Geometria 1 per Matematica e IADA

Foglio di esercizi 2

22 ottobre 2020

- 1) Siano $v_1 = (1, 1, 0)$ e $v_2 = (0, 1, 1) \in \mathbb{R}^3$. Dire se u = (-2, 1, 3) è combinazione lineare di v_1 e v_2 .
- 2) Siano v_1 e v_2 i vettori dell'esercizio precedente, e $v_3 = (1,0,0)$. Dire se la somma $W = L(v_1, v_2) + L(v_3)$ è diretta. Verificare che $u = (-1, 2, 2) \in W$ e determinare una decomposizione $u = u_1 + u_2$ con $u_1 \in L(v_1, v_2)$ e $u_2 \in L(v_3)$. Dire inoltre se tale decomposizione è unica.
- 3) Determinare una base di $\mathbb{Q}^2 \oplus \mathbb{Q}^2$.
- **4)** Consideriamo i vettori $u_1 = (1,2,0), u_2 = (2,1,1)$ e $u_3 = (-7,1,-5) \in \mathbb{Q}^3$. Determinare una base per $L(u_1,u_2,u_3)$.
- 5) Siano $V \in W$ spazi vettoriali sul campo \mathbb{K} , e siano

$$B = (v_1, \dots, v_n)$$
 e $C = (w_1, \dots, w_m)$

basi rispettivamente di V e di W. Dimostrare che

$$(B \times \{0_W\}) \cup (\{0_V\} \times C) = \{(v_1, 0_W), \dots, (v_n, 0_W), (0_V, w_1), \dots, (0_V, w_m)\}$$

è base per $V \oplus W$.