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RANKED RETRIEVAL



MOTIVATIONS

• Until now we have returned all documents matching a Boolean 
query as a set. 

• If many documents are returned then it might be important to 
rank them according to how relevant they are. 

• A first way of ranking them is to “split” a document according to 
some structure and then weight different zones in different ways. 

• We will then see how we can extend the idea of adding weights 
also to the terms of a document.



METADATA, FIELDS, AND ZONES

DOCUMENT STRUCTURE

TITLE

AUTHOR

DATE OF 
PUBLICATION

ABSTRACT

SECTION

• A text may have associated 
metadata. 

• Some of them can be fields, 
with a set of values that can 
be finite, like publication 
dates. 

• Others might be zones, 
arbitrary areas of free-form 
text (e.g., abstract, section, 
etc.). 



SEARCHING INSIDE FIELDS

PARAMETRIC INDEXES

• To allow for searching inside the fields we might want to build 
additional indexes, called parametric indexes. 

• A parametric index can be thought as a standard index that only 
has information about a field (e.g., all the dates). 

• If a query asks for “cat” in the title and “dog” inside the 
document we will retrieve the posting lists for dog from the 
“standard” index e “cat” from the parametric index for the title. 

• The operations of union and intersections works as usual.



POSSIBLE APPROACHES

ZONE INDEXES

CAT.TITLE

CAT.ABSTRACT

CAT.AUTHOR

33

CAT

45

12

12 33

12 33 45

ABSTRACT TITLE TITLE

AUTHORAUTHOR

Separate inverted index for each zone

Single inverted index in which the zones are 
part of the postings



AN ADDITIONAL USE FOR ZONES

WEIGHTED ZONE SCORING

• We now have a way of searching inside different parts of a 
document… 

• …but different parts might carry different importance: 
e.g., a title vs inside the main text. 

• We can rank retrieved documents according to where the term is 
found inside the document. 

• We can do this via weighted zone scoring 
(also called ranked Boolean retrieval).



DEFINITION

SCORING FUNCTION

• Consider a pair  of a query  and a document . 

• A scoring function associates a value in  to each pair . 

• Higher scores are better. 

• Suppose that a document has  zones. 

• Each zone has a weight  for . 

• The weights sums to one:  

(q, d) q d

[0,1] (q, d)

ℓ

gi ∈ [0,1] 1 ≤ i ≤ ℓ

ℓ

∑
i=1

gi = 1



PART II

SCORING FUNCTION

• Given a query  let  be defined as 

 

• Actually,  can also be defined to be any function that maps “how 
much” a query matches in the -th zone. 

• The weighted zone score in then defined as: 

q si

si = {1 if q matches in zone i
0 otherwise

si
i

ℓ

∑
i=1

gisi



A SIMPLE EXAMPLE

WEIGHTED ZONE SCORING

TITLE: LIFE OF A CAT 
AUTHOR: JAMES CAT 

ONCE THERE WAS A CAT…

TITLE: DOGS AND OTHER PETS 
AUTHOR: ANONYMOUS 

DOGS AND CATS ARE THE…

TITLE: ORCHARDS MANAGEMENT 
AUTHOR: JAMES CAT 

THE MANAGEMENT OF ORCHARDS…

Query: CAT
Title: 0.5 Author: 0.2 Body: 0.3

0.5

0

0

0.2

0

0.2

0.3

0.3

0

1

0 . 3

0 . 2



OR SETTING THEM MANUALLY

LEARNING WEIGHTS

• The new problem is now to find how to set the weights for the 
different scores. 

• One possibility is to ask a domain expert. 

• Another possibility is to have users label documents relevant or 
not with respect to a query… 

• …and trying to learn the weights using the training data. 

• In addition to the binary classification (relevant or not) more 
nuanced classifications might be used.



THE TRAINING SET

Example DocID Query In the title In the body Judgment

e1 43 LISP 1 1 Relevant

e2 43 BASIC 1 0 Relevant

e3 76 LISP 0 1 Non-relevant

e4 76 BASIC 0 1 Relevant

e5 87 SMALLTALK 1 1 Relevant

e6 87 APL 1 0 Non-relevant



HOW TO DECIDE IF OUR WEIGHTS WORKS

COMPUTING THE ERROR

score(d, q) = g ⋅ stitle + (1 − g) ⋅ sbody

With only two zones, site score is computed as:

Since we know the queries and the real relevance of the documents 
in the training set we can compute the output that a weight  would give:g

score(43,LISP) = g ⋅ 1 + (1 − g) ⋅ 1

score(43,BASIC) = g ⋅ 1 + (1 − g) ⋅ 0

score(76,LISP) = g ⋅ 0 + (1 − g) ⋅ 1

⋮



HOW TO DECIDE IF OUR WEIGHTS WORKS

COMPUTING THE ERROR

If we decide that relevant is  and non-relevant is  
we can compare the real score with the computed one 

and compute an error:

1 0

Err(g, e1) = (1 − score(43,LISP))2

Err(g, e2) = (1 − score(43,BASIC))2

Err(g, e3) = (0 − score(76,LISP)2

⋮



(AND MAYBE IT CANNOT BE ZERO)

MINIMISING THE ERROR

We now want to minimise the sum of the errors:

n

∑
i=1

Err(g, ei)

Notice that it might not be possible to reach an error of zero:

score(43,BASIC) = g ⋅ 1 + (1 − g) ⋅ 0 = g
score(87,APL) = g ⋅ 1 + (1 − g) ⋅ 0 = g

Err(g, e2) = (1 − g)2

Err(g, e6) = g2

But:



TF-IDF WEIGHTING



REFINING THE SCORING

CHANGING SCORING

• For now we have used a weight that is either  or  depending on 
wether a query term was present or not. 

• We might want to assign different weight depending on the term 
and the number of times a term is present in the document. 

• This works well with free-form text queries: 

• For each term in the query we compute a “match score” 

• The score of a document is the sum of the scores for each term

0 1



A SIMPLE SCORE

TERM FREQUENCY

Term frequency: tft,d

Number of occurrences of the term  inside the document .t d

The main motivation is that the more a document is present 
inside a document the more we consider the document 
relevant with respect to that term.

But what about the order of the words?



IGNORE THE ORDER!

BAG OF WORDS

The cat is on the table The table is on the cat

The cat is on the table The catis on thetable

Thecat

is
on thetable

Thecat

is
on thetable

In the 
bag of words model 

the ordering of the term 
is immaterial but 

the amount 
of occurrences 

is material



SOME LIMITATIONS

TERM FREQUENCY

• Does the number of occurrences really represents the importance 
of a term? 

• Which terms are more frequent? 

• A small hint: 

• Stop words! 

• Not all terms carry the same 
weight in determining the 
relevancy of a document



RARE WORDS COUNT MORE

COLLECTION AND DOCUMENT FREQUENCIES

• The main characteristic of stop words is that they are present in 
most documents. 

• Therefore, we might want to scale the importance of a word 
based on some measure of the frequency of the term: 

•  is the collection frequency of the term : 
total number of occurrences of the term  in the collection. 

•  is the document frequency of the term : 
total number of document in which  appears in the collection.

cft t
t

dft t
t



RARE WORDS COUNT MORE

COLLECTION AND DOCUMENT FREQUENCIES

• The document frequency  of a term is usually preferred. 

• We prefer to use a document-based measure to weight 
documents. 

•  and  can behave quite differently. For example: 

• A single document with  instances of a term  in a 
collection of  documents. 

• Each one of  documents contains a term  exactly once.

dft

cft dft

1000 t1
1000

1000 t2



MODIFYING DOCUMENT FREQUENCY

INVERSE DOCUMENT FREQUENCY

 is larger when we want the penalties to be largerdft

We use a modification of it:

idft = log
N
dft

Number of documents 
in the collection

Document frequency

Inverse 
document 
frequency



EFFECTS ON THE WEIGHTS

INVERSE DOCUMENT FREQUENCY
id

f t

0

3,5

7

10,5

14

1 10 100 1000 10000

dft

Terms present everywhere 
have zero weights

Terms present 
in only one document 

have weight log N



HOW TO COMBINE  AND tft,d idft

TF-IDF WEIGHTING

We now need to combine the two ideas:

tf-idft,d = tft,d × idft

• When a rare term is present a many times in a document then the 
value is high 

• When a frequent term is present many times or a rare term is present 
only a few time the value is low 

• When a very frequent term is present only a few times then the value is 
the lowest



TOWARDS THE VECTOR SPACE MODEL

SCORING A DOCUMENT

The cat is on the table

cat is on thetable

tf-idfcat,d tf-idfis,d tf-idfon,d tf-idftable,d tf-idfthe,d

 for all terms 
not in the document

tf-idft,d = 0

We can see a document as a vector with a components 
for each term in the dictionary and having as elements 
the  of the term  in the documenttf-idft,d t



TOWARDS THE VECTOR SPACE MODEL

SCORING A DOCUMENT

To score a document for a query  
we can simply sum the  values 
for all terms appearing in :

q
tf-idft,d

q

Score(q, d) = ∑
t∈q

tf-idft,d

Notice that in this way a document where a term  
does not appear might still have a positive score. 

The  “penalty” will depend on which term is not present



AND WHEN TO USE THEM

VARIANTS OF TF-IDF

• There are some possible alternative in using directly . 

• One first consideration is that not all instances of a term inside a 
document carry the same weight. 

• There is the idea of “diminishing returns”: is a document with 20 
occurrences really twice as important as one with 10 occurrences? 

• Another observation is that we might be interested in the 
frequency of a term relative to the other terms in the document.

tf-idf



SUBLINEAR TF SCALING

wft,d = {1 + log tft,d if tft,d > 0
0 otherwise

We can scale the  value to have  
the influence of additional terms reduced:

tft,d

The new value can be replaced where  is used:tft,d

wf-idft,d = wft,d × idft



TF NORMALIZATION

tft,d

tfmax(d)

We can scale the  value to be dependant 
on the maximum term frequency in the document :

tft,d
tfmax(d)

tft,d

∑t′ ∈d tft′ ,d

Another possibility is to normalise according to the 
number of terms in the entire document:

In both cases there are drawbacks and some smoothing might be 
applied to limit large swings in the normalised value



THE VECTOR SPACE MODEL



JUST TO REFRESH SOME BASIC NOTION AND FIX NOTATION

VERY BRIEF RECAP

• In  the Euclidean length of a vector  is

 

• A vector is a unit vector if its length is one. 

• The inner products of two vectors  

 and  is defined as 

ℝn ⃗v = (v1, v2, …, vn)

| ⃗v | =
n

∑
i=1

v2
i

⃗v = (v1, v2, …, vn) ⃗u = (u1, u2, …, un)
n

∑
i=1

viui



THE START OF THE VECTOR SPACE REPRESENTATION

DOCUMENTS AS VECTORS

ecat = (0,0,1,0,0)

edog = (0,0,0,1,0)

edrone = (0,0,0,0,1)

ebox = (0,1,0,0,0)

ebart = (1,0,0,0,0)

Each term is an element of the canonical 
base of  with  the number of terms 
in the dictionary.

ℝn n

We will limit ourselves to 3D visualisation due to the limits of the physical world

A document is a point in this -dimensional space:n

⃗V (d) = (0.6, 0.5, 0.1, 0, 0.9)
tf-idfcat,d



HOW TO COMPARE DOCUMENTS

COSINE SIMILARITY

bart

box

cat

⃗V (d1) ⃗V (d2)

We can compute the similarity 
of two documents by computing 
the cosine similarity between the 
two corresponding vectors:

sim(d1, d2) =
⃗V (d1) ⋅ ⃗V (d2)

| ⃗V (d1)|| ⃗V (d2)|

Which represents the cosine 
of the angle formed by the 
two vectors

The similarity is the cosine of this angle



LOOKING AGAIN AT COSINE SIMILARITY

NORMALISING VECTORS

If we look again at cosine similarity we can see that we can 
replace a vector  with the unit vector :⃗V (d) ⃗v (d)

⃗v (d) =
⃗V (d)

| ⃗V (d)|

In fact, since the angle formed by the vectors does not depend 
on the magnitude of the vectors, we can assume, without 

loss of generality, each document vector to be a unit vector.



THE MISSING HALF OF THE REPRESENTATION

QUERIES AS VECTORS

In addition to documents, also queries can be represented as vectors

Query: CAT Vector: (0,0,1,0,0)

Query: CAT DOG Vector: (0,0,1/ 2,1/ 2,0)

Each query is a unit vector  
with the non-zero components  

corresponding to the query terms



COSINE SIMILARITY (AGAIN)

ANSWERING QUERIES

⃗v (q)

⃗v (d2)

⃗v (d1)

cat

dog The answer to the query can be computed 
using (again) the cosine similarity:

score(q, d1) = sim( ⃗v (q), ⃗v (d1))

score(q, d2) = sim( ⃗v (q), ⃗v (d2))

Since all vectors are unit vectors 
this is equivalent to:

score(q, d1) = ⃗v (q) ⋅ ⃗v (d1)

score(q, d2) = ⃗v (q) ⋅ ⃗v (d2)



CONSIDERATIONS

VECTOR SPACE MODEL

• The fact that we compute a similarity score means that we have a 
ranking of documents; we can retrieve the K most relevant 
documents. 

• A document might have a non-zero similarity score even if not all 
terms are present: the matching is not exact like in the Boolean 
model. 

• Even if we have used  to define the document vectors, any 
other measure might be used. 

• Notice that we cannot exclude (for now) the computation of the 
cosine similarity for each document in the collection!

tf-idf



COMPUTING SIMILARITY EFFICIENTLY



THE LOW-HANGING FRUITS

A FEW INITIAL CONSIDERATIONS

• We can have an inverted index in which each term has an associated 
 value (since it depends only on the term). 

• Each posting will have the term frequency  associated to it (since it 
depends on both the term and the document). 

• We can then compute the score of each document while traversing the 
posting lists. 

• If a DocID does not appear in the posting list of any query term its 
score is zero. 

• To retrieve the K highest scoring documents we can use a heap data 
structure, which is more efficient than sorting all documents.

idft

tft,d



BEING FAST AND “WRONG”

INEXACT TOP K DOCUMENT RETRIEVAL

• Sometimes it is more important to be efficient than to retrieve exactly the 
K highest scoring documents. 

• We want to retrieve K documents that are likely to be among the K highest 
scored. 

• Notice that the similarity score is a proxy of the relevance of a document 
to a query, so we already have some “approximation”. 

• The main idea to perform an inexact retrieval is: 

• Find a subset  of the documents that is both small and likely to contain 
documents with scores near to the K highest ranking. 

• Return the K highest ranked documents in .

A

A



HOW TO IGNORE SOME TERMS

INDEX ELIMINATION

CAT

DOG

THE

A

BOX

TARDIS

XYLOPHONE

1 2 3

12 37

12 43 50

4

1 2 4 5

15

15 23

9 28

standard inverted index



HOW TO IGNORE SOME TERMS

INDEX ELIMINATION

CAT

DOG

THE

A

BOX

TARDIS

XYLOPHONE

1 2 3

12 37

12 43 50

4

1 2 4 5

15

15 23

9 28

 scoresidf

0.02

3.22

2.81

3.22

3.22

0.04

3.91

2213 17 6

 scorestf

4 1

2 3

7 9 1

1

9 34 12 27

4 2



HOW TO IGNORE SOME TERMS

INDEX ELIMINATION

CAT

DOG

THE

A

BOX

TARDIS

XYLOPHONE

1 2 3

12 37

12 43 50

4

1 2 4 5

15

15 23

9 28

0.02

3.22

2.81

3.22

3.22

0.04

3.91

2213 17 6

4 1

2 3

7 9 1

1

9 34 12 27

4 2

We can remove terms with very low  score from the search: 
they are like “stop words” with very long postings list

idf



HOW TO IGNORE SOME TERMS

INDEX ELIMINATION

• By removing terms with low  value we can only work with 
relatively shorter lists. 

• The cutoff value can be adapted according to the other terms 
present in the query. 

• We can also only consider documents in which most or all the 
query terms appears… 

• …but a problem might be that we do not have at least K 
documents matching all query terms.

idf



OR “TOP DOCS”

CHAMPION LISTS

• Keep an additional pre-computed list for each term containing 
only the  highest-scoring documents (usually ). 

• These additional lists are known as champion lists, fancy lists, or  
top docs. 

• We compute the union of the champion lists of all terms in the 
query, obtaining a set  of documents. 

• We find the K highest ranked documents in . 

• Problem: we might have too few documents if K is not known until 
the query is performed.

r r > K

A

A



ADDING A PRE-COMPUTABLE SCORE TO DOCUMENTS

STATIC QUALITY SCORES

• In some cases we might want to add a score to a document that is 
independent from the query: a static quality score, denoted by 

. 

• Example: good reviews by users might “push” a document higher 
in the scoring. 

• We need to combine  with the scoring given by the query, a 
simple possibility is a linear combination: 

. 

• We can also sort posting list by , to process documents 
more likely to have high scores first.

g(d) ∈ [0,1]

g(d)

score(q, d) = g(d) + ⃗v (d) ⋅ ⃗v (q)

g(d) + idft,d



SORTING POSTING LISTS NOT BY DOCID

IMPACT ORDERING

• Union and intersection for posting lists works efficiently because 
of the ordering… 

• …but everything work as long as they are ordered with some 
criterium, not necessarily by DocID. 

• Idea: Order the documents by decreasing . In this way the 
documents which will obtain the highest scoring will be processed 
first. 

• If the  value drops below a threshold, then we can stop.

tft,d

tft,d



SORTING POSTING LISTS NOT BY DOCID

IMPACT ORDERING

CAT

DOG

THE

A

BOX

TARDIS

XYLOPHONE

1 2 3

12 37

12 43 50

4

1 2 4 5

15

15 23

9 28

0.02

3.22

2.81

3.22

3.22

0.04

3.91

2213 17 6

4 1

2 3

7 9 1

1

9 34 12 27

4 2

From this…



SORTING POSTING LISTS NOT BY DOCID

IMPACT ORDERING

CAT

DOG

THE

A

BOX

TARDIS

XYLOPHONE

2 3 1

12 37

43 12 50

4

2 5 4 1

15

23 15

9 28

0.02

3.22

2.81

3.22

3.22

0.04

3.91

1722 13 6

4 1

3 2

9 7 1

1

34 27 12 9

4 2

…to this



SEARCHING ONLY INSIDE A CLUSTER

CLUSTER PRUNING

• With  document,  are randomly selected as leaders. 
Each leader identifies a cluster of documents. 

• For each of the remaining documents, we find the most similar 
among the  documents selected and we add it to the 
corresponding cluster. 

• For a query  we find the document among the  leaders that is 
most similar to it. 

• The K highest ranked documents are selected among the ones in 
the cluster of the selected leader.

N M = N

M

q M



AN EXAMPLE

CLUSTER PRUNING

Documents represented 
as points in space



AN EXAMPLE

CLUSTER PRUNING

Documents represented 
as points in space

Selection of the leaders



AN EXAMPLE

CLUSTER PRUNING

Documents represented 
as points in space

Selection of the leaders

Assigning documents 
to clusters



AN EXAMPLE

CLUSTER PRUNING

Documents represented 
as points in space

Selection of the leaders

Assigning documents 
to clusters

A query arrives

The query



AN EXAMPLE

CLUSTER PRUNING

Documents represented 
as points in space

Selection of the leaders

Assigning documents 
to clusters

A query arrives

Nearest leader

The nearest leader 
is found



AN EXAMPLE

CLUSTER PRUNING

Documents represented 
as points in space

Selection of the leaders

Assigning documents 
to clusters

A query arrives

The nearest leader 
is found

The similarity is computed 
only in one cluster



ADDITIONAL CONSIDERATIONS

CLUSTER PRUNING

• The selection of  leaders randomly likely reflects the 
distribution of documents in the vector space: the most crowded 
regions will have more leaders. 

• A variant more likely to return the “real” K highest ranked 
document is the following: 

• When creating clusters, each document is associated to  
leaders (i.e., it is part of more than one cluster). 

• When a query is received the clusters of the  nearest leaders 
are considered.

N

b1

b2


