Orbit Dynamics and Analysis

By Peter O. and Anna

Kepler's laws of planetary motion

- 1. Orbits are ellipses with sun at one focus.
- 2. The line joining the planet to the sun sweeps equal areas in equal times.
- 3. The square of the period of a planet is proportional to the cube of its mean distance to the sun.

Newton's law of gravity:

The gravitational force acting upon a satellite orbiting the earth

$$\vec{F}_G = -\frac{GM_{earth}m}{r^2} \left(\frac{\vec{r}}{r}\right)$$

where G is the universal constant of gravity, M_{earth} is the mass of the Earth, m is the mass of the satellite and r is the position vector of the satellite relative to the centre of Earth.

Conservation of energy and angular momentum

Introducing $\mu = GM_{earth}$ and the normalising with respect to the mass of the orbiting object, we can consider the specific energy (potential energy is referred to an infinitely distant point):

$$\varepsilon = \frac{v^2}{2} - \frac{\mu}{r} = -\frac{\mu}{2a} = CONSTANT$$
, i.e. energy is CONSERVED

Also;

$$\vec{h} = \vec{r} \times \vec{v} = CONSTANT$$
, i.e. angular momentum is CONSERVED.

······································	
Eccentricity (shape):	е
Inclination (orientation):	i
Right ascension of the ascending node (orientation):	Ω
Argument of perigee (location):	ω
True anomaly (location):	υ

Some simple derived parameters

NT 1 • 1 .1	Orbit perturbations:	
Mean motion:	$\omega_0 = \sqrt{\mu/a^3}$	[rad/s]
Orbital period:	$P=2\pi\sqrt{a^3/\mu}$	[s]
Radius of apogee:	$r_a = a(1+e)$	
Radius of perigee:	$r_p = a(1-e)$	

-Non-spherical earth perturbations in degrees per day: Right ascension: $\dot{\Omega}_{J_2} = -2.06474 \times 10^{14} a^{-3.5} \cos(i)(1-e^2)^{-2}$ Argument of perigee: $\dot{\omega}_{J_2} = 1.03237 \times 10^{14} a^{-3.5} (4-5\sin^2(i))(1-e^2)^{-2}$ -Lunar and solar perturbations in degrees per day

 $\dot{\Omega}_{moon} = -0.00338\cos(i)/n$ Moon impact on Right ascension Sun impact on Right ascension $\dot{\Omega}_{sun} = -0.00154 \cos(i)/n$ Moon impact on arg. of perigee $\dot{\omega}_{moon} = 0.00169(4 - 5\sin^2(i))/n$ Sun impact on arg. Of perigee $\dot{\omega}_{sun} = 0.00077(4 - 5\sin^2(i))/n$ Where *n* is the number of orbit revolutions per day. -Atmospheric drag for near circular orbits: $\Delta V = \pi (C_D A/m) \rho a V \quad \text{(m/s per orbit)}$ Change in velocity: Change in semimajor axis: $\Delta a = -2\pi (C_{\rm D}A/m)\rho a^2$ (m per orbit) $\Delta P = -6\pi^2 (C_D A/m) \rho a^2 / V \text{ (s per orbit)}$ Change in period: $(C_D A/m)$ is the ballistic coef and ρ is the density of the atmosphere. -Solar pressure

Acceleration_{solar preassure} $\approx 4.5 \times 10^{-6} (1+r) A/m$

Where A is the crosssection area exposed to the sun and m is mass.

Hohmann transfer

- 1. Find the following quantities: r_1 , a_{xfr} and r_2 , which are the semi major axis of the parking orbit, the transfer orbit and the mission orbit respectively.
- 2. Find velocity in the parking orbit: $V_1 = \sqrt{\mu/r_1}$
- 3. Find velocity at perigee in transfer orbit: $V_{xfr1} = \sqrt{2\left(\frac{-\mu}{2a_{xfr}} + \frac{\mu}{r_1}\right)}$

4. Find velocity at apogee of transfer orbit:
$$V_{xfr2} = \sqrt{2\left(\frac{-\mu}{2a_{xfr}} + \frac{\mu}{r_2}\right)}$$

5. Find velocity in the mission orbit. $V_2 = \sqrt{\mu/r_{21}}$

6. Find total ΔV required: $\Delta V_{tot} = (V_{xfr1} - V_1) + (V_2 - V_{xfr2})$

Orbit plane change

Simple plane change (thrust perpendicular to orbit plane): $\Delta V = 2V\sin(\theta/2)$

Combined plane change (simultaneous plane and velocity change):

$$\Delta V = \sqrt{V_{initial}^2 + V_{final}^2 - 2V_{initial}V_{final}\cos\theta}$$

In-plane positioning

 ΔV requirement depends on how fast you wish to reposition, not on the reposition angle:

$$\omega_{drift} = 1080(\Delta V/V) \quad \text{[degrees/orbit]}$$
$$\Delta V_{total} = \Delta V_{start} + \Delta V_{stop} = 2(\omega_{drift}V)/1080$$
Orbit maintenance

Drag:

North-South:

 $\Delta V_{sun} = 40.17 \cos \gamma \sin \gamma \quad [m/s \quad per \ year]$

East-West:

 ≈ 14.45 [m/s per year for i = 0] Where α is the angle between the orbital plane and the moon's orbit and γ

 $\Delta V_{moon} = 102.67 \cos \alpha \sin \alpha \quad [m/s \quad per \ year]$

 ≈ 36.93 [m/s per vear for i = 0]

 $\Delta V = \pi \left(\frac{C_D A}{m}\right) \rho a V \quad \text{(m/s per orbit)}$

is the angle between the orbital plane and the ecliptic plane.

Deorbiting

In principle, peform a burn to lower perigee to 0 km. This yields:

$$\Delta V_{deorbit} \approx V \left(1 - \sqrt{2R_E} / (2R_E + r) \right)$$

For GEO orbits, graveyard is further out (due to collision avoidance considerations). Guideline is to raise orbit by:

235 + 1000 rA/m[km]

r is the reflection coefficient (0 for absorption, 1 for reflection at normal incidence, 0.4 for diffuse reflection)