A functional programming system

Carlos Kavka

© 2019 ESTECO SpA

Agenda
7\ Why functional programming in Java?

The functional programming paradigm

A functional programming system

Analysis

Java evolution till functional programming

Java/
Java 1.2 Fork/Join
Swing
Java8
1996 2014
\ Java 5
Java 1.0 Generics

JVM Collections

An alighment with language trends was required!

C# C++

v

ERLANG

a Ruby)x Haskell JavaScript

$Scala (icual F#
&' Ruby

Java ecosystem

o C|Ojure

N

Improvements introduced in Java 8

Functional style of
programming

Collection Stream
enhancements ((processing
=
S St
. Java8 Lambda
Optional expressions
values
Method Default
references

methods

Using new Java
elements is not
enough!

Important point!

WHY DO YOU LIKE FUNCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOES IT ACTUALLY GET YOU?

TAIL RECURSION 15
IT5 OWN REWARD.

P

(%)

A change in the way
of thinking is
required!

Many “expert” Java programmers use functional features in a really improper way!

(*) reprinted from https://www.explainxkcd.com/wiki/index.php/1270:_Functional

A change in the way of thinking is required!

Imperative
programming

X++

style of programming
modeled as a sequence of
commands that modify
state

Functional
programming

f(g(x))

programs are expressions
and transformations,
modeling mathematical
formulas

S

A change in the way of thinking is required!

count = 0;
for(i=0;i < n;i++)
if (a[i] > O)
count++;

/+ o a(>°[id,0] — 1 :0)

programming means tell —declaratively—what we want rather than
how to do it.

S

Imperative approach

count =0: |
for(i=0:i<n:i++) |
if (a[i] > O)
count++; count
a
/ | 3 2 1 5

Functional approach

/+ o a(>[id,0] — 1;0)

Comparison

coupt =0; | /+ o a(><[id.0] —
for(i=0:i< n;i++)

if (ali] > 0)
count++;

-
ol
"

a count | 6 1 1 0 1 1 0 1 1 1 O

parallelism mutable objects

different approach: what happen if we call
what vs. how twice a function?

What about Oriented Programming?

class A {
Int X;
int getX(); f(gx))
void setX(int x);

h

abstracting over abstracting over
data behavior

S

Functional programming

Is it new? No.

1930 - Lambda Calculus (A. Church)
1958 - Lisp (J. McCarthy)

1977 - FP (J. Backus)

What about Java implementation?
* Nno monads

* reduced lazy evaluation
 |ittle support for immutability

however, it is better than nothing! =

Benefits

Simpler, cleaner, and easier-to-read code
Simpler maintenance
Great for collections!

Enhanced parallelism/concurrency for multi-core CPUs

ACM Turing Awar

a functional
programming system

its associated algebra of
programs

1977 ACM Turing Award Lecture

d Lecture by John Backus

The 1977 ACM Turing Award was presented (o John Backus
at the ACM Annual Conference in Seattle, October 17, In intro-
r]uti:n,g 1he rpdipl'l:rll, Jean E. Sﬁ:mm:l, Chairman of the Awards
Committee, made the following comments and read a portion of
ihe final cifation. The full announcement is in the September
1977 issue of Commurications, pape 681,

“Probably there is nobody in the room who has not heard of
Fortran and most of you have probably used it al least once, or at
least looked over the shoulder of someone who was writing a For.
tran program, There are probably almost as many people who
have heard the letters BNF but don't necessarily know what they
stand for. Well, the B is for Backus, and the other letters are
explained in the formal citation, Thess two contributions, in my
opinion, are among the half dozen most important technical
contributions to the computer feld and both were made by John
Backus (which in the Forirun case also involved some col-
leagues), It is for these contributions that he is receiving this
year's Turing award.

The short form of his citation is for ‘profound, influential.
and lasting contributions to the design of practical high-level
programming systamas, notably through his work on Fortran, and
for seminal publication of formal procedures for the spexifica-
tions of programming languages.'

The most significant part of the full citation is as follows:

... Backus headed a small IBM group in New York City
during the early 19508, The earliest product of this group's
efforts was a high-level Innguage for scientific and technical com-

putations called Fortran, This same group designed the first
system o translate Fortran programs inte machine language.
They employed novel optimizing techniques to generate fast
machine-language programs. Many other compilers for the lan-
guage were developed, first on TBM machines, and later on virtu-
ally every make of computer, Foriran was adopted as a TS
national standard in 1966,

During the latter part of the 19505, Backus served on the
international commitiees which developed Algol 58 and o later
version, Algol 60. The language Algol, and its derivative com-
pilers, received broad acceptance in Europe as a means for de-
veloping programs and as a formal means of publishing the
mlgorithms on which the programs are based.

In 1959, Rackus presented & paper at the UNESCO confer-
coce in Paris on the syntax and semantics of a proposed inter-
national algebraic language. In this paper, he was the frst to
employ a formal technigue for specifying the syntax of program-
ming languages. The formal nodation became known as BNF—
standing for “Backus Normal Form,” or *Backus Maur Form™ to
recagnize the further contributions by Peter Naur of Denmark.

Thus, Backus has contributed strongly both to the pragmatic
world of problem-solving on computers and to the theoretical
world existing at the interface between artificial languages and
computational linguistics. Fortran remains one of the most
widely used programming languages in the world, Almost all
programming languages are now described with some type of
formal syntactic definition.” ™

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

Gieneral permission to make fair use in teaching or research of all
or part of this material is granted w individual readers and 10 nonprofit
libraries acting for them provided that ACM's copyright motice &5 given
and that reference is made to the publication, to its date of issoe, and
Lo the fact that reprioting privileges were granied by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permisiion as dodd republication, of systematic or multiple reproduc-
tiom,

Author's address: 91 Saint Germain Ave, San Framcised, CA
a4]14,

#1978 ACM 0001-0782,/78,/0800-0613 S00.75

613

Conventional programming languages are growing
CVEr more caormous, but not stronger. Inherent defects

at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Meumann computer, their close coupling of semantics to
state transitions, their division of propramming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
daia, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the complex machinery of procedure
declarations to become generally applicable. Combining
forms can use high level programs to buibd still higher
level ones in a style not possible in conventional lan-
guages.

Communications Aungusi 1978

of Vaolume 21
the ACM Mumber &

Definition

An FP system comprises the following:

. aset O of objects
a set F of functions that map objects into objects

. an operation: application

H W b e

a set of functional forms; used to combine existing
functions or objects, to form new functions in F
5. aset of definitions that define some functions in F and

assign a name to each

Objects

An object x is either:

* anatom
e asequence <X4,.., X,>, Whose elements x. are objects
e 1 (undefined)

The sequence constructor is L-preserving:
If X is a sequence with L as an element, thenx= L

J

Objects - examples

Numeric atoms

Boolean atoms

Lists

<1,2,0,3>

M —

Lists

<1,2,3>
<1,<2,3,4>>
<<1,2><3,45>>

Undefined preservation

<l,1>=1

An operation: the application

If fis a function and x is an object, then f:x is an application
and denote the result of the application of f to x

+:<1,2>=3

tl:<5,3,8>=<3,8>

1:<5,3,8>=5
2:<538>=3

Functions

All functions map objects into objects and are
undefined-preserving.

Every functions is primitive, defined or a
functional form

Functions

|dentity
id:x =X

Atom
atom:x=xisanatom—-T:x#1 —->F: 1

Selector

LXEX=<Xq, 0 Xp> = Xq 5 L

and for any positive integer s

SIXEX= <Xy ey X, > &N 2S5 — X5 L

Null
Nulllx=x=0 —->T:x#21L—->F;1

Equality

eq:X=Ex=<y,z>&y=z—>1T;
X=<yz>&yzz—F;1

Functions

Reverse

reversex=x=0—->0:
X = <Xqy aey X > —> <Xy Xq> 5 L

Length

length:x =x = <X4, .., X,>—n;
X=0—0;1

Arithmetic

+:X = <y, z> &Y,z are numbers — y+z; 1
-:X =<y,z> &y, zarenumbers —y-z ; L
X:X =<y,z>&Yy,zare numbers — yxz; 1
+:X =<y,z> &y,zarenumbers - y=z; L

Functions

Append

apndl:x=x =<y, @ > — <y>;

X = <Y,<Zyy 00y Z,>> —> <Y, Z4y 0 Z, > 5 L

N

apndr:x=x=<@y>—y;
X=<<Zqy 0y Z,> Y>> <Zq, 0y 2o Y>> L

Transpose

trans:x=x=<0@, ... 0> - <@, ... D>
X = <Xqy e X0 > = <Y, 0, Y>3 L

where

Xi = <Xiqy ooy Xjn> ANA Y; = <Xy, o0, X

> 1sisn 1l<jsm

Selector right

IFEXEX=<Xqy 00 X> — X, ;5 L

2XEX=<Xq, e X,>N22—>X 451 -
etc qﬁél

Functions

Distribute

distlx=x=<y @ >->0;
X = <Y,<Zq, 0, Z>> —> <<Y, Z1 >, ., <Y, Z.>>; L

distrix=x=<@Qy>—>0;
X=<<Z4yey 2,2, Y>> <<Zy¥>,..,<Z,¥y>>,;1

Tail right

tirx=x=<x,>—>@;
X = <Xqy ooy Xp> &N 22— <Xy, 0, X 1> L

Rotate

rothx=x=0 — @ ; X = <X;> — <X;>;
X = <Xqy ey X > &N 22— <X, ..., X

n’X1>;J— N

J

Functional forms

A functional form is an expression denoting a function

Composition

(fog):x = f:(g:x)

Construction

[Fyy o F] X Z <Fy2 g Foixo

Constant

X:Y=Ey=1—>1;X

Condition

(p—fig): x=(p:x) =T — fix;
(p:x)=F > g:x; L

Functional forms

Apply to all

af X=Ex=0 — O;
X = <Xqy ey X > — <FiX gy, FiX >3 L

Insert

[FXEX=<X> > Xq;
X = <Xq, e X > &N 22— Fi<xy, /i< Xy, X >> 5 L

If f has a unique right unit u; # L, where f:<x,u:> € {x, L}
for all objects x, then the above definition is extended:

/f: D = u,

Definitions

A set of definitions that define some
functions in F and assign a name to each

Deff=r

Programming examples

Factorial

Def ! = eq, — 1; x°[id, ! > sub,]
where

Def eq, = eq °[id, 0]
Def sub, = - °[id, 1]

Programming examples

Inner product

Def IP = (/+) (a X) o trans

Matrix multiply

Def MM = (a a IP) ° (a distl) e distr - [1, trans - 2]

Comparison

This program MM does not name its arguments or
any intermediate results; contains no variables, no loops,
no control statements nor procedure declarations; has no

initialization instructions; is not word-at-a-time in na-
ture; 1s hierarchically constructed from simpler compo-
nents: uses generally applicable housekeeping forms and
operators (e.g., of, distl, distr, trans); is perfectly general;

yields L whenever its argument is inappropriate in any

way, does not constrain the order of evaluation unnec-
essarily (all applications of IP to row and column pairs

can be done 1n parallel or in any order); and, using
algebraic laws (see below), can be transformed into more

“efficient” or into more “explanatory” programs (e.g.,

one that is recursively defined). None of these properties
hold for the typical von Neumann matrix multiplication
program.

Conclusions

different approach for problem
solving: what and not how

opagarltlinlqlistrines new important
pp (/_|.) o (Ol x) o trans properties
what happen if we call what about mutable
twice a function? state? -

S

N

w Thank you!

esteco.com fEYHinBoRv

https://www.facebook.com/ESTECO-166776810033909/
https://twitter.com/esteco_mF
https://it.linkedin.com/company/esteco-s-p-a
https://www.youtube.com/user/estecosrlsoftware/featured
https://vimeo.com/channels/1050665
https://www.esteco.com/corporate/esteco-copyright-policy

