CHIMICA ANALITICA II CON LABORATORIO

(AA 2020-21) 8 C.F.U. - Laurea triennale in Chimica

La spettrometria di massa organica

La spettrometria di massa organica consente di identificare e quantificare specie molecolari. Come già anticipato, le molecole vengono portate in fase gassosa e ionizzate, quindi con questa tecnica vengono identificati e quantificati i diversi ioni formatisi in base al loro rapporto **m/z**.

Supponiamo che una molecola venga ionizzata con l'ausilio di un fascio di elettroni:

$$M + e^- \rightarrow M^{\bullet +} + 2e^-$$

La ionizzazione porta alla formazione di un catione radicale M⁺ che possiede un certo rapporto m/z, quindi può essere rivelato dal detector. <u>M⁺ è detto anche "ione molecolare"</u>. Questo ione, a seconda del tipo di ionizzatore utilizzato, può essere ulteriormente frammentato in così detti "ioni figli". In particolare, essendo M⁺ un radicale catione a numero dispari di elettroni, la sua frammentazione può portare alla formazione di un catione+un radicale oppure di un catione radicale+molecola neutra:

La spettrometria di massa: organica

segue \rightarrow

Possibili assetti strumentali di uno spettrometro di massa

Analizzatori (o selettori di m/z)

Per separare gli ioni formati tramite l'utilizzo dei sistemi di ionizzazione si sfruttano due fenomeni correlati alla massa ed alla carica.

- Ia traiettoria di uno ione o di una particella carica in movimento può essere modificata per azione di un campo magnetico od elettrico, e l'entità della deviazione è funzione del rapporto m/z della particella: a parità di carica, particelle di massa minore subiranno deviazione maggiore;
- 2) ioni o particelle cariche, accelerati da un campo elettrico, assumono velocità diverse in dipendenza della loro massa: a parità di carica, particelle di massa maggiore assumono velocità minore.

Gli spettrometri di massa di prima generazione sfruttavano unicamente il primo fenomeno; attualmente sono disponibili strumenti che si basano sul primo o sul secondo fenomeno.

Gli analizzatori di tipo (1) sono detti "a scansione" poiché fanno passare ioni a differente m/z uno alla volta in lungo un certo percorso al loro interno.

Gli analizzatori di tipo (2) fanno passare tutti gli ioni assieme lungo un certo loro percorso interno.

Le cinque principali caratteristiche atte a valutare le prestazioni di un analizzatore di massa sono:

- 1) l'intervallo di m/z misurabili;
- 2) la velocità di analisi (detta anche velocità di scansione) ovvero la velocità a cui l'analizzatore riesce a misurare un certo intervallo di m/z (espressa in u·s⁻¹ o u·ms⁻¹);
- **3)** *la trasmissione* ovvero il rapporto tra il numero di ioni che raggiungono il detector (quindi in uscita dall'analizzatore) rispetto al numero di ioni che entrano nell'analizzatore;
- 4) l'accuratezza di misura della massa ovvero la differenza tra risposta sperimentale e la massa esatta teorica (per misurare l'accuratezza si utilizzano sostanze di cui si conosce la massa esatta);

"The achievable mass accuracy in practice depends on the resolution of the mass analyzer and the quality and stability of the calibration of the m/z axis. An instrument providing unit-mass resolution generally allows m/z determination for single-charge ions with an accuracy of ±0.1 u (nominal mass determination). In HRMS, the mass accuracy is generally expressed either as an absolute mass error (accurate mass-exact mass, in mu) or as a relative error (in ppm), calculated from

 $\frac{(\text{accurate mass} - \text{exact mass})}{(\text{exact mass})} \times 10^{6}$

In HRMS of small molecules, the error in m/z determination will typically be in the third decimal place (accurate mass determination)."

5) il potere risolvente (resolving power) ovvero il più piccolo Δ*m/z* che l'analizzatore riesce a discriminare (https://goldbook.iupac.org/terms/view/R05321).

La spettrometria di massa: organica <u>https://application.wiley-vch.de/books/sample/3527334645_c01.pdf</u> E. de Hoffmann, V. Stroobant – Mass Spectrometry: Principles and Applications – WILEY <u>https://www.sciencedirect.com/science/article/pii/S1044030510004022</u>

Risoluzione (Resolution) FWHM

https://goldbook.iupac.org/terms/view/R05318

https://fiehnlab.ucdavis.edu/projects/seven-golden-rules/mass-resolution

Туре	Resolution_	(FWHM)
FT-ICR-MS	1,000,000	
FT-Orbitrap	100,000	
High-Res-TOF	60,000	
TOF	10,000	
Quadrupole / IonTrap in UltraZoom mode	10,000	
Quadrupole / Iontrap	1,000	

LTQ (low resolution, resolving power R = 1737 at m/z 868.5, peak width \sim 0.5 FWHM) and LTQ-FT (high resolution, resolving power R = 48,250 at m/z 868.5, peak width \sim 0.018; FWHM)

Piccole molecole https://www.jeol.co.jp/en/applications/pdf/ms/gas analysis e h.pdf

 CO^{+}/N_2^{+} \Rightarrow Both species contribute to the peak height because they are not separated at the mass resolution of a quadrupole mass spectrometer.

Analysis example Accurate Mass Measurement: mass spectrum of a standard gas mixture.

Ionization : El Ionizing voltage : 22 V

Measured mass	Elemental composition	Calculated mass	Error (mDa)
15.9951	O ⁺	15.9944	0.7
16.0314	CH4+.	16.0308	0.6
18.0107	H ₂ O ^{+ ·}	18.0100	0.7
27.9950	CO+.	27.9944	-0.6
28.0061	N2+.	28.0056	0.5
31.9898	O2+.	31.9893	0.5
39.9620	Ar ^{+ -}	39.9618	0.2

Internal mass calibration with m/z 43.9893 (CO2+)

Separation of isobaric components at m/z 28

Even at m/z as low as 28, mass resolution sufficient to resolve CO and N₂, and excellent mass spectral peak shapes are achieved. The effect of increasing mass accuracy for unambiguous identification of compounds (Quenzer, T.L., Robinson, J.M., Bolanios, B., Milgram, E. and Greig, M.J., Automated accurate mass analysis using FTICR mass spectrometry, Proceedings of the 50th Annual Conference on Mass Spectrometry and Allied Topics, Orlando, FL, 2002).

Increased filtering or restriction of error in the measurementreduces the possible candidates for a given result

https://www.waters.com/waters/it_IT/Mass-Accuracy-and-Resolution/nav.htm?cid=10091028&locale=it_IT_ https://www.news-medical.net/whitepaper/20190315/Unambiguous-Identification-of-Natural-Products-Using-a-Mass-Spectrometer.aspx

L'analizzatore a quadrupolo

Ioni generati dalla sorgente ionica sono estratti elettrostaticamente e introdotti in un analizzatore di massa (filtro) a quadrupolo.

È un dispositivo che consiste di quattro barre di acciaio con sezione circolare o iperboliche, posizionate parallelamente con disposizione radiale.

Un quadrupolo lineare consiste in quattro barre (elettrodi) a forma cilindrica o iperbolica **che si estendono nella direzione e sono montate in configurazione perpendicolare (rispetto alle direzioni x e y)**

Sezione di un quadrupolo (a) con barre di forma cilindrica, (b) con barre di forma iperbolica. Il campo elettrico è =0 lungo le linee tratteggiate.

E. de Hoffmann, V. Stroobant – Mass Spectrometry: Principles and Applications - WILEY J.H. Gross – Mass spectrometry: a textbook - Springer

segue \rightarrow

Quando uno ione entra nel quadrupolo lungo l'asse z una forza attrattiva è operata su di esso da una delle barre, la barra di carica opposta rispetto allo ione.

Se il voltaggio applicato alle barre è periodico l'attrazione e la repulsione lungo le direzioni x e y (che sono entrambe perpendicolari al cammino dello ione in direzione z) vengono alternate nel tempo, poiché il cambio di voltaggio fa cambiare il segno al campo elettrico applicato.

Se il voltaggio applicato è composto da un voltaggio a corrente continua (DC) U e un radiofrequenza (RF) con voltaggio V e frequenza ω che funge da corrente alternata (AC), **il potenziale totale \Phi_0** è dato da:

 $\Phi_0 = U + V \cos \omega t$

Quindi le equazioni del moto della particella risultano essere:

$$\frac{d^2 x}{dt^2} + \frac{e}{m_i r_0^2} \left(U + V \cos \omega t\right) x = 0$$
$$\frac{d^2 y}{dt^2} - \frac{e}{m_i r_0^2} \left(U + V \cos \omega t\right) y = 0$$

Il campo elettrico è = 0 lungo i piani tratteggiati illustrati nelle figure della slide precedente, **quindi è possibile per uno ione attraversare il quadrupolo lungo l'asse z senza impattare contro le barre,** se il suo movimento ondulatorio intorno all'asse z è stabile ed ha ampiezza limitata nel piano xy.

Queste condizioni possono essere derivate dalla teoria delle equazioni di Mathieu.

Scrivendo le equazioni in forma adimensionale, si ottiene:

$$\frac{d^2 x}{d\tau^2} + (a_x + 2q_x \cos 2\tau) x = 0$$

$$\frac{d^2 y}{d\tau^2} + (a_y + 2q_y \cos 2\tau) y = 0$$
i parametri a e q sono:
$$a_x = -a_y = \frac{4eU}{m_i r_0^2 \omega^2}, \quad q_x = -q_y = \frac{2eV}{m_i r_0^2 \omega^2}, \quad \tau = \frac{\omega t}{2}$$

Per un data combinazione di U, V e \omega il moto risultante dello ione si esplica in una traiettoria stabile che consente a ioni con un certo m/z ^{m/2} o un certo intervallo (ristretto) m/z **di attraversare tutto il quadrupolo lungo la direzione z ed arrivare al detector.** Ioni che oscillano entro la distanza $2r_0$ tra gli elettrodi (o barre) ^{m/2} hanno traiettorie stabili e arrivano al detector.

La stabilità del cammino (traiettoria) di un particolare ione è definita dalla grandezza del voltaggio V di RF (radiofrequenza) e dal rapporto ^{m/z} U/V.

http://it.wikipedia.org/wiki/Funzioni_di_Mathieu

La spettrometria di massa: organica

In cui

E. de Hoffmann, V. Stroobant – Mass Spectrometry: Principles and Applications - WILEY J.H. Gross – Mass spectrometry: a textbook - Springer

segue \rightarrow

Riportando in grafico il parametro a (in ordinata, campo che non varia nel tempo) contro q (in ascissa, campo che varia nel tempo) si ottiene il **diagramma di stabilità di un campo quadrupolare a due dimensioni**. Il diagramma mostra le regioni in cui:

0.3

а

0.237

0.2

0.1

J.H. Gross - Mass spectrometry: a textbook - Springer

- *I.* entrambe le traiettorie x- e y sono stabili;
- II. la traiettoria x è stabile;
- III. la traiettoria y è stabile;
- IV. entrambe le traiettorie x e y non sono stabili.

La regione contrassegnata con I è di particolare interesse per le normali operazioni di separazione di ioni in un quadrupolo

Dettaglio della metà superiore della regione I del diagramma di stabilità per un quadrupolo lineare

La spettrometria di massa: organica

E. de Hoffmann, V. Stroobant – Mass Spectrometry: Principles and Applications - WILEY

Se il rapporto a/q è scelto in modo che 2U/V = 0.237/0.706 = 0.336, la zona di stabilità xy si restringe ad un unico punto, l'apice del diagramma.

Riducendo a e mantenendo q costante, quindi riducendo U relativamente a V, un intervallo sempre più grande di m/z può essere trasmesso contemporaneamente.

Una risoluzione sufficiente è raggiunta solo se un piccolo intervallo di m/z mantiene un cammino stabile lungo il quadrupolo, es. uno specifico m/z ± 0.5 per unità di risoluzione.

Quindi, l'ampiezza Δq della regione di stabilità determina la risoluzione.

Variando la grandezza di U e V a rapporto costante U/V, si ottiene una scansione a U/V = cost, consentendo a ioni con crescente m/z di attraversare il quadrupolo.

Quindi un analizzatore a quadrupolo agisce da filtro di massa piuttosto che da spettrometro (selettore) di momento (come B) o di energia (come ESA). Infatti questi analizzatori sono comunemente indicati come filtri di massa a quadrupolo. segue \rightarrow

Le simulazioni di traiettoria di uno ione consentono la visualizzazione dei movimenti dello stesso mentre viaggia all'interno del quadrupolo.

Proiezione di una simulazione di traiettoria 3D stabile di unoione lungo le coordinate xy.

Il numero ottimale di oscillazioni per raggiungere un certo livello di prestazione possono essere determinate. Inidicativamente le migliori prestazioni si ottengono quando ioni con energia cinetica di circa 10 eV vengono sottoposti a circa 100 oscillazioni durante il passaggio nel quarupolo.

Nota: i quadrupoli standard hanno barre di circa 10-20 mm di diametro e di circa 15-25 cm di lunghezza. La radiofrequenza applicata è dell'ordine di 1-4 MHz e i voltaggi di DC e RF giacciono nell'intervallo 10²-10³ V.

IN CONCLUSIONE:

I moderni strumenti a quadrupolo coprono un intervallo di m/z di 2000-4000 con un buon potere risolvente. I vantaggi del quadrupolo sono:

- ✤ alta trasmissione;
- leggerezza, compattezza e relativo basso costo della strumentazione;
- bassi voltaggi per l'accelerazione degli ioni;
- consentono alte velocità di scansione, poiché la scansione viene realizzata con la sola variazione di potenziali elettrici.

Conceptual explanation of the way a Quadrupole Mass Filter works. <u>https://www.youtube.com/watch?v=aYOCb6GnXio</u>

https://www.youtube.com/watch?v=qxPb9vFWdqo !!!

0

Trappole ioniche

Una trappola ionica è un dispositivo <u>che utilizza un campo elettrico oscillante per immagazzinare ioni</u> in uno spazio confinato detto "trappola". Essa utilizza un campo quadrupolare di radiofrequenze per intrappolare gli ioni in due o tre dimensioni.

Le trappole in **3D** vengono dette **trappole ioniche quadrupolari (QIT** – Quadrupole Ion Trap) Le trappole in **2D** vengono dette **trappole ioniche lineari** (LIT – Linear Ion Trap)

Trappole ioniche quadrupolari (QIT)

La trappola ionica quadrupolare (detta anche trappola ionica di Paul) può essere concettualmente immaginata come <u>un quadrupolo ripiegato su se stesso a formare un anello</u>.

I due elettrodi iperbolici sopra e sotto fungono da tappi (end caps), l'elettrodo centrale ad anello rappresenta la congiunzione circolare degli altri due elettrodi del quadrupolo lineare.

Quindi una sezione di QIT attraverso il piano rz ricorda la sezione del quadrupolo con barre iperboliche.

I due "end caps" sono connessi elettricamente e potenziali DC e RF vengono applicati tra di essi e l'elettrodo circolare.

segue \rightarrow

Per rimanere all'interno della trappola uno ione deve avere una <u>traiettoria stabile</u> sia nella direzione z che nella direzione r (le particelle ruotano nelle direzione r e oscillano sulla direzione z).

<u>Il QIT intrappola ioni di un determinato intervallo di m/z</u> (in alcuni tipi di dispositivo gli ioni vengono generati direttamente all'interno della trappola)

Aumentando il potenziale con radiofrequenza, le traiettorie degli ioni a m/z successivi sono resi instabili e <u>espulsi dalla trappola</u>, e rilevati dal detector.

L'end-cap superiore è dotato di un foro per l'introduzione di ioni nella trappola, mentre l'end-cap inferiore è dotato di un foro per l'espulsione degli ioni verso il detector.

Il QIT è considerato tridimensionale perché il campo elettrico che viene generato all'interno deve essere considerato tridimensionale

I moderni QIT possono coprire un intervallo di m/z di circa 3000 con scansioni veloci alla risoluzione di 1u e, in più, consentono di effettuare "zoom scans" su un piccolo intervallo di m/z per ottenere misure ad alta risoluzione.

The Nobel Prize in Physics 1989

Norman F. Ramsey Hans G. Dehmelt Wolfgang Paul

Share this

Photo from the Nobel Foundation archive. Norman F. Ramsey Prize share: 1/2

dation Photo from the Nobel Foun archive. Y Hans G. Dehmelt Prize share: 1/4 Photo from the Nobel Foundation archive. Wolfgang Paul Prize share: 1/4

The Nobel Prize in Physics 1989 was divided, one half awarded to Norman F. Ramsey "for the invention of the separated oscillatory fields method and its use in the hydrogen maser and other atomic clocks", the other half jointly to Hans G. Dehmelt and Wolfgang Paul "for the development of the ion trap technique."

Trappole ioniche lineari (LIT)

La trappola ionica lineare è basata su un quadrupolo che termina ad entrambi i lati con delle lenti che riflettono le particelle avanti e indietro mantenendole al suo interno. Quindi <u>in queste trappole le particelle rimangono</u> <u>confinate lungo la dimensione radiale</u> da un campo quadrupolare e lungo la direzione assiale da un campo elettrico alle due estremità della trappola.

Applicando diversi campi elettrici alle estremità si può confinare la nube di ioni in una certo spazio ristretto all'interno della LIT, ad es. al centro o verso una delle estremità, a seconda del meccanismo di espulsione previsto in base alla progettazione della LIT: **espulsione assiale** o **radiale**.

gli ioni vengono espulsi generando un potenziale attrattivo ad una estremità della LIT gli ioni vengono espulsi attraverso una fenditura applicando una AC all'elettrodo

segue \rightarrow

Confronto tra trappole ioniche QIT e LIT

- La trappola LIT ha una capacità di intrappolamento di ioni 10 volte più alta di QIT, anche con 20'000 ioni intrappolati non si verificano fenomeni di "space charge effect" cioè espulsioni di ioni non controllate a causa delle forze di repulsione tra gli ioni stessi. QIT invece non può intrappolare più di 500 ioni circa.
- <u>La trappola LIT ha maggiore efficienza di intrappolamento di QIT</u>: iniettando ioni da una sorgente esterna LIT è capace di intrappolarne circa il 50%, invece QIT solo il 5%.

Analizzatori a Tempo di Volo (Time Of Flight Analyzer - TOF)

Il principio del TOF è semplice: ioni con differente m/z vengono separati nel tempo durante il loro volo lungo un cammino di deriva in assenza di campi elettrici e magnetici di lunghezza nota.

Se gli ioni iniziano il cammino nello stesso istante gli ioni più leggeri arriveranno prima al detector rispetto agli ioni più pesanti.

E. de Hoffmann, V. Stroobant – Mass Spectrometry: Principles and Applications - WILEY

Teoria del tempo di volo di una massa in un TOF

La carica elettrica (q) di uno ione di massa (m_i) è uquale ad un numero intero (z) di cariche elettroniche (e), quindi q = ez. L' energia E_{el} acquisita dallo ione che si muove attraverso un voltaggio U è data da:

$$E_{el} = qU = ezU$$

L'energia potenziale di una particella carica in un campo elettrico viene convertita in energia cinetica E_{kin} , cioè $E_{el} = ezU = \frac{1}{2}m_iv^2 = E_{kin}$ in moto traslatorio

Supponendo che lo ione fosse a riposo inizialmente, che è corretto in prima approssimazione, la velocità 20711 raggiunta è

cioè la velocità dello ione (v) è inversamente radice quadrata della massa dello ione (m_i). Uno ione a m/z sconosciuto, dopo essere stato accelerato da un voltaggio U, percorre una determinata distanza (s) S in un tempo (t) dato da:

$$t = \frac{s}{v} \longrightarrow t = \frac{s}{\sqrt{\frac{2ezU}{m_i}}}$$

quindi t è il tempo necessario allo ione per percorrere la distanza (s) a velocità costante, cioè, in un ambiente privo di campi elettrici o magnetici (cammino di deriva) dopo che il processo di accelerazione è stato completato. segue \rightarrow

La spettrometria di massa: organica

$$v = \sqrt{\frac{2020}{m_i}}$$
proporzionale alla

Riarrangiando l'equazione precedente si ottiene la relazione tra m_i/z e i parametri strumentali s e U e il valore di t ottenuto sperimentalmente: $m_i = 2 e U/t^2$

$$\frac{m_i}{z} = \frac{2 e U t^2}{s^2} = \cos t \cdot t^2$$

Riarrangiando la precedente si ottiene che il tempo di deriva (t) attraverso una lunghezza fissa (s) di spazio libero da campi elettrici/magnetici è proporzionale alla radice quadrata di m_i/z :

$$r = \frac{s}{\sqrt{2eU}} \sqrt{\frac{m_i}{z}}$$

pertanto, l'intervallo di tempo Δt tra i tempi di arrivo di ioni a diverso m/z è proporzionale a s \cdot ($m_i/z_1^{\frac{1}{2}} - m_i/z_2^{\frac{1}{2}}$).

La proporzionalità tra tempo di volo e la radice quadrata di m/z fa sì che il Δt per una data $\Delta m/z$ diminuisca all'aumentare del valore di m/z: alle medesime condizioni, un Δt che corrisponde ad un $\Delta m/z = 1$ u per m/z = 20 è uguale a 114 ns, a m/z = 200 è uguale a 36 ns mentre a m/z = 2000 è di soli 11 ns.

Pertanto, la realizzazione di un analizzatore di massa a tempo di volo dipende dalla capacità di misurare brevi intervalli di tempo con sufficiente accuratezza.

Linear-TOF (LTOF)

E' il più semplice assetto strumentale di un TOF. Gli ioni vengono estratti da una matrice tramite un laser (ionizzazione MALDI), accelerati con un voltaggio U fino all'ingresso del cammino libero di deriva. <u>Il cammino (s) è lungo circa 1-2 m</u>. Gli ioni formatisi durante l'impulso laser vengono continuativamente estratti e accelerati dal momento in cui passano dalla matrice alla fase gas. La trasmittanza di un LTOF si avvicina la 90%.

Limiti del LTOF:

- essendo che ad alte m/z una differenza Δm/z = 1 u comporta una variazione di tempo di volo Δt dell'ordine dei 10 ns, bisogna considerare che in un MALDI equipaggiato con un laser UV standard il tempo di estrazione degli ioni dalla matrice è di circa 10-50 ns, conseguentemente la variazione nei tempi di partenza di ioni con stesso m/z può essere superiore alla differenza in tempo di volo, con il conseguente peggioramento della risoluzione del LTOF.
- Gli ioni desorbiti tramite laser possiedono una energia di alcune decine di eV che si va ad aggiungere al voltaggio imposto per l'accelerazione degli ioni nel LTOF (10-30 kV) con la conseguenza che gli ioni che "partono" <u>non possiedono tutti la stessa</u> <u>energia cinetica</u>, quindi ioni a stesso m/z possono arrivare al detector con tempi diversi.

Tutti questi effetti insieme limitano la risoluzione a R~ 500

La spettrometria di massa: organica

Reflectron-TOF (ReTOF)

Il ReTOF è stato ideato per ovviare al difetto del LTOF di avere bassa risoluzione a causa della dispersione di energia cinetica tra ioni con stesso m/z entranti nella zona di cammino libero, che comporta una differenza Δt all'arrivo al detector NON correlata a differenze di m/z.

Nel Re-TOF il riflettore è posto alla fine del cammino libero. <u>E' composto da una serie di elettrodi</u> a forma di anello a potenziale via via maggiore quanto più sono posti lontano rispetto alla sorgente di ioni. Il loro voltaggio U_r è circa 1.05-1.10 volte il voltaggio U (di accelerazione degli ioni) per assicurare la riflessione di tutti gli ioni in arrivo.

<u>Il riflettore è capace di riallineare (nel tempo) ioni con stesso m/z ma diversa energia cinetica</u> E_{kin} . Gli ioni con E_{kin} più alta penetreranno all'interno del riflettore più a fondo rispetto a ioni con E_{kin} minore, con il risultato che poi tutti gli ioni con stesso m/z usciranno nello stesso momento dal riflettore per raggiungere il detector.

<u>Questo effetto aumenta il potere risolvente del ReTOF rispetto a LTOF</u>, permettendo di ottenere delle composizioni isotopiche risolte anche per molecole con m/z > 500.

Orthogonal Acceleration -TOF (oaTOF)

L'oaTOF è stato ideato per essere accoppiato anche con sistemi di ionizzazione che producono ioni in modo continuo (e non solo pulsato come MALDI). <u>In linea di principio oaTOF può essere accoppiato con qualsiasi sistema di ionizzazione</u>. L'oaTOF è capace di estrarre ioni da una sorgente continua in modo pulsato, quindi non è più necessario che sia lo ionizzatore accoppiato al TOF a produrre gli impulsi di ioni.

- Gli ioni focalizzati in uscita dallo ionizzatore flussano in modo continuo nello spazio tra il "plate" (inizialmente a voltaggio $V_{injection} = 0$) e la griglia G1.
- i) Poi viene applicato un potenziale V_{injection} che genera un campo elettrico tra il "plate" e G1 in direzione perpendicolare a quella di cammino degli ioni che vengono quindi deviati ortogonalmente verso G2.
- iii) In G2 agli ioni viene applicato un potenziale $V_{tof} = U$ che accelera gli ioni fino al cammino libero che porta al detector.

I vantaggi dell'oa TOF sono:

- alta trasmissione (quindi alta sensibilità);
- alta velocità di scansione;
- alto potere risolvente;
- masse accurate anche a più di 1 ppm;
- possibilità di accoppiamento con diversi tipi di ionizzatore;
- design compatto.

con il TOF in modalità Re-TOF

Vantaggi TOF

I principali vantaggi di strumenti TOF sono:

- i. in linea di principio, l'intervallo m / z è illimitato;
- ii. Da ogni evento ionizzanti, ad esempio, un solo colpo laser MALDI, si ottiene uno spettro di massa completa in qualche decina di microsecondi;
- iii. La trasmissione di un analizzatore TOF è molto alta, dando origine ad alta sensibilità;
- iv. La costruzione di uno strumento TOF è relativamente semplice e poco costosa;
- v. strumenti più recenti (oaTOF) consentono misurazioni di massa accurate e accoppiamento di analizzatori di massa in serie (MS-MS tandem)

NOTA:

- a) l'implementazione dei sistemi per <u>alto vuoto porta ad un aumento del potere risolvente</u> poiché ci sono meno molecole "non desiderate" con cui gli ioni possono collidere nella loro traiettoria lungo il cammino libero;
- b) nella tecnica TOF è fondamentale che il detector possa misurare ∆t molto piccoli, il potere risolvente del <u>TOF è anche correlato alla velocità di conversione del segnale da analogico a digitale del detector</u>. Con detector con frequenza di conversione di 4 GHz il potere risolvente può arrivare fino a R = 45'000.

Analizzatore a risonanza ionica ciclotronica a trasformata di Fourier (FT-ICR)

Come già visto negli analizzatori a settore magnetico, ioni immersi in un campo magnetico curvano la loro traiettoria. Se la velocità dello ione non è elevata e il campo magnetico è grande, il raggio della traiettoria diventa piccolo, tanto che lo ione può rimanere "intrappolato" in una traiettoria circolare all'interno del campo magnetico, questo è il principio del ciclotrone per ioni.

Il campo magnetico è orientato lungo l'asse z. Gli ioni vengono iniettati nella trappola e intrappolati da un voltaggio V_{trap} imposto tra i due "plate" opposti della trappola.

Gli ioni intrappolati si muovono con una traiettoria con due componenti: circolare intorno all'asse z e lineare lungo l'asse z. Il senso di rotazione dipende se gli ioni hanno carica positiva (in figura) o carica negativa.

segue \rightarrow

Gli ioni si stabilizzano lungo una traiettoria risultante dal bilancio della forza centripeta e centrifuga:

La frequenza e la velocità angolare, pertanto, <u>dipendono dal rapporto (q/m) e da B, ma sono indipendenti dalla</u> <u>velocità</u>.

In pratica gli ioni vengono iniettati nel dispositivo e si trovano immersi in un campo magnetico di 3-9.4 Tesla, prodotto da un magnete superconduttore.

La relazione tra la frequenza e la massa mostra che in questo caso <u>la determinazione della massa si effettua</u> misurando una frequenza. Per misurare la freguenza degli ioni si utilizza la tecnica della Trasformata di Fourier.

Principio della trasformata di Fourier (FT):

l'intensità di un segnale misurata come una funzione tempo-dipendente, è formata dalla sovrapposizione delle singole intensità di ogni frequenza da cui essa è formata. La trasformazione di Fourier consente di individuare le singole frequenze e la loro intensità

Nell' analizzatore FT-ICR gli ioni intrappolati nel ciclotrone vengono eccitati simultaneamente da una rapida scansione di un largo intervallo di frequenze (con una corrente alternata AC in radiofrequenza – RF – a voltaggio V_0) nel tempo di circa 1µs. Gli ioni, eccitati da questa scansione, dispongono la loro traiettoria tutti lungo lo stesso raggio, che dipende da:

Il raggio è indipendente da m/z, invece la frequenza a cui "risuonano" gli ioni nel ciclotrone dipende da m/z. Quindi dopo l'eccitazione ogni ione avrà una sua frequenza caratteristica, pur ruotando sulla traiettoria di raggio r assieme agli altri ioni. https://www.youtube.com/watch?v=7EHngA4S3Ws segue \rightarrow La spettrometria di massa: organica E. de Hoffmann, V. Stroobant - Mass Spectrometry: Principles and Applications - WILEY

J.H. Gross - Mass spectrometry: a textbook - Springer

Quindi nel FT-ICR l'intensità del segnale in funzione del tempo viene trasformata in intensità parziali in funzione

Vantaggi del FT-ICR:

- potere risolvente $R = 10^5 10^6$;
- accuratezza di misura della massa $\Delta m = 10^{-4} 10^{-3} u;$
- sensibilità fino alle attomoli (10⁻¹⁸ moli) in dipendenza del sistema di ionizzazione accoppiato;
- elevato intervallo di m/z misurabile.

Svantaggi del FT-ICR:

- necessità di magneti superconduttori per ottenere l'intensità di campo magnetico necessaria (quindi necessità di utilizzo di gas criogenici);
- necessità di un alto vuoto perfettamente controllato (per evitare collisioni "indesiderate" degli ioni con molecole presenti che possono defasare la frequenza di ioni con stesso m/z.

Una trasformata integrale è un'applicazione, generalmente lineare, di uno spazio di funzioni su un altro spazio di funzioni, realizzata attraverso un integrale.

La trasformata di Fourier permette di scrivere una funzione dipendente dal tempo nel dominio delle frequenze,

https://pubs.acs.org/doi/pdf/10.1021/ed064pA228

Fourier transforms f transform

Fourier transforms for chemists. Part 1. Introduction to the Fourier transform		chemical instrumentation	
<i>J. Chem. Educ.</i> , 1987, <i>64</i> (10), p A228 DOI: 10.1021/ed064pA228 Publication Date: October 1987	Cite this: J. Chem. Educ. 64, 10, XXX-XXX RIS Citation GO	Fourier Transforms for Chemists Part I. Introduction to the Fourier Transform	

Lo als sia

University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2001, South Africa

Using Mathematical Software To Introduce Fourier Transforms in Physical Chemistry To Develop Improved Understanding of Their Applications in Analytical Chemistry Tierney C. Miller, John N. Richardson, and Jeb S. Kegerreis* J. Chem. Educ., 2016, 93 (2), pp 299–303 DOI: 10.1021/acs.jchemed.5b00493 https://pubs.acs.org/doi/pdf/10.1021/acs.jchemed.5b00493

Orbitrap

<u>L'Orbitrap è un trappola ionica che sfrutta unicamente un campo elettrostatico</u> (no campo magnetico, no corrente AC in radiofreguenza) per intrappolare gli ioni.

E' formato da due elettrodi "concentrici": l'elettrodo interno è a forma di fuso, l'elettrodo esterno è a forma di botte ed è diviso in due parti mantenute isolate da un anello di ceramica.

Gli ioni che vengono iniettati all'interno, tramite un orifizio nell'anello di ceramica, si muovono in spirali attorno all'elettrodo centrale. Il movimento degli ioni si assesta in traiettorie a spirale indotte dal campo elettrostatico generato applicando una differenza di potenziale tra i due elettrodi.

segue \rightarrow

La traiettoria a spirale ha due componenti: radiale (lungo r) e assiale (lungo z). <u>Si può dimostrare che la frequenza di oscillazione assiale è data da</u>:

$$\omega_z = \sqrt{k\left(\frac{q}{m_i}\right)}$$

<u>quindi è inversamente proporzionale alla radice quadrata di m/z</u> (k è una costante che ingloba le caratteristiche del campo elettrico dovuto alla particolare forma dei due elettrodi concentrici).

La misura di m/z dei diversi ioni presenti nella trappola avviene utilizzando la trasformata di Fourier, come per FT-ICR, anche se in questo caso non serve applicare una corrente alternata AC prima della misura, poiché è il campo elettrico che allinea le traiettorie degli ioni alla stessa distanza dall'elettrodo centrale, pur mantenendo frequenza di oscillazione assiale diversa in dipendenza di m/z.

Vantaggi dell'Orbitrap:

- non necessita di intensi campi magnetici e correnti alternate (RT) come FT-ICR;
- ha un potere risolvente più alto di FT-ICR a m/z > 800 (mentre FT-ICR ha un potere risolvente più alto di Orbitrap a valori di m/z più bassi).

Riassumendo...

Type of analyser	Symbol	Principle of separation
Electric sector	E or ESA	Kinetic energy
Magnetic sector	В	Momentum
Quadrupole	Q	m/z (trajectory stability)
Ion trap	IT	m/z (resonance frequency)
Time-of-flight	TOF	Velocity (flight time)
Fourier transform ion cyclotron resonance	FTICR	m/z (resonance frequency)
Fourier transform orbitrap	FT-OT	m/z (resonance frequency)

 Table 2.1
 Types of analysers used in mass spectrometry.

Table 4.1. Common mass analyzers

Туре	Acronym	Drinciple
Type	Actonym	
Time-of-flight	TOF	Time dispersion of a pulsed ion beam; separation by
		time-of-flight
Magnetic sector	В	Deflection of a continuous ion beam; separation by mo-
		mentum in magnetic field due to Lorentz force
Linear quadrupole	Q	Continuous ion beam in linear radio frequency quadru-
		pole field; separation due to instability of ion trajectories
Linear quadrupole	LIT	Continuous ion beam delivers ions for trapping; storage,
ion trap		and eventually separation in linear radio frequency qua-
		drupole field by resonant excitation
Quadrupole ion trap	QIT	Trapped ions; separation in three-dimensional radio fre-
		quency quadrupole field by resonant excitation
Fourier transform-	FT-ICR	Trapped ions in magnetic field (Lorentz force);
ion cyclotron		separation by cyclotron frequency, image current detec-
resonance		tion and Fourier transformation of transient signal
Orbitrap	orbitrap	Axial oscillation in inhomogeneous electric field; detec-
		tion of frequency after Fourier transformation of tran-
		sient signal

Detector (o rivelatori)

I detector sono dispositivi che sono in grado di convertire la corrente di ioni in uscita dall'analizzatore in una corrente elettrica proporzionale all'abbondanza degli ioni.

Esistono diversi tipi di detector, tutti sono basati sulla rivelazione della massa e/o della carica e/o della velocità degli ioni. Il detector, in genere, viene scelto in base alle caratteristiche dell'analizzatore presente nello strumento o comunque in base all'assetto strumentale complessivo. Sotto vengono illustrati gli accoppiamenti più diffusi:

Faraday cup

La coppa di Faraday è il primo e più semplice detector applicato agli spettrometri di massa. E' formata da una coppa o un cilindro di metallo con un piccolo orifizio per l'ingresso degli ioni. Gli ioni che entrano nella coppa vengono neutralizzati quando collidono con le pareti donando o acquisendo un elettrone (a seconda del segno della loro carica). Queste collisioni generano una corrente nel resistore che viene amplificata. E' un dispositivo con bassa sensibilità e un tempo di risposta lento.

Le sua applicazione è al giorno d'oggi è limitata alla misura di differenze isotopiche di alcune specie atomiche con alta accuratezza (es. ¹²C/¹⁴C)

Elettromoltiplicatori (EM)

Sono i detector al giorno d'oggi più utilizzati in spettrometria di massa. In questi detector gli ioni che provengono dall'analizzatore vengono accelerati ad alta velocità all'interno di un elettrodo a serie di dinodi, in cui viene mantenuto un potenziale di 3-30 kV di segno opposto rispetto alla carica degli ioni. Uno ione che impatta con un dinodo produce una serie di particelle secondarie (elettroni) che continuano a moltiplicarsi lungo tutta la serie di dinodi, amplificando il segnale. Gli EM possono essere a serie di dinodi discreta (con 12-20 dinodi) o costituiti da un unico dinodo (elettromoltiplicatore a dinodo continuo), il secondo ha un potere di amplificazione maggiore del primo.

EM a serie discreta di dinodi

EM a dinodo continuo ricurvo

segue \rightarrow