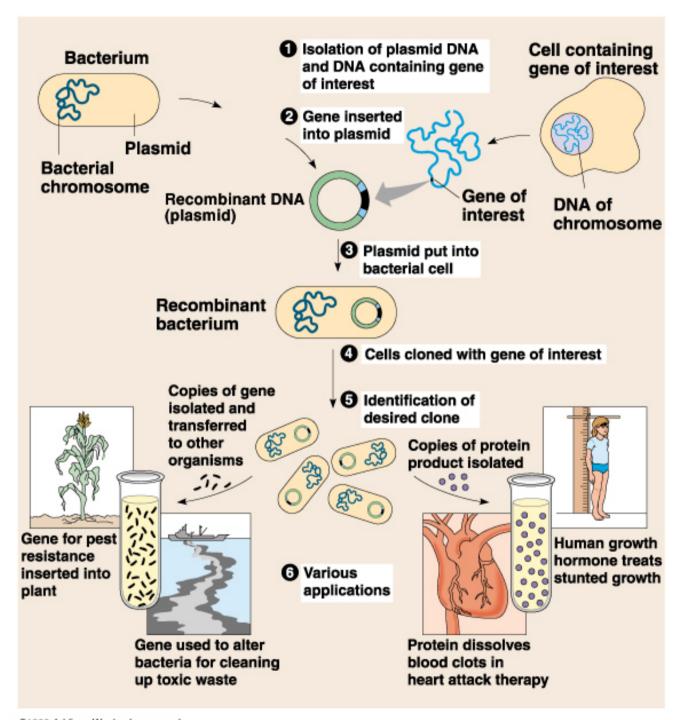
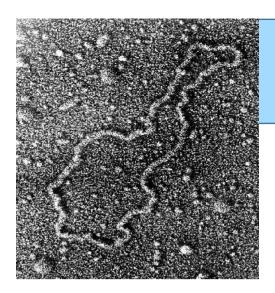
RECOMBINANT

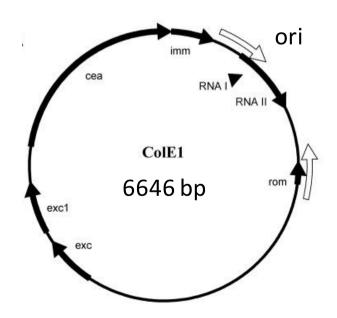
DNA

TECHNIQUES

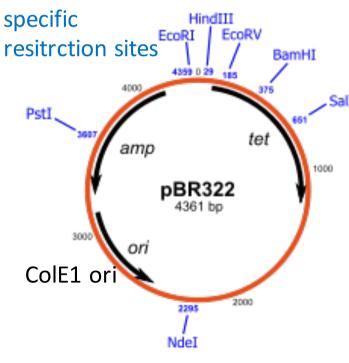

DNA RICOMBINANTE


tecnica che permette di

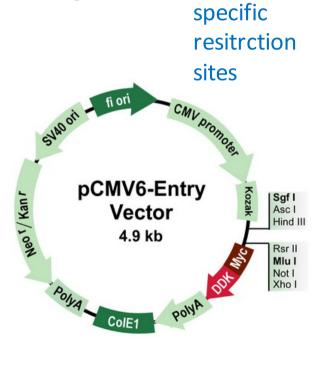
- ottenere brevi segmenti di DNA clonati e di studiarne la sequenza nucleotidica
- di trasferirli nel genoma di altre cellule
- di controllare l'incorporazione e l'espressione del DNA clonato
- di introdurre mutazioni nel DNA e di studiarne gli effetti


ESSENZIALE: CARRIERS = PLASMIDI

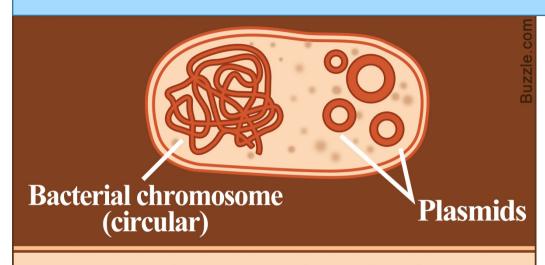
A General Strategy to study or use recomobinant DNA



natural


Bacteria

engineered



Bacteria

engineered

Bacteria Mammalian cells

Plasmids are self-replicating and stable extrachromosomal units of double stranded DNA.

A plasmid is a **small DNA molecule (1-200kb)** within a bacteria that is **physically separated** from a chromosomal DNA and can **replicate independently ("replicons")**.

Plasmids exist "naturally"

Copy number:

1 - 1000nds

Shape:

Cicular, doublestrandend Some linear plasmids exist

Present in:

Bacteria

but also sometimes in archea and eukaryotic cells (yeast)

Advantage to bacteria: - plasmid often carry genes that give a selecive advantage

- plasmid can be passed on to other bacteria: horizontal gene transfer

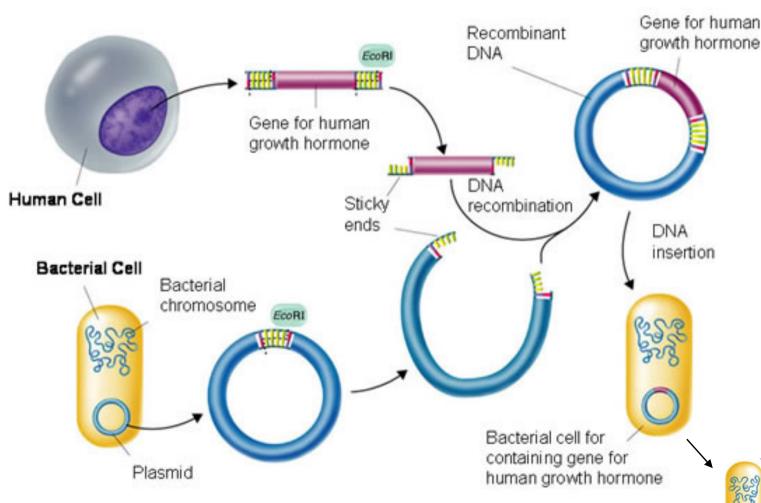
What is the difference to viruses? - plasmids are not packaged into capsid

- virus does not give selective advantage

History

The term plasmid was introduced in 1952 by the American molecular biologist **Joshua Lederberg** to refer to "any extrachromosomal hereditary determinant" in bacteria

Definition also includes bacterial viruses; thus refinement:


Genetic elements that exist exclusively or predominantly outside of the chromosome and can replicate autonomously.

1958 Nobel Prize in Physiology or Medicine for discovering that bacteria can mate and exchange genes (bacterial conjugation)

Why interesting for molecular biology? Recombinant DNA technology

Take piece of human DNA (genomic, cDNA)

Take and linearize bacterial plasmid DNA

Insert into plasmid ="recombinant DNA" (ligation of termini using ligase)

Re-insert obtained plasmid into bacteria that does not have own plasmds

Bacteria proliferate Pplasmid in bacteria replicate and can reach 1-1000 copies

Amplified human DNA can be studied

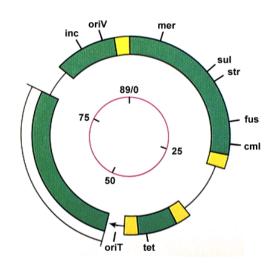
Some more definitions:

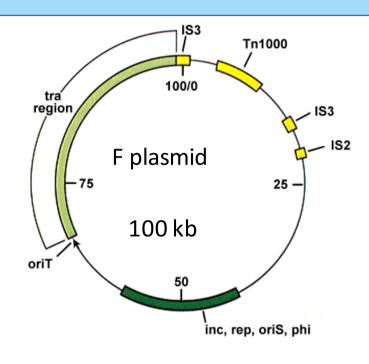
Plasmid is an extra-chromosomal DNA molecule separate from the chromosomal DNA which is capable of replicating independently of the chromosomal DNA.

Vector – is a DNA molecule used as a vehicle to artificially carry foreign genetic material into another cell, where it can be replicated and/or expressed (e.g.- **plasmid**, cosmid, Lambda phages, virus)

Vettore				
vellore	Caratteristiche	Isolamento del DNA	Contenuto massimo di DNA	
Plasmide	Alto numero di copie	Fisico	10 kb	Natural, engineered
Fago	Infetta batteri	Attraverso l'impacchettamento nel fago	20 kb	Natural, engineered
Cosmide	Alto numero di copie	Attraverso l'impacchettamento nel fago	48 kb	Engineered
BAC	Basato sul plasmide F	Fisico	300 kb	Engineered
YAC	Origine + centromero + telomero	Fisico	>1 Mb	Engineered

Lenti-, Adeno, Retroviruses


Natural, engineered


Natural Plasmids - Grouped after their properties

• **F-plasmids**: encode tra region for horizontal gene transfer (conjugation), (trans**F**er); F⁺ (plasmid donor); F⁻ plasmid recipient

• R- plasmid: Encode genes for resistance against antibiotics and/or heavy metals.

(Ampicilin, Kanamycin

• Col – plasmids: - produces colicins (antibacterial)

• Catabolic plasmids: -have properties to use odd carbon/ energy source (many

Psuedomonas have such plasmids

• Virulent plasmids: - Encode toxins, pathogenic.

• Cryptic plasmids: - no known property

Natural Plasmids – other useful terms of classification

Classification based on possibility to do horizontal gene transfer

- Conjugative plasmids (F plasmids): able to do horizontal gene transfer (geni tra)
- -Non-conjugative plasmids
- Plasmidi R, Plasmidi Col, Plasmidi degradativi, Plasmidi della virulenza:

Classification based on copy number

- High copy number plasmids (relaxed plasmids); Plasmidi ad alto numero di copie (rilassati; 1-100)
- Low copy number plasmids (stringent plasmids); Plasmidi a basso numero di copie (stringenti 1-4)

Natural Plasmids – Essential features:

1) Replication and mainteance in the host cell:

• Replication: -uses the replication system of the host cell

- event of initiation, elongation and termination independent from

host

- occurs during the entire cell cycle

-All plasmids contain the "ori" region that encodes information for

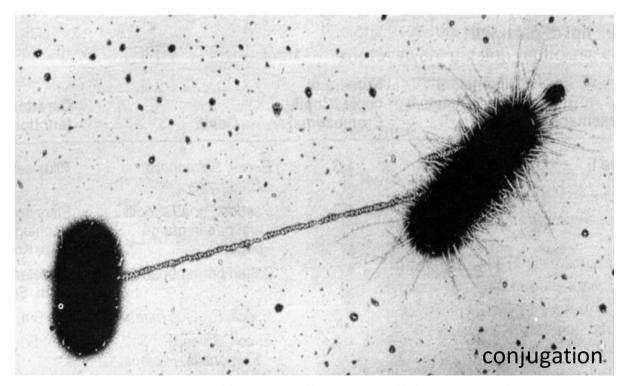
the replication of the plasmid

•Copy number: -a certain amount of copies present per cell

- controlled by the initiation frequency

- low (1-4) to high (10-100)

Partitioning: - for low (and medium) copy number

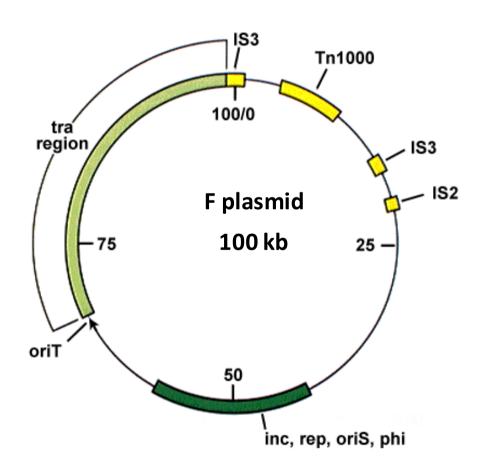

- genes that control the safe passage of plasmid to daughter cells

- High copy plasmids have stochastic segregation to daughter cell

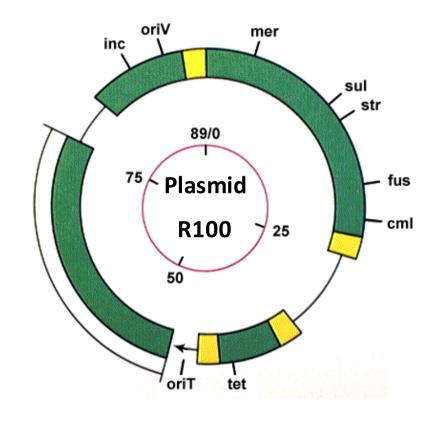
Host specificity/range: - low to broad

Natural Plasmids - Grouped after their essential genes:

- 2) Non-essential important for horizontal transfer
 - •Important genes
 - pili-genes
 - oriT
 - tra/ mob genes


Pili sessuali: presenti in numero di 1-10 per cellula, sono spessi 9-10 nm

Natural Plasmids - Grouped after their essential genes:


- 3) Non-essential with surviving value for host/plasmid
 - Resistance against antibiotics
 - Host defence against foreign DNA
 - Production of antibacterial substances (colicins)
 - genes for pathogenesis/virulence
 - genes to be able to use special energy/carbon sources, e.g. phenol

Plasmid Maps

Natural plasmids

Note: F plasmid can also integrate into host genome = primitive transposon (IS2, IS3 sites)

90 kb

Note: Plasmids that can integrate into genome are also called episomes

Esempi di fenotipi conferiti da plasmidi

Produzione di antibiotico ► SCP1 ► Streptomyces coelicolor Antibiotico-resistenza ► RP4 ► Pseudomonas aeruginosa Resistenza al batteriofago ▶ pNP40 ▶ Lactococcus lactis Produzione di batteriocina ▶ p9B4-6 ▶ *Lactococcus lactis* Trasferimento coniugale ► F ► Escherichia coli Cristallo proteico insetticida ▶ pHD2 ▶ Bacillus thuringiensis Competenza ecologica nel suolo ▶ pRtrW14-2c ▶ Rhizobium leguminosarum Produzione di emolisina ▶ pJH1 ▶ Enterococcus faecalis Degradazione dell'erbicida ► 2,4-D pJP4 ► *Alcaligenes eutrophus* Fermentazione del lattosio ▶ pLM3601 ▶ Lactococcus lactis subsp. cremoris Resistenza ai metalli pesanti ▶ pMERPH ▶ Pseudomonas sp. Fissazione dell'azoto ▶ pIJ1007 ▶ Rhizobium leguminosarum Nodulazione ► pPN1 ► Rhizobium trifoli Degradazione di alcaloidi > pRme41a > Rhizobium meliloti Formazione di tumori ► Ti plasmid ► Agrobacterium Produzione di proteasi ► pLM3001 ► *Lactococcus lactis* Produzione di feromoni ▶ pAD1 ▶ Enterococcus faecalis Produzione di sideroforo ▶ pDEP10 ▶ Escherichia coli Tolleranza a NaCl ▶ pRtrW14-2b ▶ Rhizobium leguminosarum Degradazione del toluene > Tol plasmids > Pseudomonas putida

NIH Guidelines for use of bacteria and recombinant DNA

BASIC RULE

- Specified handling and construction processes
- Microorganisms containing recombinant DNA were prohibited outside of the laboratory
- Vectors that sexually move to "unsafe" bacteria was prohibited
- Tra region and mob region must be non-functional

Nic/bom region must be non-functional (nic/bom containig plasmids can

be mobilzed by mob encoding plasmids

The roles of some tra-gene encoded proteins: ^[4]			
Pili Assembly and Production	traA, traB, traE, traC, traF, traG, traH, traK, traL, traQ, traU, traV, traW,		
Inner Membrane Proteins	traB, traE, traG, traL, traP		
Periplasmic Proteins	traC, traF, traH traK, traU, traW		
DNA transfer	traC, traD, traI, traM, traY		
Surface Exclusion Proteins	traS, traT		
Mating Pair Stabilization	traN, traG		

- 1. Plasmid replication requires host DNA replication machinery.
- 2. Most wild plasmids carry genes needed for transfer and copy number control.
- 3. All self replication plasmids have a oriV: origin of replication
- 4. Some plasmids carry and *oriT*: origin of transfer. These plasmids will also carry functions needed to be mobilized or *mob* genes.
- 5. Plasmid segregation is maintained by a *par locus*-a partition locus that ensures each daughter cells gets one plasmid. Not all plasmids have such sequences.
- 6. There are 5 main "incompatibility" groups of plasmid replication. Not all plasmids can live with each other.
- 7. Agents that disrupt DNA replication destabilize or cure plasmids from cells.

Natural plasmid

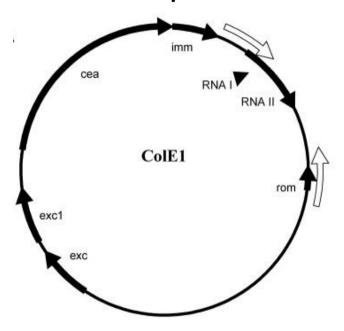
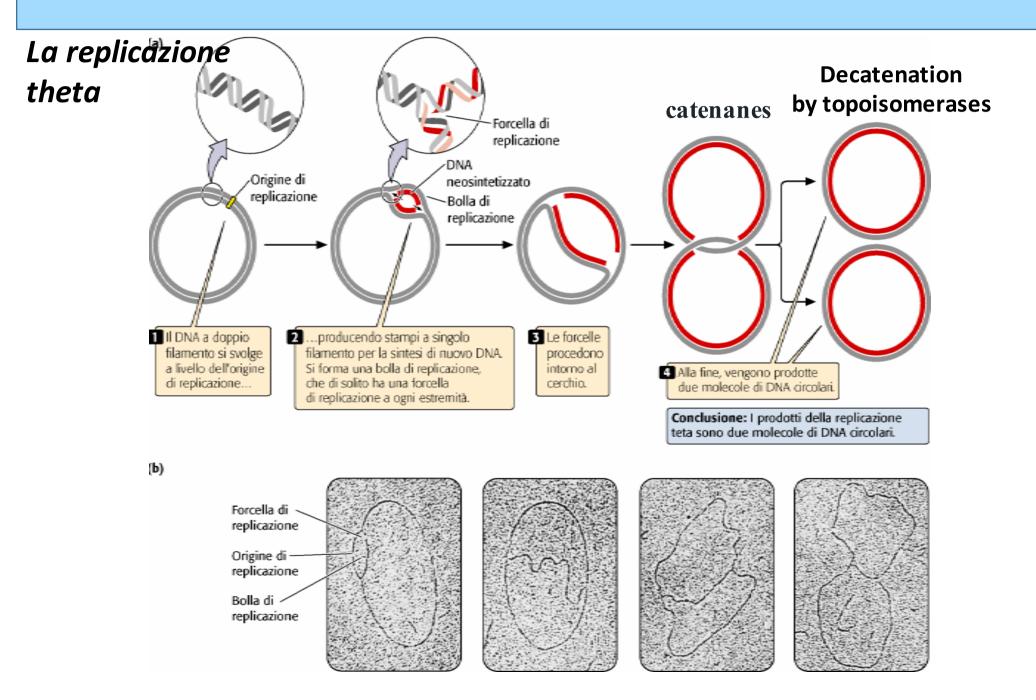
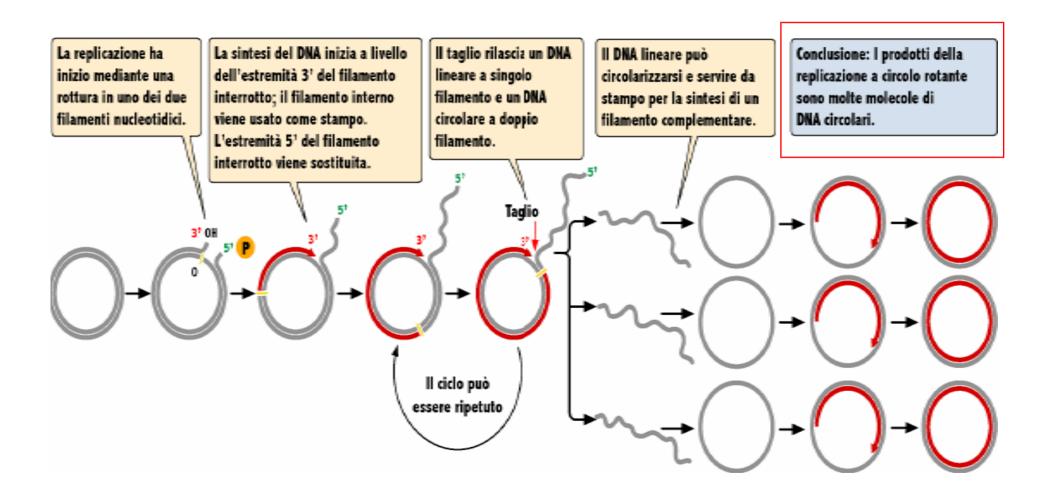
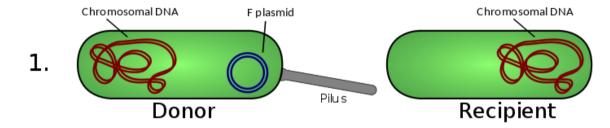
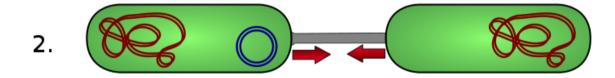



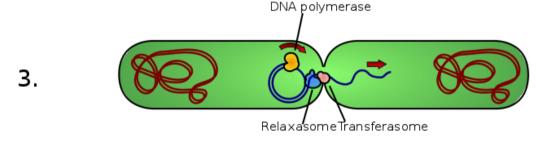
Table 11-1 Examples of some plasmids and their properties

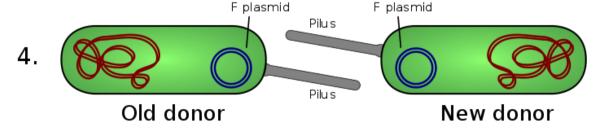

Plasmid	Size (Kb)	Number of copies per chromosome	Self- transmissible	Phenotypic features
Col plasmids				
ColE1	6.4	10-15	No	Colicin E1 disrupts energy gradient, host immunity to Colicin E1
CoIE2	7.6	10-15	No	Colicin E2 is a DNase, host immunity to Colicin E2
CoIE3	7.6	10-15	No	Colicin E3 is a ribosomal RNase, host immunity to Colicin E3
F plasmid	94.5	1-2	Yes	F-pilus, conjugation
R plasmids				
R100	106.7	1-2	Yes	Cam ^r Str ^r Sul ^r Tet ^r
RK2	56.0	5–8	Yes	Broad host range
pSC101	9.0	<5	No	Low copy number, compatible with ColE1-type plasmids, Tet 1
Phage plasmid				+6
λdv	6.4	50	No	λ genes cro, cl, O, P
Recombinant				11
plasmids				Ni.
pBR322	4.4	20	No	Medium copy number, ColE1-type replication, Amp ^r
pUC18	2.7	200–500	No	High copy number, ColE1-type replication with a mutation that increases the copy number, Amp ^r
pACYC184	4.0	10–12	No	Cam ^r Tet ^r

Replication origins of plasmids control:


- Il numero di copie / Copy number (High/low copynumber plasmids)
- Lo spettro d'ospite / Host spectrum (Broad/Narrow host spectrum) host proteins needs!!
- ❖ I gruppi di incompatibilità / Incompability group (some plasmids cannot co-exist in bacteria




La replicazione a circolo rotante (rolling circle)



La replicazione a circolo rotante (rolling circle)

Roolling circle iDNA replication is linked with horizontal transfer of plasmids (mobility)

The F-plasmid:

Donor cell produces pilus.

Pilus attaches to recipient cell and brings the two cells together.

The mobile plasmid is nicked and a single strand of DNA is then transferred to the recipient cell.

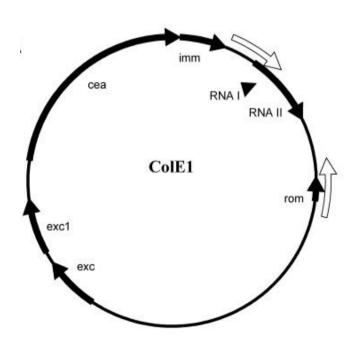
Both cells synthesize a complementary strand to produce a double stranded circular plasmid and also reproduce pili; both cells are now viable donor for the F-factor.

The F-plasmid is an episome (a plasmid that can integrate itself into the bacterial chromosome by homologous recombination) with a length of about 100 kb. It carries its own origin of replication, the oriV, and an origin of transfer, or oriT.[4] There can only be one copy of the F-plasmid in a given bacterium, either free or integrated, and bacteria that possess a copy are called F-positive or F-plus (denoted F+). Cells that lack F plasmids are called F-negative or F-minus (F-) and as such can function as recipient cells.

Replication of Plasmids - oriV

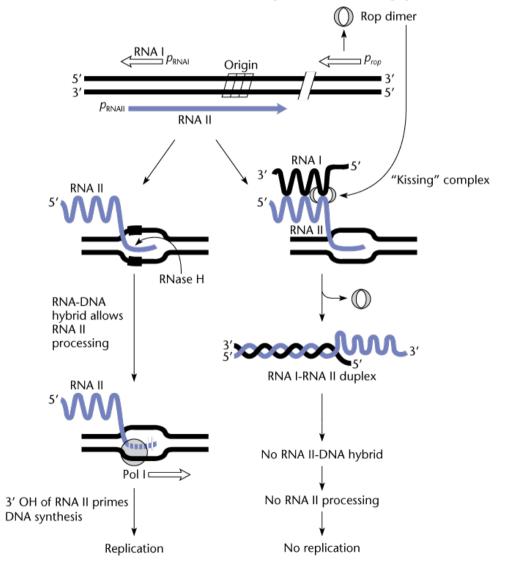
Common Vectors	Copy Number+	ORI	Incompatibility Group	Control
pUC	~500-700	pMB1 (derivative)	Α	Relaxed
pBR322	~15-20	pMB1	Α	Relaxed
pET	~15-20	pBR322	Α	Relaxed
pGEX	~15-20	pBR322	Α	Relaxed
pColE1	~15-20	ColE1	Α	Relaxed
pR6K	~15-20	R6K*	С	Stringent
pACYC	~10	p15A	В	Relaxed
pSC101	~5	pSC101	С	Stringent
pBluescript	~300-500	ColE1 (derivative) and F1**	Α	Relaxed
pGEM	~300-500	pUC and F1**	Α	Relaxed

OriV from natural plasmids that proved to ensure good plasmid replication: classic: pMB1, ColE1


Plasmids (vectors) commnly used in the laboratory contain oriV from native plasmids.

OriV sequencens can be improved by mutation (pUC contains pMB1 oriV with 1 or 2 mutations

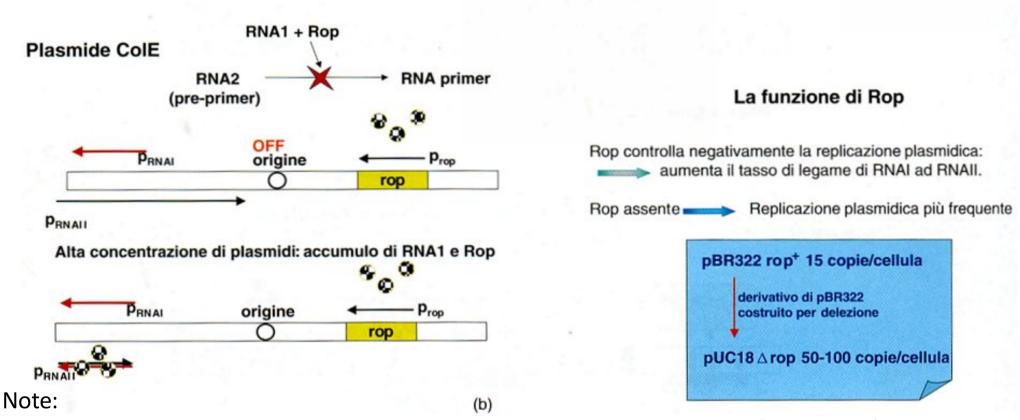
Note: pMB1 is a close relative of the ColE1 plasmid


Example: ColEI

found in bacteria. Its name derives from the fact that it carries a gene for colicin E1 (the **cea** gene); Colicins are released into the environment to reduce competition from other bacterial strains. ColE1 also codes for immunity from this product with the **imm** gene. In addition, the plasmid has a series of mobility (mob) genes. Replication is controlled by the **expression of RNAs** across the oriV and the plasmid encoded **Rop** protein

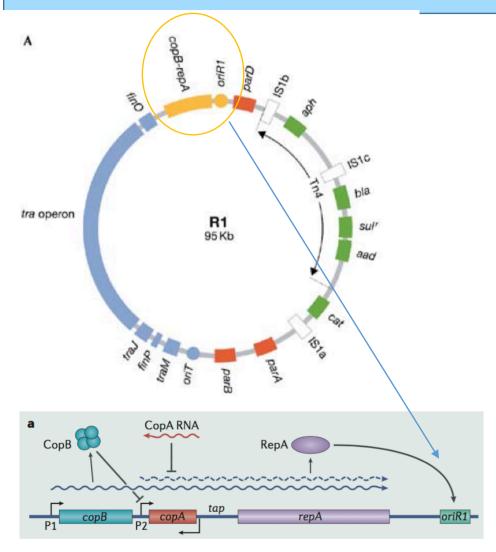
Common Vectors	Copy Number+	ORI	Incompatibility Group	Control
pUC	~500-700	pMB1 (derivative)	Α	Relaxed
pBR322	~15-20	pMB1	Α	Relaxed
pET	~15-20	pBR322	Α	Relaxed
pGEX	~15-20	pBR322	Α	Relaxed
pCoIE1	~15-20	ColE1	Α	Relaxed
pR6K	~15-20	R6K*	С	Stringent
pACYC	~10	p15A	В	Relaxed
pSC101	~5	pSC101	С	Stringent
pBluescript	~300-500	CoIE1 (derivative) and F1**	Α	Relaxed
pGEM	~300-500	pUC and F1**	Α	Relaxed

ColEI oriV is used for many laboratory plasmids

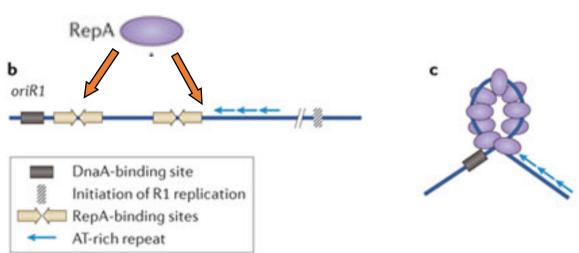

Question: What happens to ColEI when bacteria grow (short term) in media with inhibitors of translation

ColE1 Replication Control-an example of primer control of replication

- 1.Transcription by RNA II produces RNA primers for start DNA replication.
- 2.RNA II remains as RNA:DNA hybrid that is processed by host RNaseH1 (digest RNA component of RNA:DNA hybrids)
- 3.Processed RNA II acts as a primer for host DNA Pol I → plasmid copies increase.
- 4.As the concentration of plasmid increases, plasmid encoded Rop protein and RNA I increase
- 5.At a specific Rop + RNA I threshold a Rob dimer stabilizes the RNA I-II RNA:RNA duplex; no RNA II: DNA hybrid formation
- 6.No RNA primers available prime DNA replication..
- 7.Copy number controlled


How to increase copy number of laboratory plasmids??

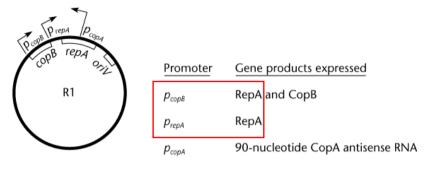
INTRODUCTION OF MUTATIONS IN Rop



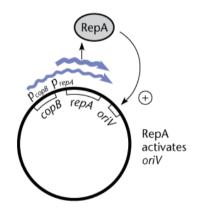
pBR322 is an engeneered plasmid containing the pMB1 oriV with wt rop. (<20 copies) pUC18 contains pMB1 oriV with Rob deletion \rightarrow copy number increase. (<700 copies)

Note: pMB1 is a close relative of ColE1 sharing the same oriV function (both are in the same compatibility group)

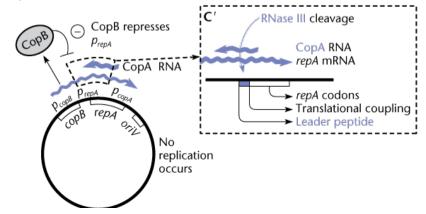
(A) A map of R1 showing antibiotic resistance genes (green), insertion sequences (white), its basic replicon (yellow), conjugation genes (blue) and stability systems (red).



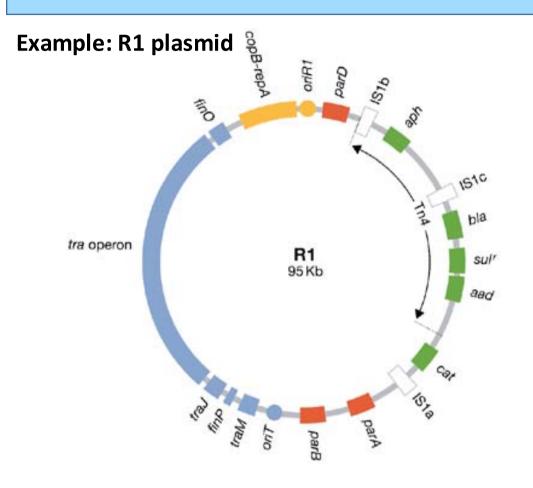
R1 plasmid: replication controlled by the plasmid encoded RepA protein


Plasmid R1 provides a well-studied model for replication systems of enteric plasmids. In this plasmid, the replication initiator RepA binds to the origin site, oriR1, which lies downstream of repA (see the figure, part a). This oriR1 site contains binding sites for RepA flanked by a DnaA box at one end and three AT-rich repeats at the other (see the figure, part b). DnaA is not essential for replication of this plasmid, but seems to have an accessory role. DNA loop formation, mediated by RepA (see the figure, part c), is thought to drive DNA melting at the AT-rich region, which allows DnaC to load the replicative DNA helicase, DnaB. Replication initiates 400 nucleotides downstream of this site.

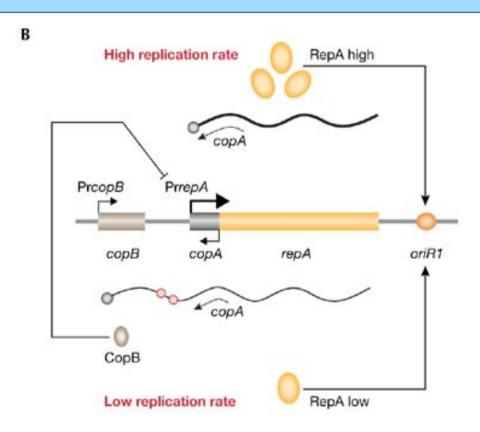
A Plasmid genetic organization


Example: R1 plasmid

B Replication occurs after plasmid enters cells



C Replication shutdown


The events upon entry into a cell

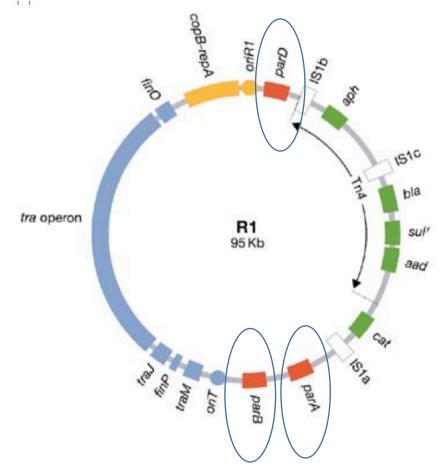
- Pomoter PcopB primes the transcription of RepA and copB mRNA. mRNA + protein levels continuously increase.
- CopB expression increase and CopB represses RepA expression at PrepA
- 3. From, pCopA now a 90base antisense RNA is produced
- 4. short RNA CopA binds to 5-end of the RepA mRNA, forming dsRNA
- 5. This is recognized by host RNAaseIII and degraded.
- 6. No RepA proteins → no initation at oriV
- 7. ATTENTION: Bacteria devides; CopB reduced to 50% → go to point 1
- → concentration of RepA protein is maintained by rate of RNA:RNA duplex formation.

Guillermo de la Cueva-Méndez, and Belén Pimentel EMBO Rep. 2007;8:458-464

Note: here, R1 oriV is called "oriR1"

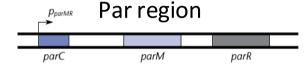
R1 and copy-number control. (**A**) A map of R1 showing antibiotic resistance genes (green), insertion sequences (white), its basic replicon (yellow), conjugation genes (blue) and stability systems (red). (**B**) PrcopB produces some RepA as well as CopB, a repressor of PrrepA, which keeps R1 copy number low. In the absence of CopB, stronger PrrepA increases RepA and R1 copy number. Antisense RNA copA limits translation of RepA and is less effective when PrrepA is active. Red circles on RNA denote UUACU sites. Cop, copy-number control gene; ori, origin of replication; Pr, promoter; Rep, replication initiation factor.

UUACU sites: can be cleaved by RNAse (additional mechanisms of regualtion; not releant for our lecture)

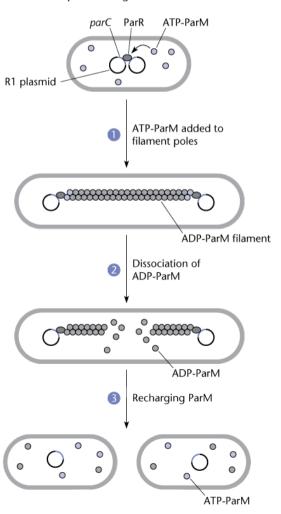

A. Plasmid partition systems – for low copy plasmids

- B. Toxin Antitoxin systems
- C. High (medium) copy number plasmids

Plasmid copies are paired around a centromere-like site and then separated in the two daughter cells. Partition systems involve three elements, organized in an auto-regulated operon:


- 1. A centromere-like DNA site
- 2. Centromere binding proteins (CBP)
- 3. The motor protein

The centromere-like DNA site is required in cis for plasmid stability. It often contains one or more inverted repeats which are recognized by multiple CBPs. This forms a nucleoprotein complex termed the partition complex. This complex recruits the motor protein, which is a nucleotide triphosphatase (NTPase). The NTPase uses energy from NTP binding and hydrolysis to directly or indirectly move and attach plasmids to specific host location (e.g. opposite bacterial cell poles).


A. Plasmid partition systems – for low copy plasmids

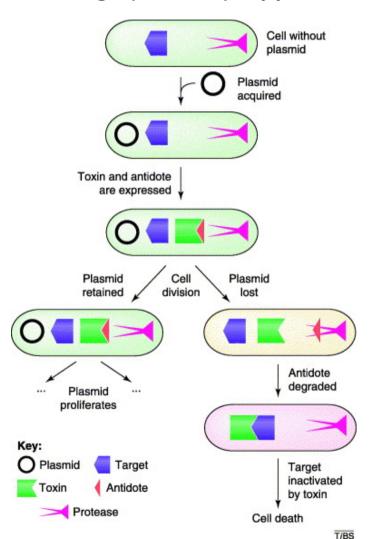
A parCMR locus

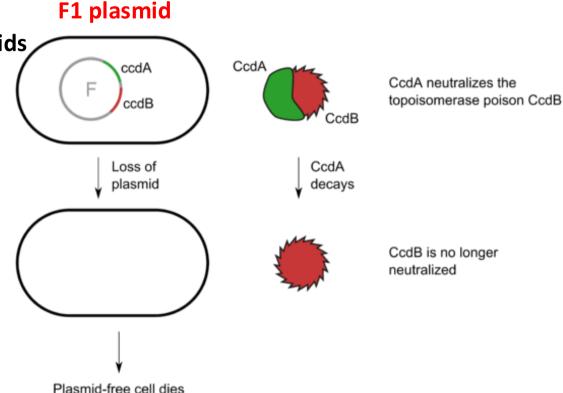
Stabilità segregativa (funzione par)

B Plasmid R1 partitioning

ParM binds to DNA-binding proteins, called ParR that bind centromer like DNA sequences on plasmid (parC)

Sister plasmid segregation is achieved through bidirectional insertional polymerization of the ParM-ATP forming filaments.


ATP hydrolysis results ADP-ParM → depolymerization of filament.

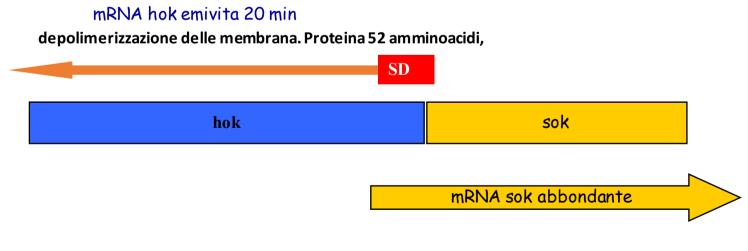

Bacteria can complete cell division.

A. Plasmid partition systems

B. Toxin – Antitoxin systems

C. High (medium) copy number plasmids

Il plasmide F sintetizza un sistema basato su tossina-antitossina in grado di eliminare le cellule che, in seguito ad un errore nella divisione cellulare non hanno ricevuto almeno una copia del plasmide F. La proteina **CcdB è una tossina stabile (con bersaglio la DNA girasi)** la cui funzione viene bloccata dal legame con un antitossina **CcdA più facilmente degradabile**. Se il plasmide è presente la continua sintesi di CcdA inibisce CcdB. Se non vi è plasmide invece CcdA verrà degradata + velocemente di CcdB che rimarrà quindi libera e potrà inibire la girasi provocando la morte delle cellule


B. Toxin - Antitoxin systems

hok -sok system

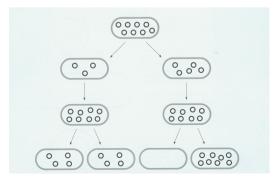
Il plasmide R1(0 R100) porta un gene letale *hok* (host cell killing) che codifica per una tossina in grado di provocare depolimerizzazione delle membrana.

Sull'elica complementare del DNA di *hok* viene trascritta il mRNA del gene *sok* che ha una una regione di 128 nt complementare con la regione SD di *hok*. I 2 RNA hanno diversa emivita 20 min e 1 min.

- Hok non viene mai tradotto per azione del mRNA di sok e la cellula con R1 rimane pertanto vitale.
- Se una cellula non eredita R1 in seguito a divisione allora mRNA sok che ha una lunga emivita verrà tradotto perchè mRNA sok avendo un emivita più breve non sarà più presente.

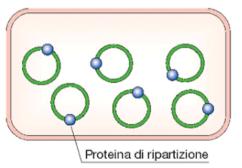
mRNA sok emivita 1 min

- A. Plasmid partition systems
- B. Toxin Antitoxin systems
- C. High (medium) copy number plasmids

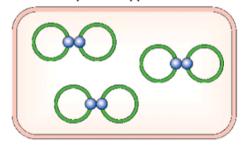

Typically used in laboraotry (in E. coli)

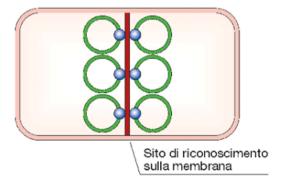
I plasmidi ad alto numero di copie si ripartiscono secondo due modalità:

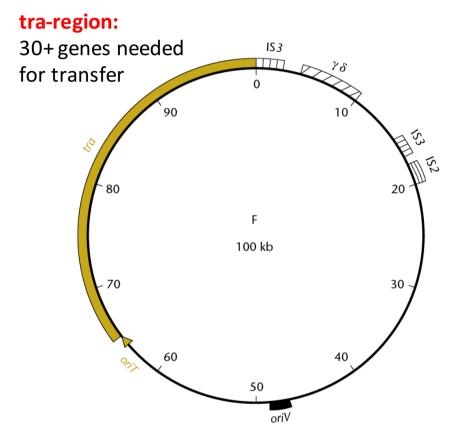
- 1. STOCAISTICA o casuale
- 2. ATTIVA
- 1. RIPARTAZIONE ATTIVA: Nel caso della ripartizione attiva i plasmidi vengono riconosciuti da una proteina che dimerizzando forma delle coppie di plasmidi.

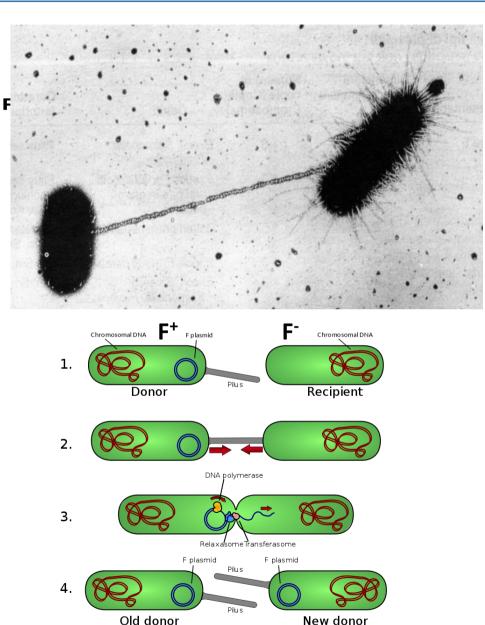

 La struttura DNA –proteina-DNA si localizzerà a livello del sito di divisione garantendo così la corretta divisione tra le cellule

2. RIPARTAZIONE STOCAISTICA

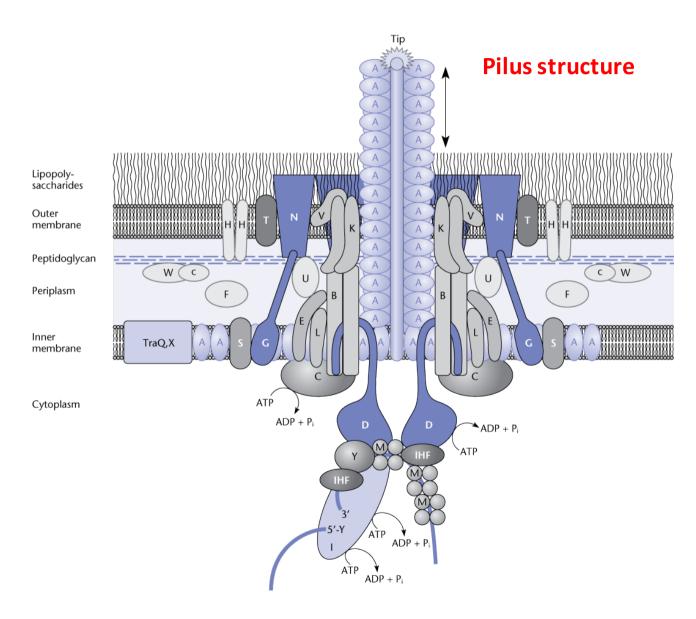



Plasmids contain Antibiotics resistance genes!!

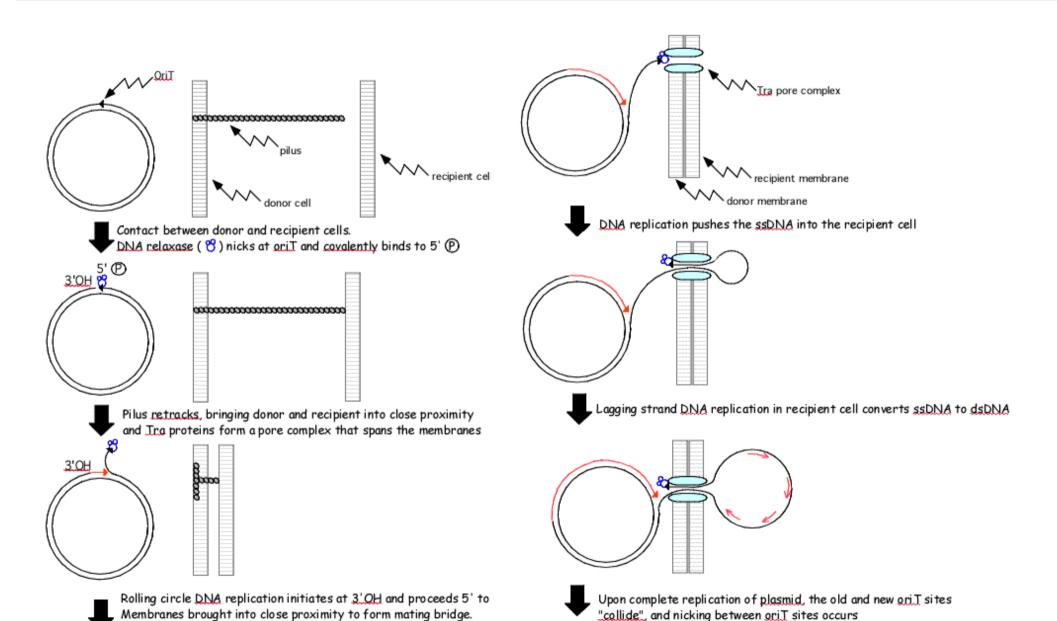

Modello di pre-accoppiamento


Horizontal transfer of genetic information

F plasmid


tra and trb locus encode proteins required for **conjugation** such as the pilin gene and regulatory genes, which together form pili on the cell surface

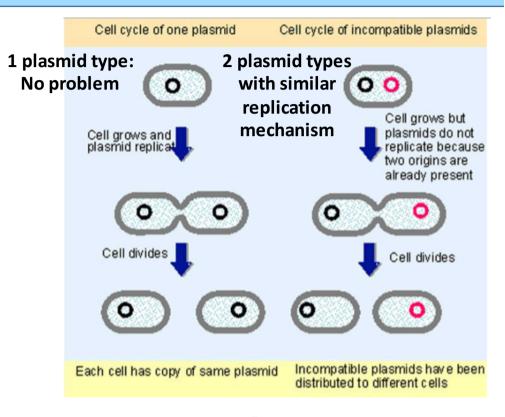
oriT: required for DNA transfer; location of nick for rolling cycle replication

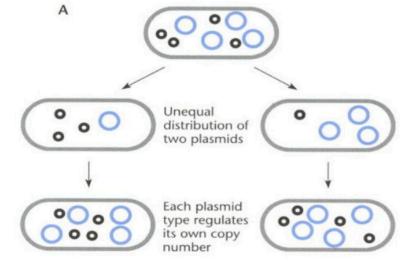


Horizontal transfer of genetic information

F plasmid

Horizontal transfer of genetic information

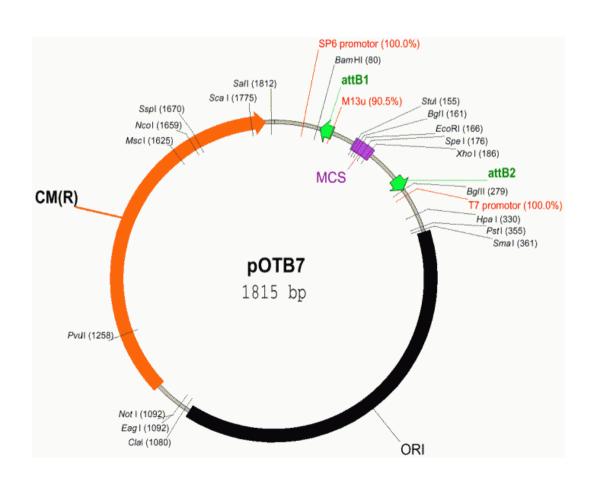

Relaxase interacts with membrane Tra pore complex


Plasmid incompatibility

Incompatibilità tra plasmidi

- 1.Not all plasmids can live together. -> plasmids are subdivided in incompatibility groups
 2.Plasmids that are able to coexist in the same cell do not interfere with each other's replication (oriV) or partitioning
- → Plasmid with different oriV regulation can coexist (ColEl and R1 plasmid)
- → Plasmid with different partitioning system can co-exist
- 3. A single cell can have as many Inc group plasmids as it can tolerate and replicate!

2 plasmid types with different replication mechanism

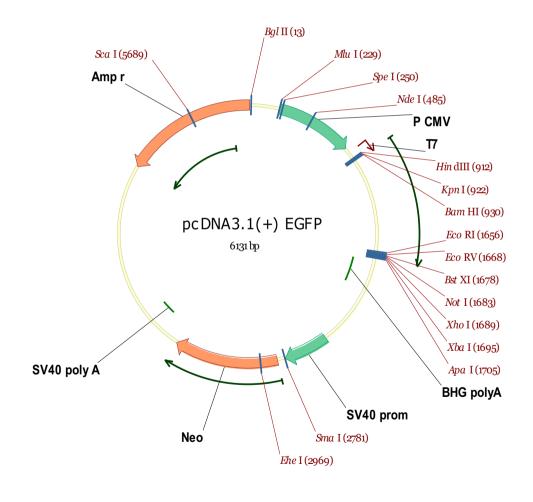

Plasmid incompatibility

Laboraotry + natural plasmids

Common Vectors	Copy Number+	ORI	Incompatibility Group	Control
pUC	~500-700	pMB1 (derivative)	А	Relaxed
pBR322	~15-20	pMB1	А	Relaxed
pET	~15-20	pBR322	А	Relaxed
pGEX	~15-20	pBR322	Α	Relaxed
pCoIE1	~15-20	ColE1	А	Relaxed
pR6K	~15-20	R6K*	С	Stringent
pACYC	~10	p15A	В	Relaxed
pSC101	~5	pSC101	С	Stringent
pBluescript	~300-500	CoIE1 (derivative) and F1**	А	Relaxed
pGEM	~300-500	pUC and F1**	Α	Relaxed

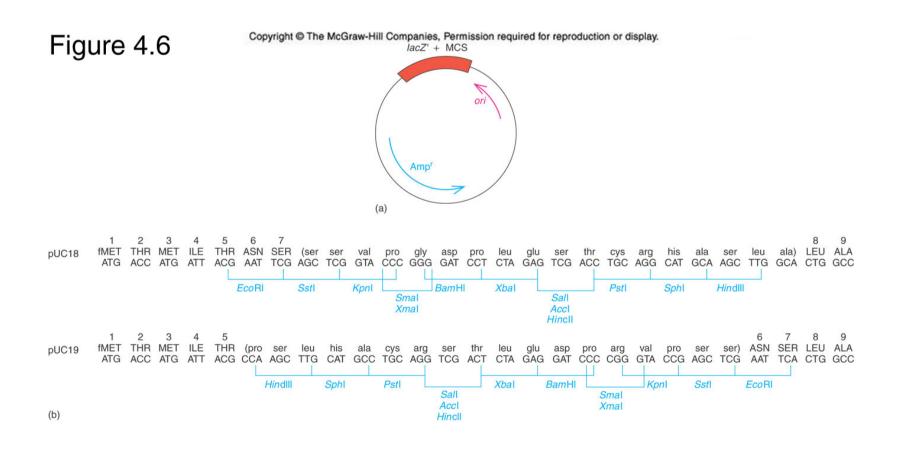
LABORATORY PLASMIDS = VECTORS

- Origin of replication
- Antibiotic resistance gene (Amp, Kan, Tet, Chl)
- Multiple cloning site


Map of pOTB7 vector showing Chloramphenicol resistance gene (CMR), replication origin (ORI) and multiple cloning site (MCS)

TO MAINTAIN PLASMID IN
BACTERIA, CELLS
ARE GROWN ON AGAR
CONTAINING CHRLORAMPHENICOL
ONLY BACTERIA THAT CARRY
PLASMID CAN SURVIVE

LABORATORY PLASMIDS = VECTORS


Optional plasmids elements

- Multiple cloning site
- Promoter for cloned sequence
- Reporter gene
- + Tag
- Regulatory sequences for eukaryotic transcription
- Cassette for blue-white colony selection (lacZ)

MULTIPLE CLONING SITE: ADVANTAGE

- Unique sites (usually)
- Insert excision facilitated
- Restriction endonuclease mapping and subcloning made easier

CLONING AND BLUE - WHITE SELECTION

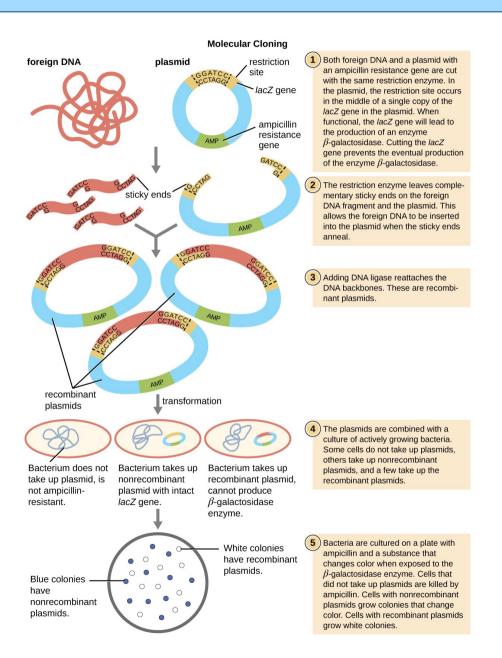


Figure 31.5

Biochemistry, Seventh Edition

© 2012 W. H. Freeman and Company

Agar containing Ampicillin and X-GAL

Blue: no insert

White: insert

A DEFINED VECTOR FOR EACH APPLICATION

- Cloning and sequencing of DNA and cDNA fragments
- Generation of genomic and cDNA libraries
- Expression of recombinant proteins
- Generation of mutant proteins
- Analysis of regulatory sequences
- Gene targeting