CHIMICA ANALITICA II CON LABORATORIO

(AA 2020-21) 8 C.F.U. - Laurea triennale in Chimica

La spettrometria di massa organica

La spettrometria di massa organica consente di identificare e quantificare specie molecolari. Come già anticipato, le molecole vengono portate in fase gassosa e ionizzate, quindi con questa tecnica vengono identificati e quantificati i diversi ioni formatisi in base al loro rapporto **m/z**.

Supponiamo che una molecola venga ionizzata con l'ausilio di un fascio di elettroni:

$$M + e^- \rightarrow M^{\bullet +} + 2e^-$$

La ionizzazione porta alla formazione di un catione radicale M⁺ che possiede un certo rapporto m/z, quindi può essere rivelato dal detector. <u>M⁺ è detto anche "ione molecolare"</u>. Questo ione, a seconda del tipo di ionizzatore utilizzato, può essere ulteriormente frammentato in così detti "ioni figli". In particolare, essendo M⁺ un radicale catione a numero dispari di elettroni, la sua frammentazione può portare alla formazione di un catione+un radicale oppure di un catione radicale+molecola neutra:

La spettrometria di massa: organica

segue \rightarrow

Possibili assetti strumentali di uno spettrometro di massa

SULLA IONIZZAZIONE...

Sulle sorgenti di elettroni (per effetto termoionico) nei sistemi di ionizzazione ad impatto elettronico: K. Busch "Electron Ionization Sources: The Basics" Spectroscopy, July 2006 21(7) 14-18

http://alfresco.ubm-us.net/alfresco_images/pharma/2014/08/22/32e51bed-d0db-4d35-a3ef-1a1ab0ff1770/article-358696.pdf

"The sensitivity of a mass spectrometer (the source combined with the remainder of the instrument, but sometimes also the source itself) is defined strictly in units of C/g, where C represents the charge in coulombs carried by ions that can be created from 1 g of sample introduced to the source. The sensitivity of any MS measurement is predicated first upon instrument sensitivity (including factors such as **source performance, mass analyzer transmission, and ion detection efficiency**), but also expands to include sample preparation, signal-to-noise discrimination, and matrix effects in real samples. The **central position of source performance** in this scheme should be clear"

Sulla formazione di cationi a seguito dell'impatto elettronico: JH Gross «Mass Spectrometry: a textbook» 2 nd edition <u>https://is.muni.cz/el/1431/podzim2015/F7100/um/um/52107671/gross_mass-</u> <u>spectrometry_second-edition.pdf</u>

- 2.1.1 Formation of lons
- 2.1.2 Processes Accompanying Electron Ionization
- 2.1.3 Ions Generated by Penning Ionization

I sistemi di ionizzazione possono essere <u>classificati</u> principalmente in <u>due modi</u>:

- a seconda **dello stato in cui deve essere il campione** quando viene introdotto nello strumento (gas, sciolto in un solvente, immerso in una matrice);
- a seconda della quantità di energia di ionizzazione che viene fornita al campione (molta → "hard ionization", poca→ "soft ionization")

segue \rightarrow

ionization method	type of ion formed	analytes	sample intro	mass limits	method type
EI	M⁺,(M⁻)	small volatiles	GC, liquid or solid probe	10 ³	hard method structural info
СІ	[M +H] ⁺ , [M + X] ⁺	small volatiles	GC, liquid or solid probe	10 ³	soft method
APCI	[M +H] ⁺ , [M + X] ⁺ , [M – H] [−]	small volatiles (less polar species)	LC or syringe	2x10 ³	soft method
ESI	[M + nH] ⁿ⁺ , [M – nX] ^{n–}	peptides, proteins nonvolatile	LC or syringe	2x10 ⁵	soft method multiply charged ions
FAB	[M+H]*, [M-H] ⁻ P	carbohydrates organometallics eptides, nonvolatile	in viscous matrix	6x10 ³	soft but harder than ESI or MALDI
MALDI	[M +H] ⁺ , [M + X] ⁺	peptides, proteins nucleotides	in solid matrix	5x10 ⁵	soft

La spettrometria di massa: organica

Riassumendo....

E. de Hoffmann, V. Stroobant - Mass Spectrometry: Principles and Applications - WILEY

Ovvero....

Figure 2: Chart to assist with ionisation mode selection (reproduced from EPSRC National Mass Spectrometry Service Centre Summer School, B K Stein, 2006, with permission from EPSRC National Mass Spectrometry Service Centre)

	SELECTION of IONISATION MODE for MASS SPECTROMETRY ANALYSIS of COMMON ORGANIC MOLECULES								
		TYPICAL	RELATIVE MOLECULAR MASS ⁴						
		SOLVENT ⁵	0 100 200 300 400 600 800 1000 >1200						
			hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs)						
SAN	Ę		EI ¹ EI						
	0 a	toluene	CI182						
P	=								
m			common organics, alcohols, amines, organometallics, functionalised species						
ğ	ŝ	dichloromethane	EI EI						
AR	Ë.	chloroform	CI CI						
E	b l		APCI						
Ę	a l	methenel	EST						
Ģ		methanoi							
ĨEA		acetonitrile	MALDI ³ MALDI						
SI			sugars, peptides, nucleotides, salts, multiply-charged species						
6	R	water	APCI						
1	lar	acid/base	ESI						
KEY	: Exan	nples of compounds of	differing polarity are shown in italics						
Primary technique (most likely to work well)									
Secondary technique (should work and will give complementary information to the primary technique)									
Tertiary technique (try it if you have no choice)									
NOT	ES:	1 For all EI and CI 2 CI suitability will	suitable inlet will also be required to match sample volatility (<i>e.g.</i> GC or solids probe or desorption probe).						
	3 MALDI matrix ions cause interference at lower m/z [so MALDI without matrix (LDI) or surface assisted (SALDI) can be used more readily at lower mass].								
	4 Mass range also depends on mass analyser and m/z of ion produced.								
	5 The polarity of the sample material can be assessed by investigating which solvents it will dissolve in (<i>e.g.</i> a material that dissolves in hexane but not in water is non-polar). The solvents listed are for assessment of sample polarity only – they are not suggested solvents for dissolution of the sample for analysis by mass spectrometry.								
	perery. The sected are tell assessment of sample pointly only and or not suggested softenes for association of the sample for analysis by mass spectromed y.								

Analizzatori (o selettori di m/z)

Per separare gli ioni formati tramite l'utilizzo dei sistemi di ionizzazione si sfruttano due fenomeni correlati alla massa ed alla carica.

- Ia traiettoria di uno ione o di una particella carica in movimento può essere modificata per azione di un campo magnetico od elettrico, e l'entità della deviazione è funzione del rapporto m/z della particella: a parità di carica, particelle di massa minore subiranno deviazione maggiore;
- 2) ioni o particelle cariche, accelerati da un campo elettrico, assumono velocità diverse in dipendenza della loro massa: a parità di carica, particelle di massa maggiore assumono velocità minore.

Gli spettrometri di massa di prima generazione sfruttavano unicamente il primo fenomeno; attualmente sono disponibili strumenti che si basano sul primo o sul secondo fenomeno.

Gli **analizzatori di tipo (1)** sono detti **"a scansione"** poiché fanno passare ioni a differente m/z uno alla volta in lungo un certo percorso al loro interno.

Gli analizzatori di tipo (2) fanno passare tutti gli ioni assieme lungo un certo loro percorso interno.

Le cinque principali caratteristiche atte a valutare le prestazioni di un analizzatore di massa sono:

- 1) l'intervallo di m/z misurabili;
- 2) la velocità di analisi (detta anche velocità di scansione) ovvero la velocità a cui l'analizzatore riesce a misurare un certo intervallo di m/z (espressa in u·s⁻¹ o u·ms⁻¹);
- **3)** *la trasmissione* ovvero il rapporto tra il numero di ioni che raggiungono il detector (quindi in uscita dall'analizzatore) rispetto al numero di ioni che entrano nell'analizzatore;
- 4) l'accuratezza di misura della massa ovvero la differenza tra risposta sperimentale e la massa esatta teorica (per misurare l'accuratezza si utilizzano sostanze di cui si conosce la massa esatta);

"The achievable mass accuracy in practice depends on the resolution of the mass analyzer and the quality and stability of the calibration of the m/z axis. An instrument providing unit-mass resolution generally allows m/z determination for single-charge ions with an accuracy of ±0.1 u (nominal mass determination). In HRMS, the mass accuracy is generally expressed either as an absolute mass error (accurate mass-exact mass, in mu) or as a relative error (in ppm), calculated from

 $\frac{(\text{accurate mass} - \text{exact mass})}{(\text{exact mass})} \times 10^{6}$

In HRMS of small molecules, the error in m/z determination will typically be in the third decimal place (accurate mass determination)."

5) il potere risolvente (resolving power) ovvero il più piccolo Δ*m/z* che l'analizzatore riesce a discriminare (https://goldbook.iupac.org/terms/view/R05321).

Risoluzione (Resolution) FWHM

https://goldbook.iupac.org/terms/view/R05318

https://fiehnlab.ucdavis.edu/projects/seven-golden-rules/mass-resolution

Туре	Resolution_	(FWHM)
FT-ICR-MS	1,000,000	
FT-Orbitrap	100,000	
High-Res-TOF	60,000	
TOF	10,000	
Quadrupole / IonTrap in UltraZoom mode	10,000	
Quadrupole / Iontrap	1,000	

LTQ (low resolution, resolving power R = 1737 at m/z 868.5, peak width \sim 0.5 FWHM) and LTQ-FT (high resolution, resolving power R = 48,250 at m/z 868.5, peak width \sim 0.018; FWHM)

L'analizzatore a Settore Magnetico

La tecnica consiste nell'accelerare ad alta velocità gli ioni provenienti dallo ionizzatore facendoli passare attraverso un settore magnetico in cui un campo magnetico è applicato perpendicolarmente rispetto alla direzione degli ioni. Variando il campo magnetico si consente solo a ioni con un determinato m/z di raggiungere il detector percorrendo una traiettoria corretta. Gli ioni a diverso m/z impattano contro le pareti dello strumento e non raggiungono il detector. Variando il campo magnetico con un certo "passo" si riesce a portare al detector gli ioni con diversi m/z "uno alla volta" (o meglio a "pacchetti" di ioni uguali).

segue \rightarrow

Per spiegare quale effetto viene esercitato su una particella carica che entra in un campo magnetico viene utilizzata **l'equazione della forza di Lorentz**. La forza di Lorentz (F_L) dipende dalla velocità della particella (v), dal campo magnetico (B) e dalla carica dello ione (q). Nella forma più semplice lo scalare della forza (che per sua natura è un vettore) è così espresso:

 $F_L = qvB$

Questa espressione è valida se la velocità (v) e il campo magnetico (B) sono perpendicolari tra di loro.

Uno ione di massa (m) e carica (q) che viaggia in direzione perpendicolare rispetto a quella di un campo magnetico omogeneo **seguirà una traiettoria** a **circolare di raggio (r**_m) che descritta come F_1 e forza centripeta F_C .

$$F_L = qvB = \frac{m_i v^2}{r_m} = F_c$$

Dal riarrangiamento dell'equazione precedente si ottiene il raggio (r_m) di questa traiettoria circolare: $m_i v$

ſ

$$T_m = \frac{m_i v}{qB}$$

Questa espressione mostra il principio di funzionamento del settore magnetico, dove il raggio (r_m) della traiettoria di uno ione dipende dal suo momento (mv) e dalla sua carica (q), a parità di campo magnetico (B).

<u>Bisogna ricordare che lo ione entra nel campo magnetico dopo aver subito una accelerazione</u> nel sistema di ionizzazione. La sua energia cinetica in uscita dallo ionizzatore dipende dalla differenza di potenziale che è stata applicata, cioè dal campo elettrico applicato:

$$E_k = E_{el}$$

 $E_k = \frac{1}{2}m_i v^2 = ezU = E_{el}$

dove: ez = q (carica dello ione) e U = differenza di potenziale del campo elettrico

Quindi la velocità dello ione si può esprimere come:

$$V = \sqrt{\frac{2ezU}{m_i}}$$

Riprendendo le formule della slide precedente e sostituendo v:

Quindi r_m dipende dalla radice quadrata del rapporto m/z.

da cui:

segue \rightarrow

Alternativamente il rapporto m_i/q può essere espresso come:

$$\frac{m_i}{q} = \frac{r_m B}{v}$$

da cui, per sostituzione di v, si ottiene:

$$\frac{m_i}{q} = \frac{r_m B}{\sqrt{\frac{2qU}{m_i}}} \implies \frac{m_i}{q} = \frac{r_m^2 B^2}{2U}$$

Essendo il settore magnetico il primo tipo di analizzatore impiegato, l'equazione soprastante un tempo era conosciuta come "l'equazione base della spettrometria di massa".

Poiché ad oggi molti diversi analizzatori sono stati progettati e realizzati, è noto che in ogni tipo di analizzatore lo ione si comporta secondo una equazione base diversa che dipende dal modo in cui è stato costruito l'analizzatore impiegato. La focalizzazione che avviene applicando un campo magnetico omogeneo a un fascio di ioni che hanno la stessa m/z e la stessa energia cinetica può essere ben illustrato su un settore circolare di 180°.

Ioni con differente m/z viaggiano lungo un traiettoria con un raggio diverso. Ad es. gli ioni più leggeri m_1/z collidono con la parete dello strumento mentre gli ioni con m_2/z riescono a raggiungere la fenditura (slit).

Per consentire la rivelazione di diverse masse, questo tipo di analizzatore deve essere equipaggiato con una piastra fotografica quale detector che deve essere posizionata nel piano focale. In questo modo sono stati ottenuti i primi, così detti, spettrografi di massa.

Alternativamente questo tipo di analizzatore può essere **concepito con un campo magnetico variabile** che consente di portare alla fenditura differenti m/z, quindi varia B e rimane costante r_m . In questo modo, effettuando una **scansione**, si riescono a portare alla fenditura in sequenza (nel tempo) tutti i rapporti m/z desiderati

segue \rightarrow

La spettrometria di massa: organica

Per un certo valore della coppia B e V, esisterà un solo valore di massa m per cui il raggio di deflessione r coincide con il raggio di curvatura del tubo R.

Di conseguenza gli ioni che hanno questo valore di massa escono dal tubo, gli altri no.

Operando a potenziale V costante e facendo una scansione di campo B è possibile fare uscire dal tubo gli ioni a diversa massa in tempi diversi.

Il design di settore magnetico di 180° richiede settori magnetici larghi e pesanti. <u>Un singolo settore magnetico</u> ottimizzato può dare una risoluzione di R = 2000-7000, dipendentemente dal raggio.

La limitazione nasce dal fatto che gli <u>ioni che emergono dalla sorgente non sono di fatto</u> <u>monoenergetici</u>, quindi ioni con differente m/z possono avere lo stesso momento (mv) e pertanto entrare insieme nella fenditura e **sovrapporsi nella rivelazione**.

Ad es. considerando l'equazione:
$$r_m = \frac{1}{B} \sqrt{\frac{2m_i U}{ze}}$$
 che deriva da $r_m = \frac{m_i v}{qB}$

 r_m rimnane costante finché $m_i U$ =cost. Se lo strumento lascia passare/fa arrivare al detector uno ione di m/z =500 e energia di 3000eV, farà passare allo stesso modo anche uno ione di m/z= 501 con energia = 2994eV o m/z = 499 con energia 3006 eV.

Questo è il motivo per cui per ottenere una alta risoluzione la <u>distribuzione di energie cinetiche degli</u> ioni caratterizzati da m/z deve stare in un intervallo molto stretto.

Questa necessità ha portato alla progettazione di strumenti a DOPPIA FOCALIZZAZIONE.

Il settore elettrostatico o analizzatore elettrostatico (ESA) produce un campo elettrico radiale tra due lastre (plates) a carica opposta che si estendono attraverso l'angolo ESA (Φ). Uno ione attraversa il percorso intermedio (centrale) di un ESA su un percorso circolare se:

 $F_e = qE = \frac{m_i v^2}{r_e} = F_c$

dove F_e = forza elettrica, E = intensità del campo elettrico, r_e = raggio dell'ESA.

ESA funziona come dispositivo di dispersione di energia:

la distribuzione di energia cinetica di un fascio di ioni può essere ristretta. La seguente relazione descrive il raggio dell'ESA.

 $r_e = \frac{m_i v^2}{qF} = \frac{m_i v^2}{ezF}$

$$r_e = \frac{2l}{F}$$

18

negative ESA plate

Si immagini uno ione che segue un percorso di deriva verso l'outer plate che ha la stessa carica dello ione.

Al suo avvicinarsi al plate lo ione subisce una decelerazione a causa del campo elettrico opposto ed infine viene riflesso verso il centro del fascio. Dato che **la sua componente radiale della velocità (v) viene invertita, esso attraversa il cammino ideale I**_e.

Allo stesso modo, uno ione che si avvicina all'inner plate viene accelerato dalla forza attrattiva.

La velocità incrementata che ne risulta, causa un aumento della forza centripeta e quindi agisce come una correzione della traiettoria verso quella ideale.

Dall'accoppiamento di un settore elettrostatico ESA e di un settore magnetico B si ottengono gli strumenti a DOPPIA FOCALIZZAZIONE

La spettrometria di massa: organica

IN CONCLUSIONE:

La separazione di ioni con diverso rapporto m/z si può conseguire con:

- Ia variazione del raggio di curvatura che porterà gli ioni ad esser separati nello spazio, mentre
- Ia variazione di B o V porterà gli ioni con diverso m/z ad esser separati nel tempo (i.e. possono esser rilevati uno dopo l'altro da un detector a posizione fissa dietro una fenditura. La risoluzione dipende dalle fenditure in ingresso a B ed in uscita al detector (compromesso selettività/sensibilità).
- ◆ Prestazioni in termini di risoluzione di massa sono migliorabili con analizzatore elettrostatico (ESA), che focalizza gli ioni con uguale m/z ma diversa energia cinetica (si migliora la risoluzione senza perder segnale) → strumenti a doppia focalizzazione (HR, masse accurate).
- Elevato intervallo di masse, alta risoluzione, buona capacità di quantificazione... ma costi alti.

L'analizzatore a quadrupolo

Ioni generati dalla sorgente ionica sono estratti elettrostaticamente e introdotti in un analizzatore di massa (filtro) a quadrupolo.

È un dispositivo che consiste di quattro barre di acciaio con sezione circolare o iperboliche, posizionate parallelamente con disposizione radiale.

Un quadrupolo lineare consiste in quattro barre (elettrodi) a forma cilindrica o iperbolica **che si estendono nella direzione e sono montate in configurazione perpendicolare (rispetto alle direzioni x e y)**

Sezione di un quadrupolo (a) con barre di forma cilindrica, (b) con barre di forma iperbolica. Il campo elettrico è =0 lungo le linee tratteggiate.

E. de Hoffmann, V. Stroobant – Mass Spectrometry: Principles and Applications - WILEY J.H. Gross – Mass spectrometry: a textbook - Springer

Quando uno ione entra nel quadrupolo lungo l'asse z una forza attrattiva è operata su di esso da una delle barre, la barra di carica opposta rispetto allo ione.

Se il voltaggio applicato alle barre è periodico l'attrazione e la repulsione lungo le direzioni x e y (che sono entrambe perpendicolari al cammino dello ione in direzione z) vengono alternate nel tempo, poiché il cambio di voltaggio fa cambiare il segno al campo elettrico applicato.

Se il voltaggio applicato è composto da un voltaggio a corrente continua (DC) U e un radiofrequenza (RF) con voltaggio V e frequenza ω che funge da corrente alternata (AC), **il potenziale totale \Phi_0** è dato da:

 $\Phi_0 = U + V \cos \omega t$

Quindi le equazioni del moto della particella risultano essere:

$$\frac{d^2 x}{dt^2} + \frac{e}{m_i r_0^2} \left(U + V \cos \omega t\right) x = 0$$
$$\frac{d^2 y}{dt^2} - \frac{e}{m_i r_0^2} \left(U + V \cos \omega t\right) y = 0$$

Il campo elettrico è = 0 lungo i piani tratteggiati illustrati nelle figure della slide precedente, **quindi è possibile per uno ione attraversare il quadrupolo lungo l'asse z senza impattare contro le barre,** se il suo movimento ondulatorio intorno all'asse z è stabile ed ha ampiezza limitata nel piano xy.

Queste condizioni possono essere derivate dalla teoria delle equazioni di Mathieu.

Scrivendo le equazioni in forma adimensionale, si ottiene:

$$\frac{d^2 x}{d\tau^2} + (a_x + 2q_x \cos 2\tau) x = 0$$

$$\frac{d^2 y}{d\tau^2} + (a_y + 2q_y \cos 2\tau) y = 0$$
i parametri a e q sono:
$$a_x = -a_y = \frac{4eU}{m_i r_0^2 \omega^2}, \quad q_x = -q_y = \frac{2eV}{m_i r_0^2 \omega^2}, \quad \tau = \frac{\omega t}{2}$$

Per un data combinazione di U, V e \omega il moto risultante dello ione si esplica in una traiettoria stabile che consente a ioni con un certo m/z ^{m/2} o un certo intervallo (ristretto) m/z **di attraversare tutto il quadrupolo lungo la direzione z ed arrivare al detector.** Ioni che oscillano entro la distanza $2r_0$ tra gli elettrodi (o barre) ^{m/2} hanno traiettorie stabili e arrivano al detector.

La stabilità del cammino (traiettoria) di un particolare ione è definita dalla grandezza del voltaggio V di RF (radiofrequenza) e dal rapporto ^{m/z} U/V.

http://it.wikipedia.org/wiki/Funzioni_di_Mathieu

La spettrometria di massa: organica

In cui

E. de Hoffmann, V. Stroobant – Mass Spectrometry: Principles and Applications - WILEY J.H. Gross – Mass spectrometry: a textbook - Springer

segue \rightarrow

Riportando in grafico il parametro a (in ordinata, campo che non varia nel tempo) contro q (in ascissa, campo che varia nel tempo) si ottiene il **diagramma di stabilità di un campo quadrupolare a due dimensioni**. Il diagramma mostra le regioni in cui:

0.3

а

0.237

0.2

0.1

J.H. Gross - Mass spectrometry: a textbook - Springer

- *i.* entrambe le traiettorie x- e y sono stabili;
- *ii. la traiettoria x è stabile;*
- iii. la traiettoria y è stabile;
- iv. entrambe le traiettorie x e y non sono stabili.

La regione contrassegnata con I è di particolare interesse per le normali operazioni di separazione di ioni in un quadrupolo

Dettaglio della metà superiore della regione I del diagramma di stabilità per un quadrupolo lineare

La spettrometria di massa: organica

E. de Hoffmann, V. Stroobant – Mass Spectrometry: Principles and Applications - WILEY

Se il rapporto a/q è scelto in modo che 2U/V = 0.237/0.706 = 0.336, la zona di stabilità xy si restringe ad un unico punto, l'apice del diagramma.

Riducendo a e mantenendo q costante, quindi riducendo U relativamente a V, un intervallo sempre più grande di m/z può essere trasmesso contemporaneamente.

Una risoluzione sufficiente è raggiunta solo se un piccolo intervallo di m/z mantiene un cammino stabile lungo il quadrupolo, es. uno specifico m/z ± 0.5 per unità di risoluzione.

Quindi, l'ampiezza Δq della regione di stabilità determina la risoluzione.

Variando la grandezza di U e V a rapporto costante U/V, si ottiene una scansione a U/V = cost, consentendo a ioni con crescente m/z di attraversare il quadrupolo.

Quindi un analizzatore a quadrupolo agisce da filtro di massa piuttosto che da spettrometro (selettore) di momento (come B) o di energia (come ESA). Infatti questi analizzatori sono comunemente indicati come filtri di massa a quadrupolo. segue \rightarrow

Le simulazioni di traiettoria di uno ione consentono la visualizzazione dei movimenti dello stesso mentre viaggia all'interno del quadrupolo.

Proiezione di una simulazione di traiettoria 3D stabile di unoione lungo le coordinate xy.

Il numero ottimale di oscillazioni per raggiungere un certo livello di prestazione possono essere determinate. Inidicativamente le migliori prestazioni si ottengono quando ioni con energia cinetica di circa 10 eV vengono sottoposti a circa 100 oscillazioni durante il passaggio nel quarupolo.

Nota: i quadrupoli standard hanno barre di circa 10-20 mm di diametro e di circa 15-25 cm di lunghezza. La radiofrequenza applicata è dell'ordine di 1-4 MHz e i voltaggi di DC e RF giacciono nell'intervallo 10²-10³ V.

IN CONCLUSIONE:

I moderni strumenti a quadrupolo coprono un intervallo di m/z di 2000-4000 con un buon potere risolvente. I vantaggi del quadrupolo sono:

- ✤ alta trasmissione;
- leggerezza, compattezza e relativo basso costo della strumentazione;
- bassi voltaggi per l'accelerazione degli ioni;
- consentono alte velocità di scansione, poiché la scansione viene realizzata con la sola variazione di potenziali elettrici.

Conceptual explanation of the way a Quadrupole Mass Filter works. <u>https://www.youtube.com/watch?v=aYOCb6GnXio</u>

https://www.youtube.com/watch?v=qxPb9vFWdqo !!!

0

Trappole ioniche

Una trappola ionica è un dispositivo <u>che utilizza un campo elettrico oscillante per immagazzinare ioni</u> in uno spazio confinato detto "trappola". Essa utilizza un campo quadrupolare di radiofrequenze per intrappolare gli ioni in due o tre dimensioni.

Le trappole in **3D** vengono dette **trappole ioniche quadrupolari (QIT** – Quadrupole Ion Trap) Le trappole in **2D** vengono dette **trappole ioniche lineari** (LIT – Linear Ion Trap)

Trappole ioniche quadrupolari (QIT)

La trappola ionica quadrupolare (detta anche trappola ionica di Paul) può essere concettualmente immaginata come <u>un quadrupolo ripiegato su se stesso a formare un anello</u>.

I due elettrodi iperbolici sopra e sotto fungono da tappi (end caps), l'elettrodo centrale ad anello rappresenta la congiunzione circolare degli altri due elettrodi del quadrupolo lineare.

Quindi una sezione di QIT attraverso il piano rz ricorda la sezione del quadrupolo con barre iperboliche.

I due "end caps" sono connessi elettricamente e potenziali DC e RF vengono applicati tra di essi e l'elettrodo circolare.

E. de Hoffmann, V. Stroobant – Mass Spectrometry: Principles and Applications - WILEY J.H. Gross – Mass spectrometry: a textbook - Springer

Per rimanere all'interno della trappola uno ione deve avere una <u>traiettoria stabile</u> sia nella direzione z che nella direzione r (le particelle ruotano nelle direzione r e oscillano sulla direzione z).

<u>Il QIT intrappola ioni di un determinato intervallo di m/z</u> (in alcuni tipi di dispositivo gli ioni vengono generati direttamente all'interno della trappola)

Aumentando il potenziale con radiofrequenza, le traiettorie degli ioni a m/z successivi sono resi instabili e <u>espulsi dalla trappola</u>, e rilevati dal detector.

L'end-cap superiore è dotato di un foro per l'introduzione di ioni nella trappola, mentre l'end-cap inferiore è dotato di un foro per l'espulsione degli ioni verso il detector.

Il QIT è considerato tridimensionale perché il campo elettrico che viene generato all'interno deve essere considerato tridimensionale

I moderni QIT possono coprire un intervallo di m/z di circa 3000 con scansioni veloci alla risoluzione di 1u e, in più, consentono di effettuare "zoom scans" su un piccolo intervallo di m/z per ottenere misure ad alta risoluzione.

Trappole ioniche lineari (LIT)

La trappola ionica lineare è basata su un quadrupolo che termina ad entrambi i lati con delle lenti che riflettono le particelle avanti e indietro mantenendole al suo interno. Quindi <u>in queste trappole le particelle rimangono</u> <u>confinate lungo la dimensione radiale</u> da un campo quadrupolare e lungo la direzione assiale da un campo elettrico alle due estremità della trappola.

Applicando diversi campi elettrici alle estremità si può confinare la nube di ioni in una certo spazio ristretto all'interno della LIT, ad es. al centro o verso una delle estremità, a seconda del meccanismo di espulsione previsto in base alla progettazione della LIT: **espulsione assiale** o **radiale**.

gli ioni vengono espulsi generando un potenziale attrattivo ad una estremità della LIT gli ioni vengono espulsi attraverso una fenditura applicando una AC all'elettrodo

Confronto tra trappole ioniche QIT e LIT

- <u>La trappola LIT ha una capacità di intrappolamento di ioni 10 volte più alta di QIT</u>, anche con 20'000 ioni intrappolati non si verificano fenomeni di "space charge effect" cioè espulsioni di ioni non controllate a causa delle forze di repulsione tra gli ioni stessi. QIT invece non può intrappolare più di 500 ioni circa. (vedasi video a http://www.chromacademy.com/lms/sco36/lcms_C6_037.asp)
- <u>La trappola LIT ha maggiore efficienza di intrappolamento di QIT</u>: iniettando ioni da una sorgente esterna LIT è capace di intrappolarne circa il 50%, invece QIT solo il 5%.