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Two thirds of the human genome is 
composed of repetitive sequences. 

Despite their prevalence, DNA repeats 
are largely ignored. The vast majority 
of our genome is transcribed to produce 
non protein-coding RNAs. Among these, 
long non protein-coding RNAs repre-
sent the most prevalent and functionally 
diverse class. The relevance of the non 
protein-coding genome to human dis-
ease has mainly been studied regarding 
the altered microRNA expression and 
function in human cancer. On the con-
trary, the elucidation of the involvement 
of long non-coding RNAs in disease 
is only in its infancy. We have recently 
found that a chromatin associated, long 
non protein-coding RNA regulates a 
Polycomb/Trithorax epigenetic switch 
at the basis of the repeat associated 
facioscapulohumeral muscular dystro-
phy, a common muscle disorder. Based 
on this, we propose that long non-coding 
RNAs produced by repetitive sequences 
contribute in shaping the epigenetic 
landscape in normal human physiology 
and in disease.

Long Non Protein-Coding RNAs

Nowadays, we are witnessing a progressive 
deconstruction of the protein-centric view 
that has governed the molecular biology 
field for decades.1 Although functional 
non protein-coding RNAs (ncRNAs) such 
as tRNAs and snRNAs were discovered 
long time ago, the recognition of RNA 
as a functional molecule per se, acting at 
key levels in the complex, multilayered 
regulation of eukaryotic gene expression,  
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occurred only in recent years.2 This was 
triggered by the milestone discovery that 
the vast majority of mammalian genomes 
is transcribed to generate a wide array of 
ncRNAs.3

The main classification of ncRNAs is 
based on their length. Typically, molecules 
shorter than 200 bp are termed short or 
small ncRNAs, while transcript greater 
than 200 bp are defined long ncRNAs 
(lncRNAs).4

Short ncRNAs, which include microR-
NAs, piwi-interacting RNAs and short 
interfering RNAs, have been the most 
extensively characterized in recent years.5 
They are involved in several biological 
processes, such as post-transcriptional 
gene regulation, heterochromatin for-
mation and mobile repetitive elements 
control.5

LncRNAs represent the most numer-
ous and functionally diverse class of 
RNA produced by mammalian cells.6 
They are predominantly nuclear6 and 
have been involved in regulation of gene 
expression at transcriptional and post-
transcriptional levels and in the forma-
tion of functional sub-compartments in 
the nucleus2,7 (Fig. 1). Despite the grow-
ing interest on lncRNAs, they still remain 
poorly explored in terms of biological rel-
evance, cellular function and mechanism 
of action.

Most of the ncRNA analyses are per-
formed on the non-repetitive, non-exonic, 
polyA+ portion of the mammalian tran-
scriptomes. It has to be noted that over 
two-thirds of the mammalian genome 
is composed of repetitive elements.8 
Moreover, there are many examples of 
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play crucial roles in many biological phe-
nomena such as cell proliferation,24 stem 
cell identity,25 cancer,26 genomic imprint-
ing27 and X-chromosome inactivation.28

In mammalian X-inactivation, the  
1.7 kb lncRNA RepA, by directly interact-
ing with one of its components, recruits 
the multiprotein complex Polycomb 
Repressive Complex 2 (PRC2) to the 
future inactive X chromosome (Xi) 
enabling full induction of the lncRNA 
Xist.13,29 With the help of YY1,30 Polycomb 
Repressive Complex 1 (PRC1)31 and 
PRC2,13 Xist “paints” the X-chromosome 
and mediates the epigenetic repression of 
the whole chromosome territory. On the 
active X-chromosome (Xa), instead, the 
antisense 40 kb Tsix lncRNA32 functions 
by maintaining low Xist expression lev-
els and by interfering with PcG binding 
to RepA, thus preventing the repressive 
cascade.13,33

Pioneering studies conducted in flies 
revealed that transcription of ncRNAs 
from PcG/TrxG binding sites can coun-
teract PcG silencing.11,34-36 The discovery 
in mammals of similar transcripts origi-
nating from PcG/TrxG targets such as the 
Hox cluster,15,37 suggests that ncRNA tran-
scription could be a general feature of the 
regulation of PcG/TrxG function.

So far, the exact molecular mech-
anism(s) through which lncRNAs recruit 
epigenetic regulators remains largely 
unclear. Moreover, the vast majority of the 
lncRNAs characterized up to now func-
tion in trans to epigenetically repress gene 
expression.

We have recently contributed to this 
field through the identification of the first 
activating lncRNA involved in a human 
genetic disease: facioscapulohumeral mus-
cular dystrophy (FSHD) (see below).

Summary of Our Paper

FSHD (MIM #158900) is the third most 
common myopathy38 and is characterized 
by progressive wasting of facial, upper arm 
and shoulder girdle muscles. FSHD is an 
autosomal-dominant hereditary disorder 
with peculiar features.39 The disease is 
not caused by classical mutations in a pro-
tein-coding gene. Rather, it is associated 
with reduction in the copy number of the  
3.3 kb macrosatellite D4Z4 repeat 

in the genome. Additionally, lncRNAs 
can form secondary structures that can 
function as “bait” for protein interaction, 
suggesting that transcription of lncRNAs 
might contribute to the formation of spe-
cific epigenetic landscapes.

A paradigmatic example of the role of 
lncRNAs in epigenetic gene regulation is 
represented by X-chromosome inactiva-
tion. Upon its discovery more than fifty 
years ago,20 this has become one of the 
most exciting fields in molecular biology. 
X-chromosome inactivation is a multi-step 
cascade of events where several lncRNAs, 
produced by the so-called X-chromosome 
Inactivation Center (XIC), collaborate 
with Polycomb Group (PcG) of proteins 
leading to chromatin compaction and epi-
genetic repression.21

Together with the Trithorax group 
(TrxG) of proteins, PcG constitutes an 
evolutionary conserved antagonistic sys-
tem that regulates gene expression at the 
epigenetic level.22,23 Typically, PcG is asso-
ciated with gene repression while TrxG 
with gene activation. Initially discovered 
as key regulators of homeotic (Hox) genes 
during development in D. melanogaster, 
it is now clear that PcG and TrxG factors 

ncRNAs that are antisense or partially 
overlapping to protein-coding genes.3 
Finally, there are indications that the 
majority of ncRNAs are non-polyadenyl-
ated.6 Hence, the range, depth and com-
plexity of the mammalian transcriptome 
are far from being fully characterized.9

Chromatin remodeling factors are 
crucial players in defining the epigenetic 
state of a cell and their genomic recruit-
ment needs fine-tuned temporal and 
spatial regulation. Generally, chromatin 
remodeling components lack sequence-
specific DNA-binding domains and need 
to be guided to their targets by auxiliary 
factors. Interestingly, lncRNAs tend to be 
enriched in the nucleus and are increas-
ingly involved in the epigenetic regulation 
of gene expression.6,10 In particular, several 
lncRNAs bind to multiple chromatin reg-
ulatory proteins to mediate their recruit-
ment to specific genomic targets.11-19

LncRNAs display features that are par-
ticularly suitable for molecules mediating 
the targeting of protein complexes to pre-
cise genomic sites. Indeed, compared to 
transcription factors, which typically bind 
to simple and degenerate DNA motifs, 
lncRNAs can specify “unique addresses” 

Figure 1. Schematic representation of the diverse cellular functions of lncRNAs. LncRNAs are lo-
calized both in the cytoplasm (in yellow) and in the nucleus (in red). the vast majority of lncRNAs 
has yet to be functionally characterized (?). inside the nucleus, lncRNAs can act in the negative (-) 
or positive (+) regulation of gene expression at transcriptional level. furthermore, specific nuclear 
lncRNAs can promote a functional compartmentalization of the nucleus. they are involved in the 
constitution of specific sub-nuclear structures such as nucleoli (rRNAs), speckles (MALAT1) and 
paraspeckles (NEAT1). it has also been described that cytoplasmic lncRNAs (in yellow) can com-
pete with mRNAs (in grey) for the binding to miRNAs (in light blue), interfering with the available 
cellular pool of miRNAs, ultimately influencing gene expression at the post-transcriptional level.
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to a repressive chromatin organization. In 
FSHD patients, reduction of D4Z4 copy 
number results in a critical reduction of 
PcG binding and, as a consequence, reduc-
tion of PcG silencing on the contracted 
4q35 allele. This creates the epigenetic 
environment permissive for the transcrip-
tion of an activatory, long ncRNA, that 
we named DBE-T, originating proximally 
to and covering part of the repeat array  
(Fig. 2). DBE-T is produced solely in 
FSHD patients and is required for open-
ing up the 4q35 chromatin and for de-
repression of 4q35 genes. Mechanistically, 
we discovered that DBE-T is a chromatin-
associated RNA that functions in cis, as 
demonstrated by the lack of 4q35 genes 
transcriptional de-repression in cells 
expressing DBE-T in trans from a trans-
gene. Our data show that DBE-T remains 
associated to the FSHD locus chromatin 
and promotes the recruitment of the TrxG 
protein Ash1L through direct binding. 
Ash1L recruitment is associated with the 
accumulation of H3K36me2 at the FSHD 
locus. As a consequence, this leads to de-
repression of FSHD candidate genes18 
(Fig. 2). In this respect, DBE-T appears 

and higher order chromatin struc-
ture49,51,52 are altered in FSHD patients. 
While in healthy subjects the 4q35 locus 
is organized as repressed chromatin, 
FSHD has been associated with an epi-
genetic switch that leads to the inappro-
priate de-repression of several 4q35 genes, 
among which there are the leading FSHD 
candidates.53,54 While this is known since 
over a decade, the molecular mechanism 
through which D4Z4 repeats regulate 
chromatin structure and gene expression 
at 4q35 has remained elusive.

Our recent work indicates that the 
D4Z4 repeat is a novel Polycomb target.18 
Indeed, D4Z4 repeats are able to initiate 
de novo PcG recruitment and a reduc-
tion of PcG levels causes de-repression 
of the 4q35 locus. Importantly, FSHD 
patients display a reduced PcG binding 
and a reduced spreading of the PcG his-
tone mark H3K27me3 at the disease locus 
compared to controls.18

Based on our data, we propose that 
in healthy subjects, the presence of many 
D4Z4 units results in extensive PcG bind-
ing, DNA methylation, histone de-acety-
lation and chromatin compaction leading 

mapping to the sub-telomeric region of 
human chromosome 4 long arm (4q35). 
D4Z4 is extremely polymorphic in the 
general population, ranging from 11 to 
150 copies.40,41 On the contrary, FSHD 
patients carry a contracted D4Z4 array, 
containing only 1 to 10 units,42,43 sug-
gesting that a gain-of-function element, 
linked to a threshold D4Z4 copy number 
effect, is involved in the disease.

D4Z4 belongs to a family of human 
tandem repeats termed macrosatellites 
that are non-centromerically located.44 
Together with other members of the fam-
ily, such as DXZ4 on chromosome X45 
and RS447 on 4p,46 D4Z4 is extremely 
GC-rich. Notably, the area occupied by 
D4Z4 repeats in healthy subjects repre-
sents one of the largest GC-rich regions of 
the human genome.

Several FSHD clinical features, such as 
the variability in severity and rate of pro-
gression, the gender bias in penetrance, 
the asymmetric muscle wasting and the 
discordance of the disease in monozygotic 
twins, strongly suggest the involvement 
of epigenetic factors.47 Accordingly, DNA 
methylation,48 histone modifications49,50 

Figure 2. Model of DBE-T mediated de-repression of 4q35 genes in fSHD. in healthy subjects, the D4Z4 repeat array carrying many units displays 
extensive binding of PcG proteins leading to repression of the 4q35 locus. in fSHD patients, reduction in D4Z4 copy number critically diminishes PcG 
binding and silencing, allowing for transcription of the lncRNA DBE-T to occur. DBE-T functions in cis to promote opening of chromatin structure and 
de-repression of 4q35 genes through direct binding and recruitment of the trxG protein Ash1L, which drives H3K36me2 at the fSHD locus.
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information, as repeats can provide 
alternative promoters, alternative exons, 
regulatory ncRNAs and short interfer-
ing RNAs targeting cellular genes.75-79 
The influence of repeat transcription to 
the transcriptional output of mamma-
lian genomes is surprisingly broad. In 
mammalian cells, around 6–30% of the 
total amount of transcripts initiate within 
repetitive elements.77 Hence, transcription 
of repetitive elements could be one of the 
major driving forces of evolution.

The majority of the typical PcG his-
tone marks are located outside protein-
coding regions and mainly in genomic 
repeats.31,80-83 Our results support the 
hypothesis that repetitive elements might 
function as genomic binding platforms for 
PcG, whose activity can be regulated by 
lncRNAs.18,83

RNAs are arbitrarily defined as non-
protein coding if they do not contain an 
ORF longer than 100 amino acids.4,84 
Nevertheless, this dichotomy does not 
necessarily reflect distinct biological func-
tions.4,84-86 Indeed, there are examples of 
protein-coding RNAs displaying also 
non-coding functions.87-93 Moreover, 
RNAs encoding for small (less than 100 
amino acids) functional peptides have 
been reported.94 Thus, the complexity 
of RNA functions has just begun to be 
unveiled and upcoming discoveries might 
reveal unexpected surprises.
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