Orbit Dynamics and Analysis

By Peter O. and Anna

Kepler's laws of planetary motion

- 1. Orbits are ellipses with sun at one focus.
- 2. The line joining the planet to the sun sweeps equal areas in equal times.
- 3. The square of the period of a planet is proportional to the cube of its mean distance to the sun.

Newton's law of gravity:

The gravitational force acting upon a satellite orbiting the earth

$$
\vec{F}_G = -\frac{GM_{earth}m}{r^2} \left(\frac{\vec{r}}{r}\right)
$$

where *G* is the universal constant of gravity, *Mearth* is the mass of the Earth, m is the mass of the satellite and r is the position vector of the satellite relative to the centre of Earth.

Conservation of energy and angular momentum

Introducing $\mu = GM_{earth}$ and the normalising with respect to the mass of the orbiting object, we can consider the specific energy (potential energy is referred to an infinitely distant point):

$$
\varepsilon = \frac{v^2}{2} - \frac{\mu}{r} = -\frac{\mu}{2a} = \text{CONSTANT}
$$
, i.e. energy is CONSERVED

Also;

 $h = \vec{r} \times \vec{v} = \text{CONSTANT}$ $\vec{h} = \vec{r} \times \vec{v} = \text{CONSTANT}$, i.e. angular momentum is CONSERVED.

Some simple derived parameters

-Non-spherical earth perturbations in degrees per day: Right ascension: $\dot{\Omega}_{J_2} = -2.06474 \times 10^{14} a^{-3.5} \cos(i)(1 - e^2)^{-2}$ $\dot{\Omega}_{J_2} = -2.06474 \times 10^{14} a^{-3.5} \cos(i)(1 - e^2)$ Argument of perigee: $\dot{\omega}_{J_2} = 1.03237 \times 10^{14} a^{-3.5} (4 - 5 \sin^2(i))(1 - e^2)^{-2}$ $\dot{\omega}_{J_2} = 1.03237 \times 10^{14} a^{-3.5} (4 - 5 \sin^2(i)) (1 - e^2)$

-Lunar and solar perturbations in degrees per day

Moon impact on Right ascension (*i*) $\dot{\Omega}_{moon} = -0.00338 \cos(i)/n$ Sun impact on Right ascension $\dot{\Omega}_{sun} = -0.00154 \cos(i)/n$ Moon impact on arg. of perigee $\omega_{moon} = 0.00169 (4 - 5 \sin^2(i))/n$ Sun impact on arg. Of perigee $\omega_{sun} = 0.00077 (4 - 5 \sin^2(i))/n$ Where *n* is the number of orbit revolutions per day. *-Atmospheric drag for near circular orbits:* Change in velocity: $V = \pi (C_D A/m) \rho aV$ (m/s per orbit) Change in semimajor axis: $\Delta a = -2\pi (C_D A/m)\rho a^2$ (m per orbit) Change in period: $\Delta P = -6\pi^2 (C_D A/m) \rho a^2 / V$ (s per orbit) (C_DA/m) is the ballistic coef and ρ is the density of the atmosphere. *-Solar pressure*

 $Acceleration_{solar\, pressure} \approx 4.5 \times 10^{-6} (1+r) A/m$

Where *A* is the crosssection area exposed to the sun and *m* is mass.

Hohmann transfer

- 1. Find the following quantities: r_1 , a_{xfr} and r_2 , which are the semi major axis of the parking orbit, the transfer orbit and the mission orbit respectively.
- 2. Find velocity in the parking orbit: $V_1 = \sqrt{\mu/r_1}$
- 3.Find velocity at perigee in transfer orbit: $V_{xfr1} = \sqrt{2\left(\frac{-\mu}{2a_{xf}} + \frac{\mu}{r_1}\right)}$

4. Find velocity at apogee of transfer orbit:
$$
V_{xfr2} = \sqrt{2\left(\frac{-\mu}{2a_{xf}} + \frac{\mu}{r_2}\right)}
$$

5. Find velocity in the mission orbit. $V_2 = \sqrt{\mu/r_{21}}$

6. Find total ΔV required: $\Delta V_{tot} = (V_{x} f_{11} - V_{1}) + (V_{2} - V_{x} f_{2})$

Orbit plane change

 Simple plane change (thrust perpendicular to orbit plane): $\Delta V = 2V \sin(\theta/2)$

Combined plane change (simultaneous plane and velocity change):

$$
\Delta V = \sqrt{V_{initial}^2 + V_{final}^2 - 2V_{initial}V_{final}\cos\theta}
$$

In-plane positioning

∆V requirement depends on how fast you wish to reposition, not on the reposition angle: $(x + \sqrt{r})$ = 1 (1)

$$
\omega_{drift} = 1080(\Delta V/V) \quad \text{[degrees/orbit]}
$$

$$
\Delta V_{total} = \Delta V_{start} + \Delta V_{stop} = 2(\omega_{drift} V)/1080
$$

Orbit maintenance

Drag: $\Delta V = \pi \left(\frac{c_{D+1}}{m} \right) \rho a V$

East-West:

 $\Delta V_{\text{moon}} = 102.67 \cos \alpha \sin \alpha \quad [m/s \quad per \, year]$ ≈ 36.93 $\left[m/s \quad per \, year \, for \, i = 0\right]$ $\Delta V_{sun} = 40.17 \cos \gamma \sin \gamma \quad [m/s \quad per \; year]$
 \therefore \approx 14.45 $[m/s \quad per \, year \, for \, i = 0]$

 $\Delta V = \pi \left(\frac{C_D A}{m}\right) \rho aV$ (m/s per orbit)

Where α is the angle between the orbital plane and the moon's orbit and γ is the angle between the orbital plane and the ecliptic plane.

Deorbiting

In principle, peform a burn to lower perigee to 0 km. This yields:

$$
\Delta V_{deorbit} \approx V \left(1 - \sqrt{2R_E/(2R_E + r)} \right)
$$

For GEO orbits, graveyard is further out (due to collision avoidance considerations). Guideline is to raise orbit by:

$235 + 1000 rA/m$ [km]

r is the reflection coefficient (0 for absorption, 1 for reflection at normal incidence, 0.4 for diffuse reflection)