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Genetic and epigenetic fine mapping of
causal autoimmune disease variants
Kyle Kai-How Farh1,2*, Alexander Marson3*, Jiang Zhu1,4,5,6, Markus Kleinewietfeld1,7{, William J. Housley7, Samantha Beik1,
Noam Shoresh1, Holly Whitton1, Russell J. H. Ryan1,5, Alexander A. Shishkin1,8, Meital Hatan1, Marlene J. Carrasco-Alfonso9,
Dita Mayer9, C. John Luckey9, Nikolaos A. Patsopoulos1,10,11, Philip L. De Jager1,10,11, Vijay K. Kuchroo12, Charles B. Epstein1,
Mark J. Daly1,2, David A. Hafler1,71 & Bradley E. Bernstein1,4,5,61

Genome-wide association studies have identified loci underlying human diseases, but the causal nucleotide changes and
mechanisms remain largely unknown. Here we developed a fine-mapping algorithm to identify candidate causal variants
for 21 autoimmune diseases from genotyping data. We integrated these predictions with transcription and cis-regulatory
element annotations, derived by mapping RNA and chromatin in primary immune cells, including resting and stimu-
lated CD41 T-cell subsets, regulatory T cells, CD81 T cells, B cells, and monocytes. We find that 90% of causal variants are
non-coding, with 60% mapping to immune-cell enhancers, many of which gain histone acetylation and transcribe
enhancer-associated RNA upon immune stimulation. Causal variants tend to occur near binding sites for master regula-
tors of immune differentiation and stimulus-dependent gene activation, but only 10–20% directly alter recognizable
transcription factor binding motifs. Rather, most non-coding risk variants, including those that alter gene expression, affect
non-canonical sequence determinants not well-explained by current gene regulatory models.

Genome-wide association studies (GWAS) have revolutionized the
study of complex human traits by identifying thousands of genetic loci
that contribute susceptibility for a diverse set of diseases1,2. However,
progress towards understanding disease mechanisms has been limited
by difficulty in assigning molecular function to the vast majority of
GWAS hits that do not affect protein-coding sequence. Efforts to deci-
pher biological consequences of non-coding variation face two major
challenges. First, due to haplotype structure, GWAS tend to nominate
large clusters of single nucleotide polymorphisms (SNPs) in linkage
disequilibrium (LD), making it difficult to distinguish causal SNPs from
neutral variants in linkage. Second, even assuming the causal variant
can be identified, interpretation is limited by incomplete knowledge of
non-coding regulatory elements, their mechanisms of action, and the
cellular states and processes in which they function.

Inflammatory autoimmune diseases, which reflect complex interac-
tions between genetic variation and environment, are important systems
for genetic investigation of human disease3. They share a substantial
degree of immunopathology, with increased activity of auto-reactive
CD41 T cells secreting inflammatory cytokines and loss of regulatory
T-cell (Treg) function4. A critical role for B cells in certain diseases has
also been revealed with the therapeutic efficacy of anti-CD20 antibodies5.
Immune homeostasis depends on a balance of CD41 pro-inflammatory
(TH1, TH2, TH17) cells and FOXP31 suppressive Tregs, each of which
expresses distinct cytokines and surface molecules6. Each cell type is
controlled by a unique set of master transcription factors (TFs) that
directly shape cell-type-specific gene expression programs, which include
genes implicated in autoimmune diseases7–9. Immune subsets also have

characteristic cis-regulatory landscapes, including distinct sets of enhancers
that may be distinguished by their chromatin states9–13 and associated
enhancer RNAs (eRNA)14. Familial clustering of different autoimmune
diseases suggests that heritable factors underlie common disease path-
ways, although disparate clinical presentations and paradoxical effects
of drugs in different diseases support key distinctions15.

GWAS have identified hundreds of risk loci for autoimmunity15.
Although most risk variants have subtle effects on disease susceptibil-
ity, they provide unbiased support for possible aetiological pathways,
including antigen presentation, cytokine signalling, and NF-kB tran-
scriptional regulation15. The associated loci are enriched for immune
cell-specific enhancers10,16,17 and expansive enhancer clusters18,19, termed
‘super-enhancers’, implicating gene regulatory processes in disease aeti-
ology. However, as is typical of GWAS, the implicated loci comprise
multiple variants in LD and rarely alter protein-coding sequence, which
complicates their interpretation.

Here, we integrated genetic and epigenetic fine mapping to identify
causal variants in autoimmune disease-associated loci and explore their
functions. Based on dense genotyping data20, we developed a novel algo-
rithm to predict for each individual variant associated with 21 auto-
immune diseases, the likelihood that it represents a causal variant. In
parallel, we generated cis-regulatory element maps for a spectrum of
immune cell types. Remarkably, ,60% of likely causal variants map to
enhancer-like elements, with preferential correspondence to stimulus-
dependent CD41 T-cell enhancers that respond to immune activation
by increasing histone acetylation and transcribing non-coding RNAs.
Although these enhancers frequently reside within extended clusters,
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their distinct regulatory patterns and phenotypic associations suggest
they represent independent functional units. Causal SNPs are enriched
near binding sites for immune-related transcription factors, but rarely
alter their cognate motifs. Our study provides a unique resource for the
study of autoimmunity, links causal disease variants with high proba-
bility to context-specific immune enhancers, and suggests that most non-
coding causal variants act by altering non-canonical regulatory sequence
rather than recognizable consensus transcription factor motifs.

Fine-mapped genetic architecture of disease
To explore the genetic architecture underlying common diseases, we
collected 39 well-powered GWAS studies (Methods). Clustering of dis-
eases and traits based on their shared genetic loci revealed groups of
phenotypes with related clinical features (Fig. 1a). This highlighted a
large cluster of immune-mediated diseases forming a complex network
of shared genetic loci; on average, 69% of the associated loci for each
disease were shared with other autoimmune diseases, although no two
diseases shared more than 38% of their loci.

We focused subsequent analysis on autoimmune diseases, reasoning
that recent dense genotyping data combined with emerging approaches
for profiling epigenomes of specialized immune cells would provide an
opportunity to identify and characterize the specific causal SNPs. Prior
studies that have integrated GWAS with epigenomic features focused
on lead SNPs or multiple associated SNPs within a locus, of which only
a small minority reflects causal variants10,16–19,21. Although these studies
demonstrated enrichments within enhancer-like regulatory elements,
they could not with any degree of certainty pinpoint the specific elements
or processes affected by the causal variants. To overcome this limitation,
we leveraged dense genotyping data to refine a statistical model for pre-
dicting causal SNPs from genetic data alone. Rare recombination events
within haplotypes can provide information on the identity of the causal
SNP, provided sufficient genotyping density and sample size. We there-
fore examined a cohort of 14,277 cases with multiple sclerosis and 23,605
healthy controls genotyped using the Immunochip, which comprehen-
sively covers 1000 Genomes Project SNPs22 within 186 loci associated
with autoimmunity20. We developed an algorithm, Probabilistic Iden-
tification of Causal SNPs (PICS), that estimates the probability that an

individual SNP is a causal variant given the haplotype structure and
observed pattern of association at the locus (Methods, Extended Data
Figs 1–4).

The IFI30 locus (Fig. 1b, c) presents an illustrative example of the
LD problem and the PICS strategy. The most strongly associated SNP
at the locus is rs11554159 (R76Q, G.A; minor allele is protective), a
missense variant in IFI30, which encodes a lysosomal enzyme that pro-
cesses antigens for MHC presentation23. Although dozens of SNPs at
the locus are significantly associated with disease, the association for
each additional SNP follows a linear relationship with its linkage to
rs11554159/R76Q, suggesting they owe their association solely to link-
age with this causal variant. We used permutation to estimate the pos-
terior probability for each SNP in the locus to be the causal variant, given
the observed patterns of association. Interestingly, prior GWAS studies24

had attributed the signal at this locus to a missense variant in a neigh-
bouring gene, MPV17L2 (rs874628, r2 5 0.9 to R76Q), with no known
immune function. However, we find that the R76Q variant is approxi-
mately ten times more likely than rs874628 to be the causal SNP and
three times more likely than the next closest SNP (a non-coding variant),
providing compelling evidence that the IFI30 missense variant is the
causal variant in the locus.

We next generalized PICS to analyse 21 autoimmune diseases, using
Immunochip data when they were available or imputation to the 1000
Genomes Project22 when they were not (Methods; Supplementary Table 1).
We mapped 636 autoimmune GWAS signals to 4,950 candidate causal
SNPs (mean probability of representing the causal variant responsible
for the GWAS signal: ,10%). PICS indicates that index SNPs reported
in the GWAS catalogue have on average only a 5% chance of represent-
ing a causal SNP. Rather, GWAS catalogue index SNPs are typically some
distance from the PICS lead SNP (median 14 kb), and many are not in
tight LD (Fig. 1d and Extended Data Fig. 5). PICS identified a single most
likely causal SNP (.75% probability) at 12% of loci linked to autoim-
munity. However, most GWAS signals could not be fully resolved due
to LD and thus contain several candidate causal SNPs (Fig. 1e).

To confirm the functional significance of fine-mapped SNPs, we com-
pared PICS SNPs against a strict background of random SNPs drawn
from the same loci. Candidate causal SNPs derived by PICS were strongly
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Figure 1 | Genetic fine mapping of human disease. a, GWAS catalogue loci
were clustered to reveal shared genetic features of common human diseases
and phenotypes. Colour scale indicates correlation between phenotypes
(red 5 high, blue 5 low). b, Association signal to multiple sclerosis for SNPs at
the IFI30 locus. c, Scatter plot of SNPs at the IFI30 locus demonstrates the linear
relationship between LD distance (r2) to rs11554159 (red) and association
signal. d, Candidate causal SNPs were predicted for 21 autoimmune diseases

using PICS. Histogram indicates genomic distance (bp) between PICS
Immunochip lead SNPs and GWAS catalogue index SNPs. e, Histogram
indicates number of candidate causal SNPs per GWAS signal needed to
account for 75% of the total PICS probability for that locus. f, Plot shows
correspondence of PICS SNPs to indicated functional elements, compared to
random SNPs from the same loci (error bars indicate standard deviation from
1,000 iterations using locus-matched control SNPs).
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enriched for protein-coding (missense, nonsense, frameshift) changes,
which account for 14% of the predicted causal variants compared to just
4% of the random SNPs. Modest enrichments over the locus background
were also observed for synonymous substitutions (5%), 39 UTRs (3%),
and splice junctions (0.2%) (Fig. 1f). Although these results support the
efficacy of PICS for identifying causal variants, ,90% of GWAS hits for
autoimmune diseases remain unexplained by protein-coding variants.
Candidate causal SNPs and the PICS algorithm are available through
an accompanying online portal (http://www.broadinstitute.org/pubs/
finemapping).

Causal SNPs map to immune enhancers
To investigate the functions of predicted causal non-coding variants,
we generated a resource of epigenomic maps for specialized immune
subsets (Extended Data Fig. 6). We examined primary human CD41

T-cell populations from pooled healthy donor blood, including FOXP31

CD25hiCD127lo/2 regulatory (Tregs), CD252CD45RA1CD45RO2 naive
(Tnaive) and CD252CD45RA2CD45RO1 memory (Tmem) T cells, and
ex vivo phorbol myristate acetate (PMA)/ionomycin stimulated CD41

T cells separated into IL-17-positive (CD252IL17A1; TH17) and IL-
17-negative (CD252IL17A2; THstim) subsets. We also examined naive
and memory CD81 T cells, B cell centroblasts from paediatric tonsils
(CD201CD101CXCR41CD442), and peripheral blood B cells (CD201)
and monocytes (CD141). We mapped six histone modifications by chro-
matin immunoprecipitation followed by sequencing (ChIP-seq) for all
ten populations, and performed RNA sequencing (RNA-seq) for each
CD41 T-cell population. We also incorporated data for B lymphoblas-
toid cells17, TH0, TH1 and TH2 stimulated T cells10, and non-immune cells
from the NIH Epigenomics Project25 and ENCODE26, for a total of 56
cell types.

For each cell type, we computed a genome-wide map of cis-regulatory
elements based on H3 lysine 27 acetylation (H3K27ac), a marker of
active promoters and enhancers12. We then clustered cell types based
on these cis-regulatory element patterns (Extended Data Fig. 7). Fine
distinctions could be drawn between CD41 T-cell subsets based on quan-
titative differences in H3K27ac at thousands of putative enhancers
(Fig. 2a). These cell-type-specific H3K27ac patterns correlate with the
expression of proximal genes. In contrast, H3 lysine 4 mono-methylation
(H3K4me1) was more uniform across subsets, consistent with its asso-
ciation to open or ‘poised’ sites shared between related cell types12.

Mapping of autoimmune disease PICS SNPs to these regulatory anno-
tations revealed enrichment in B-cell and T-cell enhancers (Fig. 2a). A
disproportionate correspondence to enhancers activated upon T-cell
stimulation prompted us to examine such elements more closely. Sub-
stantial subsets of immune-specific enhancers markedly increase their
H3K27ac signals upon ex vivo stimulation, often in conjunction with non-
coding eRNA transcription, and induction of proximal genes (Fig. 2a, b).
Compared to naive T cells, enhancers in stimulated T cells are strongly
enriched for consensus motifs recognized by AP-1 transcription fac-
tors, master regulators of cellular responses to stimuli. PICS SNPs are
strongly enriched within stimulus-dependent enhancers (P , 10220

for combined PMA/ionomycin; P , 10211 for combined CD3/CD28),
whereas enhancers preferentially marked in unstimulated T cells show
no enrichment for causal variants. Candidate causal SNPs were further
enriched in T-cell enhancers that produce non-coding RNAs upon stim-
ulation (1.6-fold; P , 0.01).

The association of candidate causal SNPs to immune enhancers increases
with PICS probability score (Fig. 2c). We estimate that immune enhancers
overall account for ,60% of candidate causal SNPs, whereas promoters
account for another ,8% of these variants (Extended Data Fig. 7). When
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we compared these statistics against GWAS catalogue SNPs, which were
the focus of prior studies linking GWAS to regulatory annotations10,16–19,21,
we found that the subset of associated SNPs that do not correspond to a
PICS SNP fail to show any enrichment for T-cell enhancers, relative to
locus controls (Fig. 2d, e). These data support the efficacy of PICS and
link probable causal autoimmune disease variants to specific enhancers
activated upon immune stimulation.

Cell-type signatures of complex diseases
Along with the 21 autoimmune diseases, we predicted causal SNPs for
18 other traits and diseases (Methods). Comparing SNP locations with
chromatin maps for 56 cell types revealed the cell-type specificities of
cis-regulatory elements that coincide with PICS SNPs, thus predicting
cell types contributing to each phenotype (Fig. 3). The patterns are more
informative than the expression patterns of genes targeted by coding
GWAS hits (Extended Data Fig. 8). Notable examples include SNPs asso-
ciated with Alzheimer’s disease and migraine, which map to enhancers
and promoters active in brain tissues, and SNPs associated with fasting

blood glucose, which map to elements active in pancreatic islets. Nearly
all of the autoimmune diseases preferentially mapped to enhancers and
promoters active in CD41 T-cell subpopulations. However, a few dis-
eases, such as systemic lupus erythematosus, Kawasaki disease, and pri-
mary biliary cirrhosis, preferentially mapped to B-cell elements. Notably,
ulcerative colitis also mapped to gastrointestinal tract elements, consis-
tent with its bowel pathology. Although the primary signature of type 1
diabetes SNPs is in T-cell enhancers, there is also enrichment in pan-
creatic islet enhancers (P , 1027). Thus, although immune cell effects
may be shared among autoimmune diseases, genetic variants affecting
target organs such as bowel and pancreatic islets may shape disease-
specific pathology.

Discrete functional units in super-enhancers
Genomic loci that encode cellular identity genes frequently contain large
regions with clustered or contiguous enhancers bound by transcriptional
co-activators and marked by H3K27ac. Recent studies showed that such
‘super-enhancer’ regions are enriched for GWAS catalogue SNPs, includ-
ing those related to autoimmunity18,19. Consistently, we find that PICS
SNPs are 7.5-fold enriched in CD41 T-cell super-enhancers, relative to
random SNPs from the genome. We therefore parsed the topography of
super-enhancers in immune cells using our genetic and epigenetic data.

The IL2RA locus exemplifies the complex landscape of enhancer reg-
ulation. IL2RA encodes a receptor with key roles in T-cell stimulation
and Treg function15. The super-enhancer in this locus comprises a cluster
of elements recognizable as distinct H3K27ac peaks (Fig. 4a). Although
the region meets the super-enhancer definition in multiple CD41 T-cell
types18, sub-elements are preferentially acetylated in Treg, TH17 and/or
THstim T-cells, consistent with differential regulation. Some sub-elements
appear bound by T-cell master regulators, including FOXP3 in Tregs,
T-bet (also known as TBX21) in TH1 cells, and GATA3 in TH2 cells. A
systematic analysis indicates PICS SNPs are most enriched at distinct
stimulus-dependent H3K27ac peaks within super-enhancer regions
(Extended Data Fig. 7).

PICS SNPs for eight autoimmune diseases map to distinct segments
of the IL2RA super-enhancer. For example, Immunochip data identify
a candidate causal SNP for multiple sclerosis that has no effect on auto-
immune thyroiditis disease risk. Conversely, a candidate causal SNP for
autoimmune thyroiditis has no effect on multiple sclerosis risk, despite
the proximity of the two SNPs within the super-enhancer (Fig. 4b). Fur-
thermore, index SNPs for multiple other diseases are not in LD, suggesting
that multiple sites of nucleotide variation in the locus have separable dis-
ease associations (Fig. 4c). The distribution of PICS SNPs and the par-
tially discordant regulation of sub-regions suggest that super-enhancers
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may comprise multiple discrete units with distinct regulatory signals,
functions, and phenotypic associations.

Disease SNPs fall near consensus motifs
The enrichment of candidate causal variants within enhancers suggests
that they affect disease risk by altering gene regulation, but does not dis-
tinguish the underlying mechanisms. Enhancer activity is dependent
on complex interplay between transcription factors, chromatin, non-
coding RNAs and tertiary interactions of DNA loci27. A straightforward
hypothesis is that disease SNPs alter transcription factor binding. Indeed,
PICS SNPs tend to coincide with nucleosome-depleted regions, char-
acterized by DNase hypersensitivity and localized (,150 bp) dips in
H3K27ac signal26, which are indicative of transcription factor occupancy
(Fig. 5a).

We therefore overlapped PICS SNPs with 31 transcription factor
binding maps generated by ENCODE26 (Fig. 5b). Candidate causal SNPs
are strongly enriched within binding sites for immune-related transcrip-
tion factors, including NF-kB, PU1 (also known as SPI1), IRF4, and
BATF. Variants associated with different diseases correlate to different
combinations of transcription factors that control immune cell iden-
tity and response to stimulation. For example, multiple sclerosis SNPs
preferentially coincide with NF-kB, EBF1 and MEF2A-bound regions,
whereas rheumatoid arthritis and coeliac disease SNPs preferentially
coincide with IRF4 regions.

Next, we examined whether causal variants disrupt or create cognate
sequence motifs recognized by these transcription factors. We focused
on 823 of the highest-likelihood non-coding PICS SNPs, an estimated
30% of which represent true causal variants. We identified PICS SNPs
that alter motifs for NF-kB (n 5 2), AP-1 (n 5 8), or ETS/ELF1 (n 5 5).
Overall, we identified 7 known transcription factor motifs and 6 conserved

sequence motifs28,29 with a significant tendency to overlap causal vari-
ants likely to alter binding affinity. Of the highest-likelihood SNPs, 7%
affected one of these over-represented motifs, with a roughly equal dis-
tribution between motif creation and disruption (Extended Data Fig. 9).

A notable motif-disrupting PICS SNP is the Crohn’s disease-associated
variant rs17293632 (C . T, minor allele increases disease risk; PICS prob-
ability ,54%), which resides in an intron of SMAD3 (Fig. 5c). SMAD3
encodes a transcription factor downstream of transforming growth fac-
torb (TGF-b) with pleiotropic roles in immune homeostasis30. The SNP
disrupts a conserved AP-1 consensus site. ChIP-seq data for AP-1 tran-
scription factors (Jun, Fos) in a heterozygous cell line reveal robust bind-
ing to the reference sequence, but not to the variant sequence created by
the SNP. As described above, a prominent AP-1 signature is associated
with enhancers activated upon immune stimulation (Fig. 2a). This suggests
that rs17293632 may increase Crohn’s disease risk by directly disrupt-
ing AP-1 regulation of the TGF-b–SMAD3 pathway.

Despite this and other compelling examples, only ,7% of the highest-
likelihood non-coding PICS SNPs alter an over-represented transcrip-
tion factor motif. Scanning a large database of transcription factor motifs,
we found that ,13% of high-likelihood causal SNPs create or disrupt
some known consensus sequence derived by in vitro selection28, whereas
,27% create or disrupt a putative consensus sequence derived from
phylogenetic analysis29. However, these proportions are similar to the
rate for background SNPs (Fig. 5d). Even extrapolating for uncertainty
in causal SNP assignments, our data suggest that at most 10–20% of non-
coding GWAS hits act by altering a recognizable transcription factor motif.

Notwithstanding their infrequent coincidence to the precise tran-
scription factor motifs, non-coding PICS SNPs have a strong tendency
to reside in close proximity to such sequences. Candidate causal vari-
ants are most significantly enriched in the vicinity of NF-kB, RUNX1,
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AP-1, ELF1, and PU1 motifs (Extended Data Fig. 9), with 26% residing
within 100 bp of such a motif. These findings parallel recent studies of
genetic variation in mice, where DNA variants affecting NF-kB bind-
ing are dispersed in the vicinity of the actual binding sites31. Our results
suggest that many causal non-coding SNPs modulate transcription factor
dependent enhancer activity (and confer disease risk) by altering adja-
cent DNA bases whose mechanistic roles are not readily explained by
existing gene regulatory models.

Gene regulatory effects of disease SNPs
To assess the effects of autoimmunity-associated genetic variation on
gene regulation, we incorporated a recent study that mapped variants
associated with heritable differences in peripheral blood gene expression32.
We used PICS to predict causal expression quantitative locus (eQTL)
SNPs, which we compared against random SNPs from the same loci.
These eQTL SNPs are strongly enriched in promoters (9%) and 39 UTRs
(25%), but show relatively modest preference for immune enhancers
(14%), compared to GWAS SNPs (Fig. 6a). Overall, ,12% of causal non-
coding autoimmune disease variants also score as eQTL SNPs (Extended
Data Fig. 10). Disease SNPs that did not score as eQTLs in peripheral
blood may score in more precise immune subsets in relevant regula-
tory contexts. Nonetheless, their modest overlap with eQTLs and their
striking correspondence to enhancers suggest that most disease variants
exert subtle and highly context-specific effects on gene regulation.

Incorporation of eQTL SNPs allowed us to link causal non-coding
disease variants to specific genes. For example, PICS fine mapping iden-
tified two SNPs in the IKZF3 locus with independent effects on IKZF3
expression, rs12946510 and rs907091. IKZF3 encodes an IKAROS family
transcription factor with key roles in lymphocyte differentiation and
function33. Interestingly, the minor allele of rs12946510 is associated
with decreased IKZF3 expression and increased multiple sclerosis risk
(Fig. 6b, c), whereas the minor allele of rs907091 is associated with
increased IKZF3 expression, but does not affect disease risk. This sug-
gests that disease risk is dependent on the specific mode and context in
which a variant influences gene expression.

Despite strong evidence from fine mapping that rs12946510 is the
causal SNP affecting multiple sclerosis risk and IKZF3 expression, the
underlying sequence does not reveal a clear mechanism of action. The
disease SNP resides within a conserved element with enhancer-like chro-
matin in immune cells. It coincides with a nucleosome-depleted, DNase
hypersensitive site bound by multiple transcription factors, including
immune-related factors RUNX3, RELA (NF-kB family member), EBF1,
POU2F2 and MEF2 (Fig. 6d). The C/T variation at this site does not create
or disrupt a readily recognizable consensus DNA motif, but overlaps a
highly degenerate MEF2 motif and might thus modulate transcription
factor binding despite incomplete sequence specificity. This example
illustrates the value of integrative functional genomic analysis for inves-
tigating the complex mechanisms by which non-coding variants modu-
late gene expression and disease risk.

Discussion
Interpretation of non-coding disease variants, which comprise the vast
majority of GWAS hits, remains a momentous challenge due to hap-
lotype structure and our limited understanding of the mechanisms and
physiological contexts of non-coding elements. Here we addressed these
issues through combination of high-density genotyping and epigenomic
data. Focusing on autoimmune diseases, we triaged causal variants based
solely on genetic evidence and integrated chromatin and transcription
factor binding maps to distinguish their probable functions and physi-
ologic contexts. We found that most causal variants map to enhancers and
frequently coincide with nucleosome-depleted sites bound by immune-
related transcription factors. The resulting resource highlights specific
transcription factors, target loci and pathways with disease-specific or
general roles in autoimmunity.

Yet despite their close proximity to immune transcription factor bind-
ing sites, only a fraction of causal non-coding variants alter recognizable

transcription factor sequence motifs. Moreover, disease variants have
a distinct functional distribution and infrequently overlap peripheral
blood eQTLs, which suggests that they exert highly contextual regulatory
effects. Although these features of non-coding disease variants further
challenge GWAS interpretation, they might not be unexpected. Bio-
chemical and genetic manipulations have established the potential of
motif-adjacent sequences to influence transcription factor activity34. Roles
for such non-canonical sequences are also supported by the extended
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Figure 6 | Functional effects of disease variants on gene expression.
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nucleotide conservation at many enhancers, most of which lies outside
of known motifs, and the complex structural interactions and looping
events that underlie gene regulation27. Furthermore, common variants
contributing to polygenic autoimmunity are expected to have modest,
context-restricted effects, given that strongly deleterious mutations would
be eliminated from the population1. Compared to mutations that disrupt
transcription factor motifs, alterations to non-canonical determinants
may produce subtle but pivotal alterations to the immune response,
without reaching a level of disruption that would result in strong neg-
ative selection.

Systematic integration of fine-mapped genetic and epigenetic data
implies a nuanced complexity to disease variant function that will con-
tinue to push the limits of experimental and computational approaches.
Much work remains to be done to characterize SNPs whose causality
can be firmly established through genotyping and to facilitate efforts
to resolve GWAS signals that remain refractory to fine mapping due to
haplotype structure. Understanding their regulatory mechanisms could
have broad implications for autoimmune disease biology and treatment,
given genetic links to immune regulators, such as NF-kB, IL2RA and
IKZF3 (also known as AIOLOS), and implied transcriptional and epige-
netic aberrations, all of which are candidates for therapeutic intervention.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Cell isolation and culture
Purification and culture of human CD41 T-cell subsets. Cells were obtained
from the peripheral blood of pooled healthy subjects in compliance with Institu-
tional Review Board (Yale University and Partners Human Research Committee)
protocols. Untouched CD41 T cells were isolated by gradient centrifugation (Ficoll-
Hypaque; GE Healthcare) using the RosetteSep Human CD41 T-cell Enrichment
kit (StemCell Technologies). CD41 T cells were next subjected to anti-CD25 mag-
netic bead labelling (Miltenyi Biotech), to allow magnetic cell separation (MACS) of
CD251 and CD252 cells. Subsequently CD251 cells were stained with fluorescence-
labelled monoclonal antibodies to CD4, CD25 and CD127 (BD Pharmingen), and
sorted using a FACS ARIA (BD Biosciences ) for CD25hiCD127lo/2 Treg cells, which
express FOXP3 (Biolegend) as confirmed by intracellular post-sort analysis by FACS
(Extended Data Fig. 6). Dead cells were excluded by propidium iodide (BD). An
aliquot of CD252 cells was labelled with fluorescence-labelled monoclonal anti-
bodies to CD4, CD45RA and CD45RO (BD Pharmingen), and sorted on a FACS
ARIA to isolate CD45RO1CD45RA2 memory (Tmem) and CD45RO2CD45RA1

naive (Tnaive) CD41 T-cell populations. Dead cells were excluded by propidium
iodide. Highly pure human TH17 cells were isolated with modifications as previously
described35. In brief, CD252 cells were stimulated in serum-free X-VIVO15 medium
(BioWhittaker) with PMA (50 ng ml21) and ionomycin (250 ng ml21; both from
Sigma-Aldrich) for 8 h and sorted by a combined MACS and FACS cell sorting
strategy based on surface expression of IL-17A. Stimulated cells were stained with
anti-IL-17A-PE (Miltenyi) and labelled with anti-PE microbeads (Miltenyi) and
subsequently pre-enriched over an LS column (Miltenyi). The IL-17A negative frac-
tion was used as control population (THstim). MACS-enriched TH17 cells were fur-
ther sorted on a FACS ARIA (BD) for highly pure IL-17A1 cells (TH17).
Purification of human naive and memory CD81 T cells. Leukocyte-enriched
fractions of peripheral blood (byproduct of Trima platelet collection) from anon-
ymous healthy donors were obtained from the Kraft Family Blood Donor Center
(DFCI, Boston, MA) in compliance with the institutional Investigational Review
Board (Partners Human Research Committee) protocol. For two independent puri-
fications of each cell subset, blood fractions from 7 and 8 donors were pooled. Total
T cells were isolated by immunodensity negative selection using the RosetteSep
Human T-cell Enrichment Cocktail (STEMCELL Technologies, Vancouver, Canada)
and gradient centrifugation on Ficoll-Paque PLUS (GE Healthcare, Pittsburgh, PA),
according to the manufacturer’s instructions. Subsequently, T cells were stained at
4 uC for 30 min using fluorescently labelled monoclonal anti-human CD8 (FITC,
2.5mg ml21, clone RPA-T8, Biolegend, San Diego, CA), CD4 (PE, 1.25mg ml21, clone
RPA-T4, Biolegend), CD45RA (PerCP-Cy5.5, 2.4mg ml21, clone HI100, eBioscience,
San Diego, CA) and CD45RO (APC, 0.6mg ml21, clone UCHL1, eBioscience) anti-
bodies diluted in staining buffer (PBS supplemented with 2% fetal bovine serum,
FBS). 49,6-diamidino-2-phenylindole (DAPI, 2.5mg ml21, Life Technologies, Grand
Island, NY) was also included to stain for dead cells. After washing with staining
buffer, naive (CD45RA1CD45RO2) and memory (CD45RA2CD45RO1) CD81

or CD41 were isolated using a BD FACSAria 4-way cell sorter (BD Biosciences,
San Jose, CA). Cell subsets were identified using a BD FACSDiva Software (BD
Biosciences) after gating on lymphocytes (by plotting forward versus side scatters)
and excluding aggregated (by plotting forward scatter pulse height versus pulse area),
dead (DAPI1), and CD8/CD4 double positive cells (Extended Data Fig. 6). Cell purity
was 90–94% CD81 or 97–99% CD41, and . 99% naive or memory.
Purification of human B centroblasts. Cells were obtained in compliance with
Institutional Review Board (Partners Human Research Committee) protocols. For
purification of human centroblasts, bulk mononuclear cells were isolated from
fresh paediatric tonsillectomy specimens by mechanical disaggregation and Ficoll-
Paque centrifugation36. MACS enrichment of germinal centre cells was performed
using anti-CD10-PE-Cy7 (BD Biosciences), and anti-PE microbeads (Miltenyi Biotec).
Centroblasts37 (CD191CD101CXCR41CD442CD32) were purified from the enriched
germinal centre cells by FACS antibodies for CD19 (APC, clone SJ25C1, BD), CD3
(BV606, clone OKT3, Biolegend), CD10 (PE-Cy7, clone HI10A, BD), CD44 (FITC,
clone L178, BD) and CXCR4 (PE, clone 12G5, eBioscience) (Extended Data Fig. 6).
Purification of adult human peripheral blood B cells and monocytes. Human
peripheral B cells and monocytes were provided by the S. Heimfeld laboratory at
the Fred Hutchinson Cancer Research Center. The cells were obtained from human
leukapheresis product using standard procedures. Briefly, peripheral B cells (CD201

CD191) and monocytes (CD141) were isolated by immunomagnetic separation
using the CliniMACS affinity-based technology (Miltenyi Biotec GmbH, Bergisch
Gladbach, Germany) according to the manufacturer’s recommendation. Reagents,
tubing sets, and buffers were purchased from Miltenyi Biotec.
ChIP-seq. Following isolation (6 ex vivo stimulation), cells were crosslinked in 1%
formaldehyde at room temperature or 37 uC for 10 min in preparation for ChIP. Chro-
matin immunoprecipitation and sequencing were performed as previously described38.
Data sets were publicly released upon verification at (http://epigenomeatlas.org).

RNA-seq. RNA was extracted from CD41 T-cell subsets with TRIzol. Briefly, poly-
adenylated RNA was isolated using oligo dT beads (Invitrogen) and fragmented to
200–600 base pairs and then ligated to RNA adaptors using T4 RNA ligase (NEB),
preserving strand of origin information as previously described39,40.
Enhancer annotation and clustering. ChIP-seq data were processed as previously
described38. Briefly, ChIP-seq reads of 36 bp were aligned to the reference genome
(hg19) using the Burroughs–Wheeler Alignment tool (BWA)41. Reads aligned to
the same position and strand were only counted once. Aligned reads were extended
by 250 bp to approximate fragment sizes and then a 25-bp resolution chromatin
map was derived by counting the number of fragments overlapping each position.
H3K27ac and H3K4me1 peaks were identified by scanning the genome for enriched
1 kb windows and then merging all enriched windows within 1 kb, using as a thresh-
old 4 genome-normalized reads per base pair38. Adjacent windows separated by
gaps less than 500 bp in size were joined. H3K27ac peaks that do not overlap a
6 2.5 kb region of an annotated transcriptional start site (TSS) were defined as can-
didate distal regulatory elements. In order to define the cell-specific H3K27ac peaks,
we calculated the mean signal in 5 kb regions centred at distal H3K27ac peaks and
sorted the peaks by the ratio of signal in one cell type to all remaining cell types. For
each immune cell type, the top 1,000 distal H3K27ac peaks with highest ratio were
catalogued as the cell-specific distal H3K27ac peaks (Fig. 2). The heatmaps for H3K27ac
and H3K4me1 signal were plotted over 10 kb regions surrounding all distal cell-
specific H3K27ac peaks.

The distal H3K27ac peaks were assigned to their potential target genes if they
locate in the gene body or within 100 kb regions upstream the TSS. Expression
levels of the target genes were derived from RNA-seq data. Paired-end RNA-seq
reads were aligned to RefSeq transcripts using Bowtie2 (ref. 42). RNA-seq data for
B cells, B centroblast, macrophages, TH1, TH2 and TH0 were retrieved from NCBI
GEO and SRA database (Bnaive: GSE45982; Bgerminalcenter: GSE45982 (ref. 43); Mac-
rophages: GSE36952 (ref. 44); TH0, TH1 and TH2: SRA082670 (ref. 10)). RNA-seq
data for lymphoblastoid (GM12878) was retrieved from ENCODE project26. The
number of reads per kilobase per million reads (RPKM) was calculated for each
gene locus. Heatmap of RNA-seq data shows the average relative expression of all
potential target genes for each cluster of cell type-specific regulatory elements.
Shared genetic loci for common human diseases. Publicly available GWAS cat-
alogue data were obtained from the NHGRI website, (http://www.genome.gov/
gwastudies/), current as of July 2013 (refs 45, 46). Studies were included based on
the criteria that they had at least 6 hits at the genome-wide significant level of
P # 5 3 1028. From a set of 21 autoimmune diseases and 18 representative non-
autoimmune diseases/traits, we included index SNPs with significance P # 1026

for downstream analysis.
In some cases, the same disease had multiple index SNPs mapping to the same

locus (defined as within 500 kb of each other), due to independently conducted
GWAS studies identifying different lead SNPs within the same region. For these
loci, only the most significant GWAS index SNP was kept for downstream ana-
lysis, resulting in 1,170 GWAS index SNPs for 39 diseases/traits. For each pair of
diseases/traits, we compared their respective lists of index SNPs to find instances
of common genetic loci (defined as the two diseases sharing index SNPs within
500 kb of each other). The number of overlapping loci was calculated for each dis-
ease pair. To measure the genetic similarity between two diseases/traits, a disease-
by-disease correlation matrix was calculated based on the number of overlapping
loci for each disease/trait with each of the other diseases, and the results are shown
in Fig. 1a.
Sources of Immunochip and Non-Immunochip GWAS data. Summary statistics
for published Immunochip studies of coeliac disease47, autoimmune thyroiditis48,
primary biliary cirrhosis49, and rheumatoid arthritis50 were downloaded from the
Immunobase website, (http://www.immunobase.org/). Full genotype data and PCA
analysis for the multiple sclerosis Immunochip GWAS study20 was provided by the
International Multiple Sclerosis Genetics Consortium. For ankylosing spondylitis51,
atopic dermatitis52, primary sclerosing cholangitis53, juvenile idiopathic arthritis54,
and psoriasis55, Immunochip studies had been previously been published, but only
the lead SNPs from associated Immunochip regions were available. We also included
GWAS of autoimmune diseases that had not been studied using Immunochip,
including asthma, allergy, Kawasaki disease, Behcet’s disease, vitiligo, alopecia arreata,
systemic lupus erythematosis, systemic sclerosis, type 1 diabetes, Crohn’s disease,
and ulcerative colitis. For these diseases and the 18 representative non-immune
diseases, index SNPs from the GWAS catalogue were used46. In addition, full geno-
type data and PCA analysis for the inflammatory bowel disease Immunochip GWAS
study were provided by the International Inflammatory Bowel Diseases Genetics
Consortium for purposes of calculating the statistical models used in PICS. Because
the results for the IBD Immunochip analysis are unpublished, we used the previ-
ously published index SNP results for inflammatory bowel disease from the GWAS
catalogue.
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Probabilistic identification of causal SNPs (PICS). We developed a fine-mapping
algorithm, which we call probabilistic identification of causal SNPs (PICS), that makes
use of densely-mapped genotyping data to estimate each SNP’s probability of being
a causal variant, given the observed pattern of association at the locus. We devel-
oped PICS on large multiple sclerosis (MS) (14,277 cases, 23,605 controls20) and
inflammatory bowel disease (IBD) cohorts (34,594 cases, 28,999 controls; unpub-
lished data) that were genotyped using the Immunochip, a targeted ultra-dense geno-
typing array with comprehensive coverage of 1000 Genomes Project SNPs22 within
186 autoimmune disease-associated loci.

Analysis of IBD risk associated with SNPS at the IL23R locus presents an illus-
trative example of the LD problem and the potential for PICS to overcome this
challenge (Extended Data Fig. 1). The most strongly associated SNP is rs11209026,
a loss of function missense variant that changes a conserved arginine to glutamine
at amino acid position 381 (R381Q) and decreases downstream signalling through
the STAT3 pathway56,57. Association with IBD decreases with physical distance along
the chromosome, due to rare recombination events that break up the haplotype and
distinguish the causal missense mutation from other tightly linked neutral variants.
These rare informative recombination events would be missed by standard genotyp-
ing arrays with probes spread thinly across the entire genome.

For neutral SNPs whose association signal is only due to being in LD with a
causal SNP, the strength of association, as measured by chi-square (or log P value,
since chi-square and log P value are asymptotically linear) scales linearly with their
r2 to the causal SNP. This is because strength of association is linear with r2 by the
formula for the Armitage trend test58:

x2~ n{1ð Þr2

wherex2 is the chi-square association test statistic, n is the sample size, and r2 is the
square of the correlation coefficient.

This linear trend is observed at the IL23R locus, consistent with a model where
R381Q is the causal variant, and neutral SNPs demonstrate association signal in
proportion to their LD to the causal variant (Extended Data Fig. 1). SNPs in linkage
to R381Q do not perfectly fall on the expected line, due to statistical fluctuations.
Independent association studies for the same disease tend to nominate different SNPs
within a given locus as their best association, due to statistical fluctuation pushing
a different SNP to the forefront in each subsequent study59–62. Note that a group of
SNPs that are strongly associated to disease but are not in linkage with rs11209026
(R381Q) represent independent association signals at the locus.

Although we know from functional studies that R381Q is the likely causal variant,
we sought additional statistical evidence to support R381Q as the causal variant, and
to refute the null hypothesis that the prominent association of R381Q (compared to
other SNPs in the haplotype) is due to chance. We simulated 1,000 permutations
by fixing the association signal at R381Q, but with all other SNPs being neutral,
while preserving the LD relationships between SNPs in the locus. An odds ratio of
1.2 was used rather than the approximately twofold odds ratio naturally observed
at R381Q, because this was more representative of the modest association signal
strengths observed at other GWAS loci. For each round of permutation, we obtained
the association signal at all SNPs in the locus. Because only the association signal at
R381Q is fixed, the signal at the remaining neutral SNPs in the locus are free to vary
due to statistical fluctuations; four typical examples of simulated association results
at the R381Q locus are shown (Extended Data Fig. 1), including two examples where
the causal variant is not the most strongly associated SNP in the locus. From these
1,000 iterations, we calculated the standard deviation in the association signal for
each of the SNPs in the IL23R locus (Extended Data Fig. 2). We show that the dis-
tribution of association signals for each SNP approximates a normal distribution,
centred at the expected value based on that SNP’s r2 to the causal variant (Extended
Data Fig. 2).

These permutations demonstrate that the causal variant need not be the most
strongly associated SNP within the locus, due to statistical fluctuations. Rather, given
the observed pattern of association at a locus, we are interested in knowing the
probability of each SNP within the locus to be the causal variant. We can use Bayes’
theorem to infer the probability of each SNP being the causal variant, by using infor-
mation derived from the permutations. As the prior probability of each SNP to be
the causal variant is equal, the SNP most likely to be the causal variant is therefore
the SNP whose simulated signal most closely approximates the observed association
at the locus. By performing permutations of a simulated association signal at each
SNP within the locus, we can estimate the probability that the SNP could lead to the
observed association at the locus.

For example, consider a two SNP example where SNP A and SNP B are in LD,
and SNP A is the lead SNP in the locus (Extended Data Fig. 2). If we are interested
in knowing P(BcausaljAlead), that is, the probability that SNP B is the causal variant
given that SNP A is the top signal in the locus, then by Bayes’ theorem:

P BcausaljAlead! "
~P AleadjBcausal! "

|P Alead! "
=P Bcausal! "

Where P(AleadjBcausal) is the probability of SNP A being the top signal in the locus,
given that SNP B is the causal variant. P(AleadjBcausal) is straightforward to calcu-
late by performing permutations with a simulated signal at SNP B, and measuring
the number of permutations where SNP A emerges as the top signal in the locus
despite SNP B being the actual causal variant. We have assumed that the prior
probability of each SNP to be the causal variant or the lead SNP is equal, although
this could be adjusted based on external information, such as functional annota-
tion of the SNP to be a coding variant.

Using the formula above, we calculate both P(BcausaljAlead) and P(AcausaljAlead), and
then normalize both of these probabilities so that P(BcausaljAlead) 1 P(AcausaljAlead) 5 1.
In cases where there are more than two SNPs to consider, we similarly normalize
the probabilities so that they sum to 1. Probabilities were calculated for all SNPs
with r2 . 0.5 to the lead SNP.

Because the calculation of thousands of permutations is computationally expensive
and requires full genotype data, we sought to generalize the results of the permutation-
based method in order to extend it to the analysis of autoimmune diseases for which
Immunochip data were not available, or only the identity of the lead index SNPs
was reported, such as from the GWAS catalogue. We developed a general model,
where PICS was able to calculate P(BcausaljAlead), where B is a SNP within a locus,
and A is the lead SNP in the locus, by using LD relationships from the Immunochip
where these were available, and from the 1000 Genomes Project otherwise. As the
distribution of association signal at neutral SNPs in the locus approximates a normal
distribution, given the lead SNP in the locus, we need to be able to estimate the mean
expected association for a neutral SNP in LD with the lead SNP, and the standard
deviation for that SNP.

The expected mean association signal for SNPs in the locus scales linearly with
r2 to the causal SNP in the locus. We derived an approximation for the standard
deviation for each SNP in the locus based on the results of empiric testing. We picked
30,000 random SNPs from densely-mapped Immunochip loci, with half coming
from the MS Immunochip data, and half coming from the IBD Immunochip data.
For each SNP, we simulated 100 permutations with that SNP being the causal var-
iant. SNPs selected had minor allele frequency above 0.05, and the odds ratio used
varied from 1.1-fold to 2.0-fold. The number of cases and controls and total sample
size were also allowed to randomly vary from 1–100% of the total number of sam-
ples in the original studies. These results indicated that the standard deviation for
the association signal at a SNP in LD (with r2 . 0.5) to a causal variant in the locus
was approximately:

s~sqrt 1{rk! "
|sqrt indexpvalð Þ=2

m~r2|indexpval

where s is the standard deviation of the association signal at the SNP, m is the
expected mean of the association signal at the SNP, indexpval is the –log10(P value)
of the causal SNP in the locus, r2 is the square of the correlation coefficient (a mea-
sure of LD) between the SNP and the causal SNP in the locus, and k is an empiric
constant that can be adjusted to fit the curve; in practice, we found that choosing k
from a wide range of values between 6 and 8 had little measurable effect on the
candidate causal SNPs selected, and we used a value of k 5 6.4. The results of the
30,000 simulated iterations and the empiric curve fitted using the above equation is
shown in Extended Data Fig. 3. To verify that our method was applicable to a wide
range of case-control ratios and effect sizes, we performed six additional simula-
tions, with the percentage of case samples fixed at 10%, 20%, and 50%, and the effect
sizes of causal SNPs fixed at 1.2-fold, 1.5-fold, and 2.0-fold, which cover a broad
range of parameters likely to be encountered in practical GWAS studies (Extended
Data Fig. 3). We found that for all six scenarios, the relationship between r2 to the
causal SNP and standard deviation similarly followed the empirically fitted curve.

For each SNP in the locus, we used the estimated mean and standard deviation
of the association signal at each neutral SNP in LD (r2 . 0.5) to the lead SNP in the
locus to calculate the probability of each SNP to be the causal variant relative to the
lead SNP. We then normalized the probabilities so that the total of their probabil-
ities summed to 1.

For diseases where summary SNP information was available, but the r2 rela-
tionships between SNPs was unknown, the r2 relationship was estimated based on
the ratio between the association signal at the lead SNP versus the SNP in ques-
tion. For diseases where only the lead SNP was known, r2 values were drawn from
the LD relationships from the MS Immunochip study if the SNP was from an
Immunochip, or from the 1000 Genomes Project otherwise. 1000 Genomes Euro-
pean LD relationships were used for diseases, except for Kawasaki disease, for which
1000 Genomes East Asian LD relationships were used. For diseases that had both
GWAS catalogue results and Immunochip results, we used Immunochip results
whenever possible, and GWAS catalogue results in regions outside Immunochip
dense-mapping coverage.
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Multiple independent association signals. For the MS data, we were able to use
full genotyping information to distinguish multiple independent signals. We used
stepwise regression to condition away SNPs one at a time until no associations remain
at the P , 1026 level, which is an effective method for separating independent sig-
nals, when LD between the independent causal variants is low. We then treated each
independent signal separately for the purpose of using PICS to derive the likely
causal variants.
Missing Immunochip data. For the minority of SNPs that were missing from the
Immunochip, we used 1000 Genomes SNPs LD relations to the index SNP to esti-
mate their probability of being the causal SNP. For the diseases with only Immunochip
summary statistic data, we could not be certain of the LD relationships, and there-
fore we estimated the LD to the index SNP from the difference between the associ-
ation at the lead SNP and the SNP in question, as these follow a linear relationship.
For the diseases that only had Immunochip index SNP data, we used Immunochip
LD relationships where available from the MS data, and 1000 Genomes SNPs LD
relations to the index SNP where these were not available.
Distance between GWAS catalogue SNPs and lead SNPs. For Immunochip regions
that were previously studied by non-Immunochip studies, we examined the per-
formance of prior non-fine-mapped studies at correctly determining the lead SNP.
GWAS catalogue SNPs within 200 kb of Immunochip regions were considered,
and the LD and genomic distance between the catalogue SNP and any Immunochip
lead SNPs for that disease in the Immunochip region were measured and reported
in the histograms in Fig. 1d and Extended Data Fig. 5. PICS was also used to calcu-
late the probability of GWAS catalogue SNPs to be causal variants; the probability
was 5.5% on average.
Number of candidate causal SNPs per GWAS signal. For each GWAS signal, we
obtained a set of candidate causal SNPs, each with a probability of being the causal
variant. For each signal, we asked what was the minimum number of candidate
causal SNPs required to cover at least 75% of the probability (Fig. 1e).
Distribution of GWAS signals in functional genomic elements: signal to back-
ground. For downstream analyses, we considered the set of 4,905 candidate causal
SNPs which had mean probability of greater than 10% of being the candidate causal
SNP (the cutoff was probability . 0.0275). We performed 1,000 iterations, picking
4,905 minor-allele-frequency-matched random SNPs from the same loci (from
genomic regions within 50 kb of the candidate causal SNPs and excluding the actual
causal SNPs). It was necessary to match for minor-allele-frequency because lower
MAF SNPs are far more likely to be coding variants. Furthermore, it was necessary
to match for locus, because GWAS SNPs are greatly enriched at gene bodies, and
using a background of random 1,000 genome SNPs for comparison results in mas-
sive non-specific enrichment of all functional elements. Because we are comparing
the candidate causal SNPs to a background set of control SNPs from the same regions,
the observed enrichments at functional elements strongly argues that PICS effectively
predicts causal variants within the loci. For each functional category (missense, non-
sense, and frameshift were merged), we calculated the number of actual candidate
causal SNPs above mean background (mean of 1,000 random iterations), divided
by the total number of GWAS signals represented (635), and used these results to
populate the pie chart indicating the approximate percentage of GWAS signals that
can be attributed to each assessed functional category (Fig. 6).
Analysis of ex vivo stimulation-dependent enhancers. We searched for motifs
enriched in cell type-specific enhancers in the five stimulated T-cell subsets (PMA/
ionomycin stimulated THstim and TH17 T cells, anti-CD3/CD28 stimulated TH0, TH1,
and TH2 T cells) compared to enhancers in naive T cells, using the motif finding
program HOMER (http://homer.salk.edu/homer/)63. AP-1 was the most strongly
enriched motif in enhancers that gained H3K27ac in the stimulated T cells (Fig. 2),
whereas this enrichment was absent when comparing naive T cells with memory or
regulatory T cells. Additional motifs that were enriched in the stimulation-dependent
enhancers included NFAT for the PMA/ionomycin stimulation conditions and
STAT for the anti-CD3/CD28 stimulation conditions.
Enhancer signal-to-noise analysis. We focused on 14 immune cell types (8 CD41

T-cell subsets, 2 CD81 T-cell subsets, CD141 monocytes, and 3 B-cell subsets) and
19 representative non-immune cell/tissue types from the Roadmap Epigenomics
project. Enhancers were broken up into 1 kb segments and immune specific enhancers
were identified based on the following criteria: (1) number of normalized mean
H3K27ac ChIP-seq extended reads/base . 4, and (2) mean H3K27ac in the top
fifteenth percentile when comparing immune cells to non-immune cells/tissues.
We measured the percentage of PICS SNPs (with different probability cutoffs) that
either map to an immune enhancer or cause an amino acid coding change (Fig. 2).
We next considered the 4,300 candidate causal SNPs that were not associated with
protein-coding changes, and compared them against 1,000 iterations of frequency
and locus matched controls (picked from genomic regions within 50 kb of the can-
didate causal SNPs and excluding the actual candidate causal SNPs; see discussion
of background calculations above). Enhancers were enriched approximately 2:1
above background. We also measured the signal-to-backround ratio for GWAS

signals that had been attributed to coding variants; these produced a much lower
signal to background ratio for immune enhancers, as would be anticipated by the
fact that most of these are acting on coding regions rather than enhancers (Extended
Data Fig. 7). The mean signal above background was shown in a pie chart (Fig. 6).
Comparison to other methods for determining candidate causal variants. We
compared the efficacy of PICS versus previously published methods used to deter-
mine candidate causal variants (Fig. 2d, e). We first considered studies that had
used cutoffs of r2 5 1.0 and r2 . 0.8 to determine likely causal SNPs. Because prior
studies had not made use of dense genotyping data, we used only the GWAS cata-
logue results for this comparison, and applied PICS, and the two r2-cutoff criteria.
In practice these were much more stringent than prior analyses, because we limited
the GWAS catalogue studies to those that produced 6 or more genome-wide signi-
ficant hits, thereby pruning underpowered studies. We also required a significance
of P , 1026 for index SNPs, and merged index SNPs at the same locus to use the
strongest and most accurate lead SNP. We found that PICS autoimmunity SNPs
were much more likely to map to immune enhancers than SNPs identified by the
other statistics. In addition, when the PICS SNPs which overlapped the r2 . 0.8
and r2 . 1.0 sets were removed, the remaining SNPs did not show any enrichment
above background. In contrast, the candidate causal SNPs identified by PICS, but
missed by both of the other methodologies, were significantly enriched for immune
enhancers. Background was calculated based on random SNPs drawn from the
same loci (within 50 kb, frequency-matched controls) as the candidate causal SNPs.

We also compared PICS with a recently reported Bayesian approach64, using a
recently published study of MS20 that employed this methodology to call candidate
causal SNPs. Because this published method required full genotypes to be available,
this comparison was limited to only the MS dataset. Both PICS and the published
method are Bayesian approaches, where each SNP within the locus is given equal
prior consideration to be the causal variant, and the algorithm then weighs each SNP
based on the likelihood of each model given the data. However, the PICS method
provides two advantages. First, the probabilities assigned to each SNP by PICS are
determined empirically using permutation, rather than using a theoretical estimate
for the weight of each SNP. Second, PICS can be generalized to all GWAS data with
publicly available summary statistic data and does not rely on genotype data.

For the same MS Immunochip data set, PICS called 434 candidate causal SNPs,
whereas the prior method called 4,070 candidate causal SNPs; 177 SNPs were shared
between the two analyses. Of the 434 PICS candidate causal SNPs, 26.5% overlapped
immune enhancers, whereas 9.5% of the SNPs from the other method overlapped
immune enhancers; the background rate of random SNPs from the same loci over-
lapping immune enhancers was 8% (Extended Data Fig. 4). Because the method64

is clearly less stringent than PICS, we also tried using a high confidence set of SNPs
derived by that method, by selecting the top SNPs such that their average prob-
ability of being a causal variant was 10% (the same cutoff used for the PICS SNPs).
There were 165 SNPs in this high confidence set, compared to 434 for PICS, with
an overlap of 65 SNPs. 20.3% of the candidate causal SNPs in the high confidence
set64 overlapped immune enhancers. Although anecdotal, these results suggest that
PICS performs at least as well as the prior method.
Tissue-specificity of diseases. We used PICS fine mapping to determine the set of
candidate causal SNPs for each of 39 different diseases, and examined whether they
were enriched within the enhancers most specific to each cell type (defined as being
in the top fifteenth percentile of H3K27ac signal compared to other cell types, and
with . 1 normalized mean H3K27ac ChIP-seq extended reads/base). To compare
enhancer regions across different cell types, we first subdivided regions of the genome
that were marked as enhancers into enhancer segments ,1 kb in size. Next, H3K27ac
read density at each enhancer segment in the genome was compared across all 33 cell
types to determine the cell types in the top fifteenth percentile (H3K27ac signal was
quantile normalized across the cell types before comparison). The heatmap (Fig. 3)
depicts P values for the enrichment of PICS SNPs for each disease in H3K27ac
elements for each cell type, as calculated by the chi square test. For this comparative
analysis, enrichment of PICS SNPs was measured against a background of all com-
mon 1000 Genomes SNPs. We used this approach because the goal was to high-
light cell-type-specificity of the diseases, which would have been normalized out by
the rigorous locus controls used above, and given that the specificity of PICS SNPs
for enhancers within the loci was already established. We also mapped the express-
ion patterns of genes with PICS candidate causal coding SNPs associated with
Crohn’s disease, MS and rheumatoid arthritis (Extended Data Fig. 8).
Super-enhancer enrichment. The full set of loci called as super-enhancers18 in CD41

T-cell subsets (Tnaive, Tmem, TH17, THstim) were merged and identified as CD41 T-cell
super-enhancer regions. These regions often contain clusters of discrete enhancers
marked with H3K27ac, separated by non-acetylated regions. We assessed if PICS
SNPs mapping to super-enhancers were more likely to occur in H3K27ac-marked
enhancer regions than in intervening regions. Within CD41 T-cell super-enhancer
regions, we compared overlap of PICS candidate causal SNPs with CD41 T-cell
H3K27ac regions, compared to frequency-matched background SNPs drawn from
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these same regions (Extended Data Fig. 7). H3K27ac intervals in CD41 T-cell
super-enhancers were called based on being in the top fifteenth percentile in mean
H3K27ac in T cells compared to the other 25 cell types. In addition, we assessed
overlap between PICS SNPs and H3K27ac elements preferential to either stimulated
or unstimulated CD41 T cells. Stimulated CD41 T-cell elements were defined as
those with a mean increase of . 25% in H3K27ac in the (average of) TH17, THstim,
TH0, TH1, TH2 cells, compared to the Tnaive, Tmem, Treg; the remainder of the CD41

T-cell set were defined as unstimulated elements.
Figure 4 shows that some sub-elements within IL2RA super-enhancer locus appear

bound by T-cell master regulators based on published ChIP-seq data, including
FOXP3 in Tregs, T-bet in TH1 cells, and GATA3 in TH2 cells65,66.
Non-coding RNA analysis. We next examined the set of disease-associated enhancers,
that is, immune enhancers containing PICS autoimmunity SNPs, and their asso-
ciation with non-coding RNAs. Non-coding RNA transcripts were called based
on a RNA-seq read density of 0.5 genome-normalized reads per bp over a window
size of at least 2 kb, excluding RNA transcripts overlapping annotated exons or
gene bodies. We found that enhancers containing PICS autoimmunity SNPs were
enriched for non-coding transcript production, primarily consistent with unspliced
enhancer-associated RNAs. Candidate causal SNPs were enriched 1.6-fold within
T-cell enhancers that transcribed non-coding RNAs, compared to T-cell enhancers
overall (P , 0.01).
H3K27ac and DNase profiles. We measured H3K27ac profiles and DNase hyper-
sensitivity profiles in a 12 kb window centred around candidate causal SNPs, taking
the average signal for the 14 immune cell types for which H3K27ac was available,
and immune cell types from ENCODE26 for which DNase was available (CD141,
GM12878, CD201, TH17, TH1, TH2). Average normalized reads for H3K27ac and
DNase centred at PICS SNPs are displayed in Fig. 5a.
Transcription factor ChIP-seq binding site analysis. We compared the enrich-
ment of PICS autoimmunity SNPs at transcription factor binding sites identified
by ENCODE ChIP-seq67, relative to random SNPs drawn from the same loci (50 kb
window around the candidate causal SNPs, frequency matched). We show the results
for the 31 transcription factors whose binding sites are most significantly enriched
for PICS SNPs (Fig. 5b).
Motif creation / disruption analysis. We downloaded consensus motifs from
SELEX28 and Xie et al.29 (represented as degenerate nucleotide codes). We used the
853 highest probability non-coding PICS SNPs (mean probability 5 0.30, cutoff
. 0.1187), representing 403 different GWAS signals. For each candidate causal SNP,
we examined whether it created or disrupted a known motif from SELEX or Xie
et al.29 For comparison, we ran 1,000 iterations using frequency-matched random
SNPs drawn from the same loci (within 50 kb of the PICS SNPs). We found several
known motifs (Extended Data Fig. 9) to be significantly enriched, including AP1,
ETS, NF-KB, SOX, PITX, as well as several unknown conserved motifs (Extended
Data Fig. 9). Subtracting the number of motifs found to be disrupted against that
expected by background, and dividing by the total number of GWAS signals, we
estimate that approximately 11% of non-coding GWAS hits can be attributed to
direct disruption or creation of transcription factor binding motifs.
Neighbouring motif analysis. We compared the sequence within 100 nt of high-
likelihood PICS SNPs (cutoff . 0.1187) against random flanking sequence (10 kb
away on either side from the causal SNPs) and looked for enriched motifs using
HOMER (http://homer.salk.edu/homer/)63. We found significant enrichments for
NF-KB, RUNX, AP1, ELF1, and PU1 (Extended Data Fig. 9). Interestingly, there
was a palindromic unknown motif TGGCWNNNWGCCA (P , 1024) previously
defined by phylogenetic conservation that was significant both in this method and
in the motif disruption/creation analysis. This motif resembles the consensus motif
for Nuclear Factor I (NFI) transcription factors , suggesting a role for at least one
member of this transcription factor family in autoimmunity.
Expression quantitative trait loci (eQTL) analysis. We used PICS to predict causal
SNPs from a peripheral blood eQTL data set with 1000 Genomes summary statistic
data available for all cis-eQTLs. We required a gene to have a cis-eQTL with a P value
, 1026 for this analysis, giving us 4,136 genes. For each gene we applied PICS. We
considered a autoimmunity GWAS hit to score as an eQTL if any autoimmunity
PICS SNP in the locus coincided with an eQTL PICS SNP with average probability
. 0.01%. We found that 11.6% (74/636) of autoimmunity GWAS hits were also
eQTL hits. In addition, 18.5% (15/81) of coding GWAS hits also showed eQTL
effects, suggesting that they may actually operate at the transcriptional level, in addi-
tion to any coding effects they may have.

To quantify overlap of candidate causal eQTL SNPs with functional elements,
we compared PICS eQTL SNPs against frequency-matched background SNPs drawn
from the same loci (within 50 kb) in 1,000 iterations. These comparisons are shown
in signal-to-background bar graphs for both coding/transcript-related functional
elements and for enhancers and promoters (Extended Data Fig. 10). The signal above
mean background was calculated for each functional category, and these results were

compared against the results for autoimmunity GWAS hits in the pie charts shown
in Fig. 6a.

We further examined whether the magnitudes of disease-associated eQTLs
differed, compared to the space of all eQTLs (Extended Data Fig. 10). Disease-
associated variants had modestly larger effects on gene expression (P , 1026 by
rank-sum test), but did not necessarily correspond to the strongest eQTLs.
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Extended Data Figure 1 | GWAS result for IBD Immunochip data at IL23R
locus. a, Each of the 500 SNPs in the IL23R densely genotyped locus is plotted
according to its association signal and position along the chromosome. The
R381Q missense variant is circled in red. b, Each of the 500 SNPs in the IL23R
densely genotyped locus is plotted according to its association signal and r2

linkage to R381Q. c, Same as b, but showing the association signal on the y axis
in x2 units. Over the range of values typically encountered in GWAS analyses,
x2 units and log P value are asymptotically linear. d, Simulated permutation

analysis of signal at IL23R locus. The 1.2-fold odds ratio signal was simulated
at the R381Q SNP by fixing the association signal at R381Q, but permuting
cases and controls such that all other SNPs are neutral and vary only with
statistical noise. Four representative results from the simulations are shown,
with the panels on the left showing the association signal in genomic space, and
the panels on the right (e) showing the association signal for each SNP in
relation to r2. Actual data is shown in a–c, simulated permutation is shown
in d, e.
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Extended Data Figure 2 | Calculating the relative likelihood of being the
causal SNP from standard deviation in association signal. a, b, For each SNP
in the IL23R locus, the mean association signal and the standard deviation,
calculated across 1,000 permutations (using a 1.2-fold odds ratio at the R381Q
SNP), are shown in genomic space (a) and in terms of each SNP’s r2 linkage
disequilibrium to the causal R381Q variant (b). c, The distribution of
association signals at rs77319898 (r2 5 0.71 to the causal variant) for 1,000
permutations is shown. The distribution of association signal values at each
SNP approximated a normal distribution. d, PICS analysis of a two SNP case to
determine the relative likelihood of each to explain the pattern of association at

the locus. The SNPs represented here are R381Q (SNP A) and rs77319898
(SNP B), which has an r2 5 0.71 to R381Q. The signal at SNP B is well-
explained by LD to SNP A, in a model where SNP A is treated as the putative
causal variant. The error bars indicate the standard deviation in the association
signal expected for SNP B, under the assumption that SNP A is causal.
e, The signal at SNP A is poorly explained by LD to SNP B, in a model where
SNP B is treated as the putative causal variant. The error bars indicate the
standard deviation in the association signal expected for SNP A, under the
assumption that SNP B is causal.
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Extended Data Figure 3 | Simulated permutations and empiric curve fitting
for 30,000 GWAS signals at Immunochip loci. a, We simulated 30,000 causal
SNPs in densely mapped Immunochip regions. Plot shows the relationship
between standard deviation in the association signal of neutral SNPs and their
r2 to the causal SNP (neutral SNPs within r2 . 0.5 of the simulated causal
variant are shown). The red line indicates the expected values derived from the
empiric equation for the standard deviation of the association signal at neutral
SNPs in LD with the causal SNP. b, Plot shows the relationship between
standard deviation in the association signals of neutral SNPs and the
association signal of the causal SNP. Each panel represents the set of neutral
SNPs with the indicated r2 to the causal variant. c, Simulated permutations over

a range of case-control ratios. We plotted the relationship between standard
deviation at neutral SNPs and their r2 to the causal SNP. Plots are shown for
three series of simulations, with the percentage of cases fixed at 10%, 20%, and
50% of the total sample size, and a causal SNP P value of 10220. Red line
indicates the expected values derived from the empiric equation for the
standard deviation of the association signal at neutral SNPs in LD with the
causal SNP in the locus. d, Simulated permutations over a range of effect sizes.
Plots are shown for three series of simulations, with the effect size fixed at
1.2-fold, 1.5-fold, and 2.0-fold, and the corresponding lead SNP P values fixed
at 10220, 10270, and 102150, respectively.
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Extended Data Figure 4 | Comparison of PICS with prior Bayesian
fine-mapping method. Bar graph shows the percentage of MS SNPs
overlapping immune enhancers using different algorithms for calling candidate
causal SNPs. The dotted line indicates the background rate at which random
1000 Genomes Project SNPs drawn from the same loci intersect immune

enhancers (,8%). The categories shown are (from top to bottom): 257 SNPs
called only by PICS, 3,812 SNPs called only by the Bayesian method, 177 SNPs
called by both PICS and the Bayesian method, all 434 SNPs called by PICS,
165 called by the Bayesian using a cutoff that only includes the highest
confidence SNPs, and all 4,070 SNPs called by Bayesian method.
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Extended Data Figure 5 | LD distance between PICS lead SNPs and GWAS
catalogue index SNPs. Histogram indicates LD distance (in r2) between PICS
fine-mapped Immunochip lead SNPs and previously reported GWAS
catalogue index SNPs from the same loci.
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Extended Data Figure 6 | Purification of human immune cell subsets.
a, Immune populations subjected to epigenomic profiling in this study (red
labels) or prior publications. b, CD41 cells were enriched based on CD25
expression (MACS) and subsequently sorted based on CD25hiCD127lo/2 to
isolate Treg cells; confirmed with FOXP3 intracellular staining. c, CD41CD252

cells were sorted to isolate Tmem (CD45RO1CD45RA2) and Tnaive

(CD45RO2CD45RA1) cells. d, CD41CD252 cells were PMA/ionomycin

stimulated and separated based on IL17 surface expression (MACS and
FACS) to isolate TH17 cells (IL171) and THstim cells (IL172). e, Naive
(CD45RA1CD45RO2) and memory (CD45RA2CD45RO1) CD81 T cells
were isolated using a BD FACSAria 4-way cell sorter. Results are shown
from one of two large-scale sorts. f, Mononuclear cells were isolated from
paediatric tonsils. Following CD10 enrichment (MACS), B centroblasts
(CD191CD101CXCR41CD442CD32) were purified by FACS.
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Extended Data Figure 7 | PICS SNPs localize to immune enhancers and
stimulus-dependent H3K27ac peaks in super-enhancers. a, Correlation
matrix of 56 cell types, clustered by similarity of H3K27ac profiles (high 5 red,
low 5 blue). b, Enrichment of non-coding autoimmune disease candidate
causal SNPs within immune enhancers and promoters compared to
background. The background expectation is based on frequency-matched
control SNPs drawn from within 50 kb of the candidate causal SNPs. Candidate
causal SNPs that produced coding changes or were in LD with a coding variant

(paired bars on the right) showed a smaller degree of enrichment in immune
enhancers and promoters compared to background. c, Overlap of PICS SNPs
with H3K27ac peaks within T-cell super-enhancers. Bar plot shows overlap
of PICS SNPs with H3K27ac peaks in super-enhancers in CD41 T-cells,
compared to random SNPs drawn from within the same super-enhancers
(all CD41; left bar graph). Adjacent bars show overlap to H3K27ac peaks
within CD41 T-cell super-enhancers that do (Stim) or do not (Unstim)
increase their acetylation upon stimulation.
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Extended Data Figure 8 | Expression pattern of genes with PICS autoimmunity coding SNPs. Heatmap shows the relative expression levels of genes with
coding SNPs associated with Crohn’s disease, multiple sclerosis, and rheumatoid arthritis.
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Extended Data Figure 9 | Motifs directly altered by or adjacent to candidate
causal SNPs. a, Known motifs (identified by conservation or SELEX) created
or disrupted by candidate causal SNPs at a higher frequency than expected
by chance when compared to control SNPs drawn from the same loci.

b, Additional motifs, identified by conservation, created or disrupted by
candidate causal SNPs more frequently than by chance. c, Known motifs
significantly enriched within 100 bp of candidate causal SNPs, compared to
background control SNPs drawn from the same loci.
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Extended Data Figure 10 | Enrichment of candidate causal eQTL SNPs in
functional elements. a, PICS was used to identify candidate causal SNPs for
4,136 eQTL signals in peripheral blood. Bar plot show their overlap with
indicated functional genic annotations. Background expectation was calculated
based on frequency-matched control SNPs drawn from within 50 kb of the

candidate causal SNPs. b, Overlap of candidate causal eQTL SNPs with
immune enhancers and promoters, versus background. c, Magnitudes of
disease-associated eQTLs compared to the space of all eQTLs. Histogram
compares the magnitudes of PICS eQTL SNPs that overlap PICS autoimmunity
SNPs against the full set of PICS eQTL SNPs.
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