
INFORMATION 
RETRIEVAL
Luca Manzoni 
lmanzoni@units.it

Lecture 8

mailto:lmanzoni@units.it


*SUBTITLE INTENTIONALLY LEFT BLANK

LECTURE OUTLINE

Bayesian 
Networks

Using Bayesian 
networks for 

information retrieval

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

Probabilistic 
Information 

Retrieval



PROBABILISTIC INFORMATION RETRIEVAL



MAIN IDEAS

PROBABILISTIC IR

• If we know some relevant and some non-relevant documents for a 
query we can estimate the probability of a document to be 
relevant given the terms it contains. 

• This is the main idea of a probabilistic model of IR: estimate 
probabilities of a document being relevant with respect to a query 
based on its content. 

• There will be some assumptions to simplify the computation of 
this probability… 

• …and some estimates: we do not known most of the probabilities 
involved!



BASICS OF PROBABILITY THEORY

A QUICK REVIEW

• The probability of  and  can be written as a conditional 
probability:  

 

• The probability of  and  plus the probability of  and not  is 
simply the probability of :  

 

• The odds of an event  is defined as: 

A B

P(A, B) = P(A |B)P(B) = P(B |A)P(A)

B A B A
B

P(B) = P(B, A) + P(B, A)

A

O(A) =
P(A)
P(A)

=
P(A)

1 − P(A)



BASICS OF PROBABILITY THEORY

A QUICK REVIEW

• The classical Bayes’ rule is: 

•  

• Which can be interpreted as: 

• Given the prior probability  of … 

• …how we can update it based on the evidence , thus 
obtaining a posterior probability .

P(A |B) =
P(B |A)P(A)

P(B)
=

P(B |A)
∑X∈[A,A] P(B |X)P(X)

P(A)

P(A) A

B
P(A |B)



AND THE BASIS FOR PROBABILISTIC IR

PROBABILITY RANKING PRINCIPLE

P(R = 1 |d, q)

Probability of having 
something relevant

Given that the document is  
and the query is 

d
q

For each document we consider the random variable  (or  for short) 
representing wether a document is relevant to not. 

We want to rank documents according to their probability of being relevant to a 
given query :

Rd,q R

q



AN THE OPTIMAL DECISION RULE

1/0 LOSS

The simples case: 

• Penalty when we retrieve a document that is not relevant. 

• Penalty when we miss a relevant document. 

• The penalty is the same in all cases, there are no costs associated to 
retrieving documents. 

If we need to rank documents then we rank them by decreasing . 

If we need to return a set of documents we return all then ones where 
. 

It can be proved that this choice minimise the expected loss under the 1/0 loss.

P(R = 1 |d, q)

P(R = 1 |d, q) > P(R = 0 |d, q)



MORE THAN THE 1/0 LOSS

RETRIEVAL COSTS

We can also have a more complex model for costs: 

•  is the cost of retrieving a relevant document. 

•  is the cost of retrieving a non-relevant document 

Then to select the document to be retrieved  we must the one where for all 
non-retrieved documents  it holds that:

C1

C0

d
d′ 

C1 ⋅ P(R = 1 |d, q) + C0 ⋅ P(R = 0 |d, q) ≤ C1 ⋅ P(R = 1 |d′ , q) + C0 ⋅ P(R = 0 |d′ , q)

Weighted cost of 
retrieving d

Weighted cost of 
retrieving d′ 



THE BINARY INDEPENDENCE MODEL



OR “BIM”

THE BINARY INDEPENDENCE MODEL

Binary Or “Boolean”. Each document (and query) is 
represented as a vector    
where  if the term is present and  otherwise

⃗x = (x1, …, xM)
xi = 1 xi = 0

Independence We assume that all terms occurs in a document 
independently. 

Not a correct assumption, but “it works”

Additionally, we assume the relevant of a document to be independent 
on the relevance of other documents. 
This is not true in practice: e.g., duplicate and near-duplicate documents 
are not independent.



ESTIMATION OF THE PROBABILITY

P(R = 1 |d, q)

Probability for a document  
with representation  is retrieved 

given that a relevant document 
for the query  is retrieved

⃗x

q

Probability of retrieving a relevant 
document for the query q

P(R = 1 | ⃗x , ⃗q )

In out model this is given by

P( ⃗x |R = 1, ⃗q ) P(R = 1 | ⃗q )
P( ⃗x | ⃗q )

By Bayes’ rule

WE DO NOT KNOW THE EXACT 
VALUE, WE WILL NEED TO 

PROVIDE ESTIMATES!



ESTIMATION OF THE PROBABILITY

P(R = 0 |d, q)

Probability for a document  
with representation  is retrieved 

given that a non-relevant document 
for the query  is retrieved

⃗x

q

Probability of retrieving a non-relevant 
document for the query q

P(R = 0 | ⃗x , ⃗q )

In out model this is given by

P( ⃗x |R = 0, ⃗q ) P(R = 0 | ⃗q )
P( ⃗x | ⃗q )

By Bayes’ rule



FOR RANKING ODDS ARE SUFFICIENT

DO WE REALLY NEED TO KNOW THE PROBABILITY?

For the purpose of ranking, we can use a monotone function of the probability. 
For example, the odds of  given  and :R ⃗x ⃗q

O(R | ⃗x , ⃗q ) =
P(R = 1 | ⃗x , ⃗q )
P(R = 0 | ⃗x , ⃗q )

P( ⃗x |R = 1, ⃗q ) P(R = 1 | ⃗q )
P( ⃗x | ⃗q )

P( ⃗x |R = 0, ⃗q ) P(R = 0 | ⃗q )
P( ⃗x | ⃗q )

P( ⃗x |R = 1, ⃗q ) P(R = 1 | ⃗q )
P( ⃗x |R = 0, ⃗q ) P(R = 0 | ⃗q )

CAN WE SIMPLIFY IT FURTHER?



RANKING AND PROBABILITIES

P( ⃗x |R = 1, ⃗q ) P(R = 1 | ⃗q )
P( ⃗x |R = 0, ⃗q ) P(R = 0 | ⃗q )

Depends on the document The same for all documents

Does not affect the ranking

We can remove it
P( ⃗x |R = 1, ⃗q )
P( ⃗x |R = 0, ⃗q )

We now have to estimate:



USING THE BIM

P( ⃗x |R = 1, ⃗q )
P( ⃗x |R = 0, ⃗q )

We can now employ the independence assumption: 
each of the terms is assumed to appear 
independently from the others

P(x1 |R = 1, ⃗q )
P(x1 |R = 0, ⃗q )

×
P(x2 |R = 1, ⃗q )
P(x2 |R = 0, ⃗q )

× ⋯ ×
P(xM |R = 1, ⃗q )
P(xM |R = 0, ⃗q )

M

∏
i=1

P(xi |R = 1, ⃗q )
P(xi |R = 0, ⃗q )

Which means the the value 
to estimate is now:



SPLITTING UP FURTHER

M

∏
i=1

P(xi |R = 1, ⃗q )
P(xi |R = 0, ⃗q )

Each  can only assume two values: 
 if the  term is not present 
 if the  term is present

xi

0 ith

1 ith

∏
i:xi=1

P(xi = 1 |R = 1, ⃗q )
P(xi = 1 |R = 0, ⃗q )

⋅ ∏
i:xi=0

P(xi = 0 |R = 1, ⃗q )
P(xi = 0 |R = 0, ⃗q )

For the terms 
in the document

For the terms not 
in the document



HOW MANY PROBABILITIES TO ESTIMATE?

For each term we need only to estimate four probabilities:

Document relevant Document not 
relevant

Term present

Tern absent 1 − pi

pi

1 − ui

ui

∏
i:xi=1

P(xi = 1 |R = 1, ⃗q )
P(xi = 1 |R = 0, ⃗q )

⋅ ∏
i:xi=0

P(xi = 0 |R = 1, ⃗q )
P(xi = 0 |R = 0, ⃗q )



SIMPLIFYING FURTHER

Let us assume that all query terms not in the query appears equally 
in relevant and non-relevant documents. That is,  when .pi = ui qi = 0

∏
i:xi=1

pi

ui
⋅ ∏

i:xi=0

1 − pi

1 − ui

∏
i:xi=1;qi=1

pi

ui
⋅ ∏

i:xi=0;qi=1

1 − pi

1 − ui

We can remove the factors for all terms not in the query, obtaining:



SIMPLIFYING FURTHER

∏
i:xi=1;qi=1

pi

ui
⋅ ∏

i:xi=0;qi=1

1 − pi

1 − ui

We now multiply everything by

∏
i:xi=1;qi=1

1 − pi

1 − ui
⋅

1 − ui

1 − pi

Each term is actually .1

By rearranging the factors we obtain:

∏
i:xi=1;qi=1

pi

ui

1 − ui

1 − pi
⋅ ∏

i:qi=1

1 − pi

1 − ui



SIMPLIFYING FURTHER

∏
i:xi=1;qi=1

pi

ui

1 − ui

1 − pi
⋅ ∏

i:qi=1

1 − pi

1 − ui

This part does not depend 
on the document! 
We can remove it

∏
i:xi=1;qi=1

pi

ui

1 − ui

1 − pi



RATIO OF ODDS

Odds of the term appearing 
in the document if 

the document is relevant

∏
i:xi=1;qi=1

pi

ui

1 − ui

1 − pi

pi

1 − pi

Inverse odds of the term 
appearing in the document if 
the document is not relevant

1 − ui

ui

Each factor can be seen as two odds:



RETRIEVAL STATUS VALUE

RSVd = log ∏
i:xi=1;qi=1

pi

ui

1 − ui

1 − pi

The Retrieval Status Value (RSV) of a document  
is defined as the logarithm of the quantity that we now have:

d

= ∑
i:xi=1;qi=1

log
pi

ui

1 − ui

1 − pi



RETRIEVAL STATUS VALUE

Consider each term of the sum:

ci = log
pi

ui

1 − ui

1 − pi

ci = log
pi

1 − pi
+ log

1 − ui

ui

Which can be rewritten as a log odds ratio:

 can be considered the weight of the  term of the dictionary, 
and can be pre-computed (like other measures like the inverse 
document frequency)

ci ith



RETRIEVAL STATUS VALUE

At the end the RSV of a document  can be written as:d

RSVd = ∑
i:xi=qi=1

ci

Which algorithmically, can be described as:

To compute the RSV of a document , sum 
the weight  of each term contained in both 
the document and the query

d
ci

We now need a way to estimate the various probabilities to 
(pre-)compute all .ci



PROBABILITY ESTIMATION 
IN PRACTICE



ESTIMATION FOR NON-RELEVANT DOCUMENTS

• We assume that non-relevant documents are a majority inside the 
collection. 

• Thus, we approximate the probability for non-relevant documents 
with statistics computed using the entire collection. 

• Usually  for a term . 

• Which is approximately , which is actually the inverse 

document frequency  for the term .

log
1 − ui

ui
= log

N − dfi

dfi
i

log
N
dfi

idfi i



ESTIMATION FOR RELEVANT DOCUMENTS

• Estimation for relevant documents is more complex. There are 
multiple approaches used in practice: 

• We can estimate the probabilities by looking at statistics on a set 
of relevant documents that we have obtained in some way. 

• We can put all probabilities equal to . With this estimate and 
assuming  for non-relevant documents, this approximation is 
the sum of the  for all query terms that occurs in the document. 

• Another possibility is using some collection level statistics, for 

example obtaining .

0.5
idfi

idfi

pi =
dfi

N



COMBINATION WITH RELEVANCE FEEDBACK

We can combine relevance feedback to help us estimate the 
probability used in computing the : 

1. Start with probabilities estimated as before 

2. Retrive a set  of documents 

3. The user classifies the documents retrieved and gives us a set of 
relevant documents:   

4. Re-compute our estimates for  and 

RSVd

V

VR = {d ∈ V : Rd,q = 1}

pi ui



RE-COMPUTING ESTIMATES

COMBINATION WITH RELEVANCE FEEDBACK

If   is large enough we can use the following updating: 
For each  let  be the set of relevant documents containing the  term:

VR
i VRi ith

pi =
|VRi |
|VR |

ui =
dfi − |VRi |
N − |VR |

However in most case the set of documents evaluated by the user is not 
large, so we use a “smoothed” version:

pi =
|VRi | + 1

2

|VR | + 1
ui =

dfi − |VRi | + 1
2

N − |VR | + 1



PSEUDO-RELEVANCE FEEDBACK

COMBINATION WITH RELEVANCE FEEDBACK

We can extend the previous model to allow for pseudo-relevance feedback.

Select the first  highest ranked documents, consider them as a set k V

Consider all of them relevant, and update the probability accordingly 
(simply substituting  with  in the previous equations):VR V

pi =
|Vi | + 1

2

|V | + 1
ui =

dfi − |Vi | + 1
2

N − |V | + 1

Repeat until the ranking converges



OKAPI BM25



AKA BM25 WEIGHTING OR OKAPI WEIGHTING

OKAPI BM25

This model is non-binary, since it takes into account the frequency of the 
terms inside the document.

RSVd = ∑
t∈q

idftWe start with:

Recall that this is the formula that we obtain with one of our estimates.

We now need a way to add information about the term frequencies



AKA BM25 WEIGHTING OR OKAPI WEIGHTING

OKAPI BM25

Let  be the length of the document and  the average length of the 
documents in the collection.

Ld Lavg

 and  are two parameters, with  and , usually k1 b b ∈ [0,1] k1 ≥ 0 k1 ∈ [1.2, 2.0]

RSVd = ∑
t∈q

idft ⋅
(k1 + 1)tft,d

k1((1 − b) + b ⋅ Ld

Lavg
) + tft,d



AKA BM25 WEIGHTING OR OKAPI WEIGHTING

OKAPI BM25

Let us break up the formula in its components

RSVd = ∑
t∈q

idft ⋅
(k1 + 1)tft,d

k1((1 − b) + b ⋅ Ld

Lavg
) + tft,d

How much to normalise with respect to length, 
regulated by , with : no normalisation, 
with , full scaling by document length

b b = 0
b = 1

How much to consider term frequency, 
With  we have the binary modelk1 = 0



BAYESIAN NETWORKS



WHAT ARE THEM

BAYESIAN NETWORKS

• Also called Bayesian belief networks, decision network, etc. 

• A graphical model is a statistical model using a graph to 
represent the conditional dependency between random variables. 

• BN are a kind graphical model using a directed acyclic graph. 

• Intuitively they are useful because when we need to compute 
 we actually need to compute only  with 

 the parent nodes of . 

• An example should clarify this.

P(y |x1, x2, …, xk) p(y |Pa(y))
Pa(y) y



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

There are four random variables: 
CLOUDY, SPRINKLERS, RAIN, 
and WET GRASS.

The edges represents the 
conditional dependencies

If we want to compute 
 we only 

compute , 
and we will have to “rewrite” it.

P(CLOUDY |SPRINKLES)
P(SPRINKLES |CLOUDY)

If we want to compute 
  we can find 

it directly in our table
P(RAIN |CLOUDY)



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

S = 0 S =1
C = 0 0,5 0,5
C = 1 0,9 0,1

R = 0 R =1
C = 0 0,8 0,2
C = 1 0,2 0,8

W = 0 W =1
S = 0 R = 0 1 0
S = 1 R = 0 0,1 0,9
S = 0 R = 1 0,1 0,9
S = 1 R = 1 0,01 0,99

C = 0 C =1
0,5 0,5



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

S = 0 S =1
C = 0 0,5 0,5
C = 1 0,9 0,1

R = 0 R =1
C = 0 0,8 0,2
C = 1 0,2 0,8

W = 0 W =1
S = 0 R = 0 1 0
S = 1 R = 0 0,1 0,9
S = 0 R = 1 0,1 0,9
S = 1 R = 1 0,01 0,99

C = 0 C =1
0,5 0,5

How to find ?P(𝖶 = 1 |𝖲 = 1,𝖱 = 0)



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

S = 0 S =1
C = 0 0,5 0,5
C = 1 0,9 0,1

R = 0 R =1
C = 0 0,8 0,2
C = 1 0,2 0,8

W = 0 W =1
S = 0 R = 0 1 0
S = 1 R = 0 0,1 0,9
S = 0 R = 1 0,1 0,9
S = 1 R = 1 0,01 0,99

C = 0 C =1
0,5 0,5 How to find 

?P(𝖶 = 1 |𝖢 = 1,𝖱 = 0)

P(𝖶 = 1 |𝖢 = 1,𝖱 = 0)

= P(𝖶 = 1 |𝖱 = 0,𝖲 = 1) ⋅ P(𝖲 = 1 |𝖢 = 1)
+P(𝖶 = 1 |𝖱 = 0,𝖲 = 0) ⋅ P(𝖲 = 0 |𝖢 = 1)

= 0.9 ⋅ 0.1 + 0 ⋅ 0.9

= 0.09



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

S = 0 S =1
C = 0 0,5 0,5
C = 1 0,9 0,1

R = 0 R =1
C = 0 0,8 0,2
C = 1 0,2 0,8

W = 0 W =1
S = 0 R = 0 1 0
S = 1 R = 0 0,1 0,9
S = 0 R = 1 0,1 0,9
S = 1 R = 1 0,01 0,99

C = 0 C =1
0,5 0,5 How to find 

?P(𝖲 = 1 |𝖢 = 1,𝖶 = 1)

P(𝖲 = 1 |𝖢 = 1,𝖶 = 1)

=
P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)

P(𝖶 = 1 |𝖢 = 1)
⋅ P(𝖲 = 𝟣 |𝖢 = 𝟣)

=
P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)

P(𝖶 = 1 |𝖢 = 1)
⋅ 0.1

P(𝖶 = 1 |𝖢 = 1,𝖲 = 1) P(𝖶 = 1 |𝖢 = 1)



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

S = 0 S =1
C = 0 0,5 0,5
C = 1 0,9 0,1

R = 0 R =1
C = 0 0,8 0,2
C = 1 0,2 0,8

W = 0 W =1
S = 0 R = 0 1 0
S = 1 R = 0 0,1 0,9
S = 0 R = 1 0,1 0,9
S = 1 R = 1 0,01 0,99

C = 0 C =1
0,5 0,5

P(𝖶 = 1 |𝖢 = 1)

P(𝖶 = 1 |𝖲 = 0,𝖱 = 0) ⋅ P(𝖲 = 0 |𝖢 = 1) ⋅ P(𝖱 = 0 |𝖢 = 1)+
P(𝖶 = 1 |𝖲 = 0,𝖱 = 1) ⋅ P(𝖲 = 0 |𝖢 = 1) ⋅ P(𝖱 = 1 |𝖢 = 1)+
P(𝖶 = 1 |𝖲 = 1,𝖱 = 0) ⋅ P(𝖲 = 1 |𝖢 = 1) ⋅ P(𝖱 = 0 |𝖢 = 1)+
P(𝖶 = 1 |𝖲 = 1,𝖱 = 1) ⋅ P(𝖲 = 1 |𝖢 = 1) ⋅ P(𝖱 = 1 |𝖢 = 1)

0 ⋅ 0.9 ⋅ 0.2 + 0.9 ⋅ 0.9 ⋅ 0.8 + 0.9 ⋅ 0.1 ⋅ 0.2 + 0.99 ⋅ 0.1 ⋅ 0.8
= 0.7452

P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)
= 0.0972



A SIMPLE EXAMPLE

BAYESIAN NETWORKS

CLOUDY

SPRINKLERS RAIN

WET 
GRASS

S = 0 S =1
C = 0 0,5 0,5
C = 1 0,9 0,1

R = 0 R =1
C = 0 0,8 0,2
C = 1 0,2 0,8

W = 0 W =1
S = 0 R = 0 1 0
S = 1 R = 0 0,1 0,9
S = 0 R = 1 0,1 0,9
S = 1 R = 1 0,01 0,99

C = 0 C =1
0,5 0,5 How to find 

?P(𝖲 = 1 |𝖢 = 1,𝖶 = 1)

P(𝖲 = 1 |𝖢 = 1,𝖶 = 1)

=
P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)

P(𝖶 = 1 |𝖢 = 1)
⋅ P(𝖲 = 𝟣 |𝖢 = 𝟣)

=
P(𝖶 = 1 |𝖢 = 1,𝖲 = 1)

P(𝖶 = 1 |𝖢 = 1)
⋅ 0.1

=
0.0972
0.7452

⋅ 0.1 ≈ 0.013



INFERENCE

BAYESIAN NETWORKS

• To find the probability of an event we can use the tables of 
conditional probabilities of the network. 

• We can have more than binary variables by making larger tables. 

• The size of the table depends on the number of edges entering 
the node. For binary variables it is  with  the in-degree of the 
node. 

• Inference in Bayesian networks is, in the general case, intractable 
from a computational point of view… 

• …but for specific cases it can still be performed efficiently.

2k k



USE OF BN FOR INFORMATION RETRIEVAL



MAIN IDEAS

BAYESIAN NETWORKS IN IR

• Bayesian Networks can model dependencies between terms or 
documents (contrarily to the assumption of the BIM). 

• However, we must always keep an eye to complexity! 

• Here we see only one possible model. Other model with different 
topologies exist.



A SIMPLE STRUCTURE

BN STRUCTURE

t1 t2 t3 tM… Nodes for the terms

d1 d2
dN

Nodes for the documents

Each edge connect a term with a document containing the term. 

Both the  and  are binary random variables with meanings: 

•  means “the term  is relevant” 

•  means “the document  is relevant”

ti dj

ti ti

dj dj



FOR TERMS AND DOCUMENTS

SETTING THE PROBABILITIES

ti
ti not t i 

1/M 1-1/M

dj

The size of the table depends exponentially by 
the number of terms in the document: 
with 50 terms we need a table of  entries.250

A different approach is needed to store 
the conditional probabilities



FOR TERMS AND DOCUMENTS

SETTING THE PROBABILITIES

We assign weights to each edget1 t2 t3

d1

w1,1 w1,2 w1,3

The value  is now computed as:P(dj |Pa(dj))

P(dj |Pa(dj)) = ∑
i:ti∈Pa(dj), ti=1

wi.j

i.e., sum all  for all the parent nodes with state  (relevant)wi, j 1



ONE METHOD OF WEIGHTING

SETTING THE WEIGHTS

Multiple weighting methods are possible. 
Two conditions to be respected are: 

•  for all  and . 

•
 for all documents .

wi, j ≥ 0 i j

∑
ti∈dj

wi, j ≤ 1 dj

One possible weighting scheme is wi, j = α−1
tf-idf2

i, j

∑ tk ∈ dj (tf-idfk, j)
2

With  a normalising constantα

MADE TO “RESEMBLE” 
THE COSINE MEASURE



HOW THE QUERY SETS THE STATE OF TERMS

USING A QUERY

Given a query  we assume that all terms in  are relevant (i.e.,  if ). 
We use the notations  and 

q q ti = 1 ti ∈ q
P(ti |q) P(dj |q)

t1 t2 t3

d1

w1,1 w1,2 w1,3

P(d1 |q) = w1,1 + w1,2 ⋅
1
M

+ w1,3

Suppose , then  is:q = t1 t3 P(d1 |q)

P(dj |q) = ∑
i:ti∈Pa(dj)

wi,jP(ti |q)

In general:



AT LEAST AMONG TERMS

ADDING DEPENDENCIES

Until now we have considered the term independent from one another. 
We can now add some form of dependency between terms while keeping 
the graph acyclic.

t1

t2

t3

d1

w1,1

w1,2

w1,3

Now we need a way to set the 
probabilities for root nodes (without 
any parent) and for nodes with parents.

ti not t i 

1/M 1-1/M

For root nodes we already have:



SETTING THE WEIGHTS

ADDING DEPENDENCIES

We can use the idea for the Jaccard coefficient of “similarity” among terms

t1

t2

t3

d1

w1,1

w1,2

w1,3

Given a “configuration”  of the parent terms 
(i.e., which terms are present and which are not) 
let  be the set of documents not containing  
and containing the exact “configuration”  of the 
parent node. Similarly, define  and . Then:

x

At̄i,x ti
x

At̄i
Ax

P(ti = 0 |Pa(ti) = x) =
|At̄i,x|

|At̄i
| + |Ax| − |At̄i,x|

P(ti = 1 |Pa(ti) = x) = 1 − P(ti = 0 |Pa(ti) = x)



FINAL REMARKS

BAYESIAN NETWORKS

• We have seen only one model of IR using Bayesian networks. 

• We can actually also add some dependencies between 
documents. 

• In any case we must find a way to design or learn the 
dependencies. E.g., by estimating  and linking the “top 
documents” 

• Other models are possible, including ones with completely 
different topologies, like mapping document to terms and then to 
“general concepts”.
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