
VARCHAR(20) NOT NULL
VARCHAR(20) NOT NULL
VARCHAR(200) NOT NULI

imagedb_instrument

[table]

id INTEGER NOT NULL

instrumentName
telescopeName

auto-incremented
VARCHAR(100) NOT NULI
VARCHAR(100) NOT NULI

imagedb_nisprawframe
id

exposureTime

imgNumber

naxis1

naxis2

imageType_category
imageType_firstType
imageType_secondType
observationDateTime
observationld

ditherNumber
commandedPointing_rightAscension
commandedPointing_declination
commandedPointing_orientation
filterWheelPosition
grismWheelPosition
frameFile_id

instrument_id

stats_id

INTEGER NOT NULL
auto-incremented
REAL NOT NULL
SMALLINT UNSIGNED NOT NULY
INTEGER UNSIGNED NOT NULL
INTEGER UNSIGNED NOT NULL
VARCHAR(20) NOT NULL
VARCHAR(20) NOT NULL
VARCHAR(20) NOT NULL
DATETIME NOT NULL

INTEGER UNSIGNED NOT NULL
SMALLINT UNSIGNED NOT NULL
REAL NOT NULL

REAL NOT NULL

REAL NOT NULL
VARCHAR(10) NOT NULL
VARCHAR(10) NOT NULL
INTEGER NOT NULL
INTEGER NOT NULL
INTEGER

id

min
max
mean
stddev
median

imagedb_imagestatistics

[table]
INTEGER NOT NULL
auto-incremented
REAL NOT NULL
REAL NOT NULL
REAL NOT NULL
REAL NOT NULL
REAL NOT NULL

[table]L'_o(

imagedb_nispdetectol
id

detectorld
gain
readoutNoise
rawFrame_id

[table]
INTEGER NOT NULL
auto-incremented
VARCHAR(2) NOT NUL
REAL NOT NULL
REAL NOT NULL
INTEGER NOT NULL

imagedb_astrometry
id

ctpye1_coordinateType
ctpyel_projectionType
ctype2_coordinateType
ctype2_projectionType
crvall

crval2

crpix1

crpix2

cd1_1

cdi_2

cd2_1

cd2_2

detector_id

[table]
INTEGER NOT NULL
auto-incremented
VARCHAR(4) NOT NULL
VARCHAR(3) NOT NULL
VARCHAR(4) NOT NULU
VARCHAR(3) NOT NULU
REAL NOT NULL
REAL NOT NULL
REAL NOT NULL
REAL NOT NULL
REAL NOT NULL
REAL NOT NULL
REAL NOT NULL
REAL NOT NULL
INTEGER

Data insertion

@ We can now open a python shell and interact with the data model API

python manage.py shell

Python 3.7.0 (default, Jun 28 2018, 13:15:42)

Type 'copyright', 'credits' or 'license' for more information

IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from imagedb.models import Instrument

In [2]: instrument = Instrument(telescopeName='Euclid', instrumentName='VIS')

In [3]: instrument.save()

In [4]: quit

@ We can pass a Python script to insert data

python manage.py shell < data ingestion.py

2025-06-21T17:14:03.000001
2025-06-21T12:20:43.000001
2025-06-22T17:42:53.000001

ODM&C 6 — Data Model Implementation 26/55

Django ORM and Jupyter notebook

@ For didactic purpose, we can use a Django extension to start a Jupyter
notebook. The orm_example project example already provides one
notebook. To use it, issue the following command:

env DJANGO ALLOW ASYNC UNSAFE=true python manage.py shell plus --notebook

a browser page will be opened. In this page, select the file
Imagedb_objects.ipynb and execute each cell.

C @ localhost:8888/tree Q i ¥ € W] P e »P:
.. Jupytel’ Quit Logout

Files Running Clusters

Select items to perform actions on them. Upload | New ~ | &
Jo |~ W Name ¥ Last Modified File size
[J [3 euclid_example 21 hours ago
[J [0 imagedb 19 minutes ago
[J 3 resources a day ago
[& imagedhpbjects.ipynb a day ago 11.2 kB
(] O data_ingestion.py a day ago 3.27kB
O [db.sqlite3 5 minutes ago 492 kB
O 0 manage.py a day ago 546 B
O [README.md a day ago 790 B

ODM&C 6 — Data Model Implementation 27/55

Multi-table inheritance 1/3

@ With django model abstract base classes, we cannot define foreign
keys referencing such base class (since no table is created for
abstract classes)

@ A solution is the Multi-table inheritance of Django models. In this
case the abstraction is removed from such base classes and each
class in the inheritance hierarchy will have a corresponding table in the
DB schema.

@ To obtain a multi-table inheritance version of the previous data model,
remove the statements

class ImageBaseFrame(models.Model) :

clas a:
a r = True

class ImageSpaceFrame(ImageBaseFrame) :

clas el
ab a = True

ODM&C 6 — Data Model Implementation 28/55

imagedb_nispdetecto: [table]
id INTEGER NOT NULL
auto-incremented

detectorld VARCHAR(2) NOT NUL
gain REAL NOT NULL
readoutNoise REAL NOT NULL
,rawFrame_id INTEGER NOT NULL
imagedb_nisprawframe [table]
imagespaceframe_ptr_id INTEGER NOT NULL
filterWheelPosition VARCHAR(10) NOT NULL
grismWheelPosition VARCHAR(10) NOT NULL
frameFile_id INTEGER NOT NULL
. . imagedb_astrometry [table]
imagedb_imagespaceframe [table] id INTEGER NOT NULL
imagedb_datacontainei [table] \imagebaseframe_ptr_id INTEGER NOT NULL auto-incremented
id INTEGER NOT NULL observationDateTime DATETIME NOT NULL ctypel_coordinateType VARCHAR(4) NOT NULL
auto-incremented observationld INTEGER UNSIGNED NOT NULL ctype1:proj ectionType VARCHAR(3) NOT NULL]
fileFormat VARCHAR(10) NOT NULL ditherNumber SMALLINT UNSIGNED NOT NUL ctype2_coordinateType VARCHAR(4) NOT NULL
formatldentifier VARCHAR(20) NOT NULL commandedPointing_rightAscension REAL NOT NULL ctype2:proj ectionType VARCHAR(3) NOT NULL
formatVersion VARCHAR(20) NOT NULL commandedPointing_declination REAL NOT NULL crvall REAL NOT NULL
url VARCHAR(200) NOT NUL commandedPointing_orientation REAL NOT NULL crval2 REAL NOT NULL
nstrument_id INTEGER NOT NULL crpixd REAL NOT NULL
crpix2 REAL NOT NULL
cd1_1 REAL NOT NULL
imagedb_imagebaseframe cdi_2 REAL NOT NULL
id INTEGER NOT NULL cd2_1 REAL NOT NULL
auto-incremented cd2_2 REAL NOT NULL
exposureTime REAL NOT NULL imagedb_instrumenti [table] detector_id INTEGER
imgNumber SMALLINT UNSIGNED NOT NULL id INTEGER NOT NULL
naxis1 INTEGER UNSIGNED NOT NULL auto-incremented
naxis2 INTEGER UNSIGNED NOT NULL instrumentName VARCHAR(100) NOT NUL
imageType_category VARCHAR(20) NOT NULL telescopeName VARCHAR(100) NOT NUL
imageType_firstType VARCHAR(20) NOT NULL
imageType_secondType =~ VARCHAR(20) NOT NULL
\stats_id INTEGER
imagedb_imagestatistics [table]
id INTEGER NOT NULL|
auto-incremented
min REAL NOT NULL
max REAL NOT NULL
mean REAL NOT NULL
stddev REAL NOT NULL
median REAL NOT NULL

Multi-table inheritance 3/3

@ Each model corresponds to its own database table and can be queried
and created individually

@ The inheritance relationship introduces links between the child model
and each of its parents (via an automatically-created OneToOneField)

@ With the multi-table inheritance, all fields of ImageBaseFrame will still
be available also in ImageSpaceFrame and NispRawFrame

@ If we have an ImageBaseFrame instance that is also an
ImageSpaceFrame instance, we can get from ImageBaseFrame object
to ImageSpaceFrame object by using the lower-case version of the
model name

from imagedb.models import ImageBaseFrame

obj = ImageBaseFrame.objects.get(pk=2)
obj.imagespaceframe.nisprawframe

<NispRawFrame: NispRawFrame object (2)>

ODM&C 6 — Data Model Implementation 30/55

Serializing Django objects

@ Django’s serialization framework provides a mechanism for “translating”
Django models into other formats.

@ Usually these other formats will be text-based and used for sending
Django data over a wire, but it's possible for a serializer to handle any
format (text-based or not).

@ Django supports a number of serialization formats, including XML and
JSON.

from django.core import serializers

serializers.serialize('json',NispRawFrame.objects.filter(observationId=53877,
filterWheelPosition='Y") .order by('ditherNumber'))

@ The Django serialize function requires, as one of the inputs, a QuerySet

@ However, the Django REST framework, external to the Django
framework, provides a more flexible serialization mechanism

ODM&C 6 — Data Model Implementation 31/55

The Django REST serializers

@ [n particular, the Django REST framework provides a ModelSerializer
class which can be a useful shortcut for creating serializers that deal

with model instances and guerysets

@ See ‘imagedb/serializers.py’ to check some examples

from rest framework import serializers
from composite field.rest framework support import CompositeFieldSerializer

class NispRawFrameSerializer(serializers.ModelSerializer):
detectors = NispDetectorSerializer(many = True, read only = True)
commandedPointing = CompositeFieldSerializer()
imageType = CompositeFieldSerializer()

class Meta:
model = NispRawFrame
exclude = [f.name for g in NispRawFrame. meta.get fields()
if hasattr(g, 'subfields')
for f in g.subfields.values()]

depth = 2

32/55

ODM&C 6 — Data Model Implementation

The Django REST framework

@ We need an Application Programming Interface (API) that let us perform
CRUD operations on the database without directly connecting to the
database

@ A REST (Representational State Transfer) API provides such operations
through HTTP methods:
@ GET, to request to a server a specific dataset
@ POST, to create a new data object in the database

@ PUT, to update an existing object in the database or create it if it does not
exist

® DELETE, to request the removal of a given data object

@ Such methods can be applied to a specific set of endpoints (URLS)
provided by our API

@ The Django REST framework provides software tools to build a REST
API on top of our models

ODM&C 6 — Data Model Implementation 33/55

Django REST framework ViewSets

@ The actions provided by the ModelViewSet class
are .list(), .retrieve(), .create(), .update(), .partial_update(), and .destroy() of
instances of a specific model we have defined

@ The ReadOnlyModelViewSet only provides the 'read-only' actions, .list()
and .retrieve()

@ |n practice it returns a list of instances of a specific model or it retrieves a single
instance by its primary key value

@ In our orm_example projects, we have few examples in imagedbl/views.py

from rest framework import viewsets
from imagedb.serializers import NispRawFrameSerializer

class NispRawFrameViewSet (viewsets.ReadOnlyModelViewSet) :

queryset = NispRawFrame.objects.all()
serializer class = NispRawFrameSerializer

@ More advanced filtering capabilities can be added with additional parameters:
https://www.django-rest-framework.org/api-guide/filtering/

ODM&C 6 — Data Model Implementation 34/55

URLS

@ Once we have defined viewsets on our models, we have to create endpoints (urls) to access
those views

@ The Django REST framework provides the so called routers, which generate automatically
url patterns based on the views we have defined

@ An example is found in imagedblurls.py

from django.conf.urls import url, include
from rest framework.routers import DefaultRouter

from imagedb import views

router = DefaultRouter()
router.register(r'nisprawframes', views.NispRawFrameViewSet)

urlpatterns = |
url(r'~', include(router.urls))

]

will generate automatically the following url patterns:
/nisprawframes/ : it will return, in json format, all the NispRawFrame
objects in the database
Inisprawframes/[pk]/ : it will return only the NispRawFrame object with primary key

pk

ODM&C 6 — Data Model Implementation 35/55

Starting the Django development server

@ [In order to test the REST API, you can start the Django server with the
following command

python manage.py runserver

Performing system checks...

System check identified no issues (0 silenced).
October 15, 2018 - 21:30:57

Django version 2.1.1, using settings
‘orm_example.settings'

Starting development server at
http://127.0.0.1:8000/

Quit the server with CONTROL-C.

@ Now with the browser you can open the following link:
http://127.0.0.1:8000/imagedb/nisprawframes/1/

ODM&C 6 — Data Model Implementation 36/55

The browsable REST API

< C @® 127.0.0.1:8000/imagedb/nisprawframes/1/ Q % = 2 Qg N ¥ E® O > L 3

Django REST framework

Api Root / Nisp Raw Frame List / Nisp Raw Frame Instance

Nisp Raw Frame Instance

GET /imagedb/nisprawframes/1

HTTP 200 OK
Allow: GET, HEAD

Content-Type:

Vary: Accept

ke B |

“detectors™

"RLY

"TAN"

nEE o
| 9 L -

ODM&C 6 — Data Model Implementation 37/55

@ |n order to use more advanced filtering criteria through the REST API,
rather then just the primary key, in the orm_example project we have
added the django-url-filter (https://github.com/miki725/django-url-filter

)

@ With this filter, we can specify filtering condition directly in the url, e.g. :

http://127.0.0.1:8000/imagedb/nisprawframes/?’observationId in=53877,543494filterWheelPosition=Y

https://github.com/miki725/django-url-filter

Person

fiscalCode
name
surname
Vo
Agent
BMClass agentld
BMClass T — BlackBox
basePremium a blackBoxId
1 - licensePlate
Client clientFiscalCode
name observationDate
1
0.* 0.* surname kmTraveled
— A fiscalCode 0.4 timeTraveled
Contract office residenceRoad ’1_ provinceTraveled
contractld officeld streetNumber 0.4 nationTraveled
date location birthDay &1 1 hourStarting
clientFiscalCode sex hourClosing
licensePlate 1 | profession maxVelocity
renewal T ’ maritalStatus timeVelocityOverLimit
classBM phoneNumber kmVelocityOverLimit
totalPremium email totalTime
Tor (0 (Ot
FamilyReports
Claims
- licensePlate
Vehicle totalCompensation
licensePlate - date
¢ clientFiscalCode 1. location
1 engineSize ‘ responsibility
model 1 0..* | compensationTimeDays
kmTraveled ‘1,,* counterpartLicensePlate

Credit to Andrea Pesce

1

Motorbike

counterpartinsuranceCompany
photo

Car

Identifier for Contracts

Element of interest Value

name First three letters

surname First three letters

date Day, Month, Year (e.g.: 130394 for 13 March 1994)
renewal number O (for first contract),1,2,3,...

province ISO Code

uniqueness Random character

|dentifier for FamilyReports

Element of interest Value

first relative fiscalCode

second relative fiscalCode

ORM project example

@ The entire example can be retrieved at the following link:
https://www.ict.inaf.it/gitlab/odmc/orm_example

@ You can clone the project with the git version control system, i.e. with the
command:

git clone https://www.ict.inaf.it/gitlab/odmc/orm example.git
cd orm example/django example insurance

@ Create the Diango project from scratch using the following commands

django-admin startproject insurance
cd insurance
python manage.py startapp insurancedb

which creates a project folder, named insurance, with additional files and
then an application, named insurancedb, inside the project.

It automatically creates skeleton files needed by a Django project and
application

ODM&C 6 — Data Model Implementation 41/55

https://www.ict.inaf.it/gitlab/odmc/orm_example
https://www.ict.inaf.it/gitlab/odmc/orm_example.git

Project structure

insurance/

— 1insurancedb
— admin.py ==
— apps.py

—— migrations
— models.py =
— tests.py
— views.py =

—— Mmanage. 3 : : :
L insu?anﬁg Project settings: app list and

— settings.py - configuration
— urls.py =
— wSgi.py

@ For admin.py, models.py, urls.py and views.py files we are going to use
the ones in the git repository

@ We must edit the settings.py

ODM&C 6 — Data Model Implementation 42/55

DB Schema creation

@ Once we have defined our data model in insurancedb/models.py we
need Django to create the corresponding DB schema

@ First let’s check the the project settings includes the imagedb
application, i.e. that the file insurancelsettings.py contains the the
strings highlighted in red in the box on the bottom left

@ To do the first migration, i.e. generation
of the DB schema, run the following
command

command python manage.py makemigrations insurancedb

Migrations for 'insurancedb':
insurancedb/migrations/0001 initial.py
- Create model BMClass
- Create model Client
- Create model Office
- Create model Vehicle
- Create model Contract
- Create model Claims
- Create model BlackBox
- Create model Agent
- Create model FamilyReports

output

ODM&C 6 — Data Model Implementation

‘django.
‘django.
‘django.
‘django.
‘django.
‘django.
‘django_
‘insuran

INSTALLED APPS = [
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.

admin',

auth',
contenttypes',
sessions',
messages',
staticfiles',

extensions',

cedb',

‘rest framework',

‘url fil

ter',

Then run the command

python manage.py migrate

43/55

Data insertion

@ We can now open a python shell and interact with the data model API

python manage.py shell

Python 3.7.0 (default, Jun 28 2018, 13:15:42)

Type 'copyright', 'credits' or 'license' for more information
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: from insurancedb.models import BMClass

In [2]: bonus = BMClass(BMClass=1, basePremium=100.00)

In [3]: bonus.save()

In [4]: quit()

@ You can pass a Python script to insert data

python manage.py shell < ../insert.py

ODM&C 6 — Data Model Implementation 44/55

Django urls.py and views.py

@ A clean, elegant URL scheme is an important detail in a high-quality Web
application. Django lets you design URLs however you want, with no
framework limitations

@ To design URLSs for an app, you create a Python module informally called
a URLconf (URL configuration). This module is pure Python code and is a
mapping between URL path expressions to Python functions (your views)

@ A view function, or view for short, is simply a Python function that takes a
Web request and returns a Web response. This response can be:
HTML contents
A redirect from django.http import HttpResponse

o
)
import datetime
® A 404 error
def current datetime(request):
o
)
o

An XML document now = datetime.datetime.now()
] html = "<html><body>It is now %s.</body></html>" % now
An image return HttpResponse(html)

ODM&C 6 — Data Model Implementation 45/55

Django admin.py

@ Django provides an automatic admin interface

@ [t reads metadata from your models to provide a quick, model-centric
Interface where trusted users can manage content on your site

@ You can customize the admin interface editing the admin.py

@ Setup an admin user

python manage.py createsuperuser

@ Run the Django web server

python manage.py runserver

@ Access to http://127.0.0.1:8000/

ODM&C 6 — Data Model Implementation 46/55

http://127.0.0.1:8000/

ADDITIONAL MATERIAL

SQLAlchemy (1)

@ The SQLAIchemy SQL Toolkit and Object Relational Mapper is a
comprehensive set of tools for working with databases and Python

@ It provides a full suite of well-known enterprise-level persistence
patterns, designed for efficient and high-performing database access

@ SQLAlchemy has dialects for many popular database systems
Including Firebird, Informix, Microsoft SQL Server, MySQL, Oracle,
PostgreSQL, SQLite, or Sybase

@ The SQLAIchemy has four ways of working with database data:

@ Raw SQL

® SQL Expression Language
@ Schema Definition Language
® ORM

ODM&C 6 — Data Model Implementation 48/55

@ SQLAIchemy ORM consists of several components

@ Engine
@ |t manages the connection with the database
@ [t is created using the create_engine() function
@ Declarative Base class
@ |t maintains a catalog of classes and tables

@ |t is created using the declarative _base() function and is bound to the engine

@ Session class
@ |t is a container for all conversations with the database

@ |tis created using the sessionmaker() function and is bound to the engine

® https://docs.sqlalchemy.org/en/13/orm/tutorial.html

https://docs.sqlalchemy.org/en/13/orm/tutorial.html

Prerequisites

@ Download and install the Python Anaconda (or Miniconda) Distribution,

with Python version 3.x:
https://www.anaconda.com/download

@ Then you need to install some additional python packages for the
following exercise/hands-on:

@ To install the Django framework use the following command line:

conda create -n orm sqlalchemy sqlalchemy
conda activate orm sqlalchemy

@ Clone the GIT repository and enter the directory of SQLAIchemy examples

git clone https://www.ict.inaf.it/gitlab/odmc/orm example.git
cd orm example/sqlalchemy example

ODM&C 6 — Data Model Implementation 50/55

https://www.anaconda.com/download
https://www.ict.inaf.it/gitlab/odmc/orm_example.git

Car

id: INTEGER

name: TEXT
price: INTEGER

® Engines https://docs.sglalchemy.org/en/13/core/engines.html

@ Declarative Base
https://docs.sqglalchemy.org/en/13/orm/extensions/declarative/

® Session https://docs.sglalchemy.org/en/13/orm/session.html

® Query https://docs.sglalchemy.org/en/13/orm/query.html

https://docs.sqlalchemy.org/en/13/core/engines.html
https://docs.sqlalchemy.org/en/13/orm/extensions/declarative/
https://docs.sqlalchemy.org/en/13/orm/session.html
https://docs.sqlalchemy.org/en/13/orm/query.html

Author

Book

id: INTEGER

id: INTEGER

name: TEXT

@ Foreign keys in SQLite

https://docs.sglalchemy.org/en/13/dialects/sqglite.ntml#foreign-key-sup

port

@ Relationship
https://docs.sglalchemy.org/en/13/orm/basic_relationships.html

title: TEXT
author_id: INTEGER (FK)

https://docs.sqlalchemy.org/en/13/dialects/sqlite.html#foreign-key-support
https://docs.sqlalchemy.org/en/13/dialects/sqlite.html#foreign-key-support
https://docs.sqlalchemy.org/en/13/orm/basic_relationships.html

Inheritance in Python

@ This is a simple example of
Inheritance in UML and how
can be implemented in

class Client(

def (, address):
(Client,).
.address = address

class Person(Client):

def (, hame, surname, address):

name
surname

JName =
SUrname =

class Company(Client):

, company_name, industry, address):
) (address)
.Company_name = company_name
.industry = industry

def (
(Company,).

Python
Client
address: TEXT
Person Company
name: TEXT company_name: TEXT
surname: TEXT industry: TEXT

UML

ODM&C

6 — Data Model Implementation

53/55

Inheritance in a Relational Database

Client

id: INTEGER

address: TEXT

type: CHAR

name: TEXT

surname: TEXT
company_name; TEXT

Single table inheritance
@ Unique ID

@ No JOIN necessary

Concrete table inheritance
@ Not unique ID
@ No JOIN necessary

industry: TEXT : @ No NULL attributes
@ Many NULL attributes
IE Person Company
id: INTEGER id: INTEGER
address: TEXT address: TEXT
name: TEXT company_name: TEXT
surname: TEXT industry: TEXT
IE
Client
id: INTEGER . . .
B—— Joined table inheritance
type: CHAR .
T @ Unique ID
Qﬁ) bl @ JOIN necessary
Person ‘ Company \ @ No NULL attributes
[id: INTEGER (FK)] [id: INTEGER (FK)]
name: TEXT company_name: TEXT
surname: TEXT industry: TEXT
IE

ODM&C

6 — Data Model Implementation 54/55

Client

id: INTEGER

address: TEXT

type: CHAR

L e
Person Company
[id: INTEGER (FK)] [id: INTEGER (FK)]

name: TEXT company_name: TEXT
surname: TEXT industry: TEXT

@ [Inheritance https://docs.sqglalchemy.org/en/13/orm/inheritance.html

https://docs.sqlalchemy.org/en/13/orm/inheritance.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

