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SUMMARY

Resistance to chemotherapy plays a significant
role in cancer mortality. To identify genetic units
affecting sensitivity to cytarabine, the mainstay of
treatment for acute myeloid leukemia (AML),
we developed a comprehensive and integrated
genome-wide platform based on a dual protein-cod-
ing and non-coding integrated CRISPRa screening
(DICaS). Putative resistance genes were initially
identified using pharmacogenetic data from 760 hu-
man pan-cancer cell lines. Subsequently, genome
scale functional characterization of both coding
and long non-coding RNA (lncRNA) genes by
CRISPR activation was performed. For lncRNA func-
tional assessment, we developed a CRISPR activa-
tion of lncRNA (CaLR) strategy, targeting 14,701
lncRNA genes. Computational and functional anal-
ysis identified novel cell-cycle, survival/apoptosis,
and cancer signaling genes. Furthermore, transcrip-
tional activation of the GAS6-AS2 lncRNA, identified
in our analysis, leads to hyperactivation of the GAS6/
TAM pathway, a resistance mechanism in multiple
cancers including AML. Thus, DICaS represents a
novel and powerful approach to identify integrated
coding and non-coding pathways of therapeutic
relevance.
INTRODUCTION

Although precision medicine and targeted therapies offer new

hope for treating cancer, chemotherapy still remains the first,

and last, line of defense formost patients. Cytarabine (1-b-d-ara-

binofuranosylcytosine, Ara-C) is a deoxycytidine analog that is

used as part of a standard chemotherapeutic regimen for the

treatment of acute myeloid leukemia (AML) (Ramos et al.,

2015). However, �30% to 50% of patients relapse with chemo-

therapy-resistant disease. Thus, there is an ever-present need to

better understand the genetic and molecular mechanisms that

contribute to chemotherapy resistance.

To date, studies on mechanisms leading to therapy resistance

have focused on protein-coding genes, yet cancer development

and progression cannot be fully explained by the coding genome

(Huarte, 2015; Imielinski et al., 2012). The recent explosion in

research and understanding related to the non-coding RNA

(ncRNA) transcriptome has highlighted the importance of

ncRNAs in biology (Hon et al., 2017; Iyer et al., 2015). Functional

validation of various ncRNA species highlights the fact that these

RNAs may play important roles in the pathogenesis of diseases

including cancer (Schmitt and Chang, 2016).

One large group of ncRNAs is represented by long non-coding

RNAs (lncRNA). LncRNAs can be either nuclear or cytoplasmic in

localization and play roles in a diverse array of biological pro-

cesses. Asmany nuclear lncRNAs behave in a cis-actingmanner

(Quinn and Chang, 2016), their study requires their expression

from endogenous loci, and CRISPR technologies now facilitate

themodulation of gene expression directly from the endogenous
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Figure 1. Identification of Protein-Coding and Non-coding Gene Biomarkers Correlated with Differential Ara-C Response
(A) Distribution of Ara-C drug sensitivities across 760 pan-cancer cell lines profiled by both CCLE and CTD2 studies, quantified by their Z scaled area under the

dose-response curve values after regressing out lineage-specific effects. See also Table S1.

(B) Distribution of Z scaled drug resistance-gene expression Pearson correlation values of all analyzed genes. Representative protein-coding and non-coding

gene symbols enriched beyond a Z score threshold of ±1.16 are demarcated. See also Table S1.

(C) Summary of gene set enrichment analysis (GSEA) of protein-coding genes ranked by drug resistance-gene expression correlation values using annotated

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. See also Table S3.

(D) Representative KEGG pathways from GSEA of protein-coding genes ranked by drug sensitivity-gene expression correlation values as shown in (B) and (C).

See also Table S3.

(legend continued on next page)

650 Cell 173, 649–664, April 19, 2018



promoter (Joung et al., 2017a; Konermann et al., 2015). This

approach has already been compellingly demonstrated using

CRISPR interference (CRISPRi) to silence the expression of

lncRNAs genome-wide (Liu et al., 2017).

Although we now have a wealth of high-throughput data delin-

eating expression of coding and non-coding genes across hun-

dreds of cancer cell lines (Barretina et al., 2012; Garnett et al.,

2012), there remains a critical lack of integrated high-throughput

functional characterization and validation of these data in a dis-

ease context. We therefore sought to develop an integrative and

comprehensive CRISPR activation (CRISPRa) framework that

would complement these publicly available ‘‘Big Data’’ data-

bases to enable the discovery of functional human protein cod-

ing and lncRNA genes contributing to chemotherapy resistance.

In doing so, we developed a dual coding and non-coding inte-

grated CRISPRa screening (DICaS) platform and applied this

integrative approach to identify genetic units and pathways

that promote resistance to Ara-C treatment.

RESULTS

Pan-Cancer Cell Line Analysis of lncRNAs Associated
with Drug Response
In order to comprehensively define resistance mechanisms to

chemotherapy, we chose to examine cellular responses to

Ara-C. We developed a computational strategy to identify genes

that correlatewith sensitivity or resistance to Ara-Cby correlating

pharmacological profiles from the Cancer Target Discovery and

Development (CTD2) database (Basu et al., 2013; Rees et al.,

2016) with the transcriptomes of 760 corresponding cell lines

from the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al.,

2012) (Figure S1A). To identify high confidence gene targets, it

is imperative to integrate analysis of asmany cell lines aspossible

(Rees et al., 2016); however, we found that the cell line drug

sensitivities formed a skewed distribution (Figure S1B), likely

conferred by tissue of origin and histological subtype. Indeed,

cancer cell type annotations explained a substantial amount of

the variation in drug sensitivities (adjusted R2 = 0.5123, ANOVA

p < 2.2e�16) (Figure S1A), which were subsequently corrected

(Figure S1C). Thus, using a linear regression model to remove

these effects we established a normalized distribution of Ara-C

sensitivity for the 760 cell lines analyzed (Figure 1A).

We subsequently performed a correlation analysis between

drug sensitivities and gene expression levels across the 760

cell lines (Figure 1B; Table S1) and determined appropriate

Z score thresholds (Figures S1D and S1E). Interestingly, genes

involved in the metabolism of Ara-C were highly enriched, illus-

trating the applicability of such an approach to identifying

chemotherapy resistance mechanisms. Low expression of de-

oxycytidine kinase (DCK) and equilibrative nucleoside trans-

porter 1 (ENT1/SLC29A1) correlated with increased resistance

to Ara-C (Z = �2.51 and �1.61, respectively), whereas high
(E) Pearson correlation distributions of gene pair expression levels in the cancer ce

protein coding-lncRNA gene pairs. Wilcoxon rank-sum test: p < 2.2e�16.

(F) Relationship of drug sensitivity-gene expression correlation values between

pairs (left: Pearson’s R = 0.552, p < 2.2e�16) and 5,000 random gene pairs (righ

See also Figures S1 and S2 and Table S2.
expression of cytidine deaminase (CDA) and SAM domain and

HD domain 1 (SAMHD1) correlated with increased resistance

(Herold et al., 2017; Schneider et al., 2017) (Z = 2.54 and 2.03,

respectively) (Figure 1B). Interestingly, we also observed a num-

ber of cell-cycle and DNA damage regulators previously impli-

cated in modulation of AraC sensitivity (Abraham et al., 2015;

Lamba, 2009) (Figure 1B).

To define biological pathways predictive of Ara-C resistance

we performed gene set enrichment analysis (GSEA) on the

drug sensitivity-gene expression correlations using Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathway annotations

(Figure 1C; Table S3) (Kanehisa et al., 2014; Subramanian

et al., 2005). We identified positive enrichment of cell survival

signaling pathways, including the Jak-STAT (NES = 1.385,

p = 0.013), PI3K-Akt (NES = 1.232, p = 0.025), and MAPK

(NES = 1.222, p = 0.042) pathways and negative enrichment

of the pyrimidine metabolic pathway (NES = �2.456, p =

0.00016), mechanisms related to DNA damage (e.g., p53

signaling pathway: NES = �2.293, p = 0.00016), and RNA regu-

latory mechanisms (e.g., RNA degradation: NES = �2.613, p =

1.6e�4) (Figures 1C, 1D, and S1F). To confirm their relevance

in human AML, we correlated pre-treatment AML transcriptome

profiles with corresponding disease-free survival data from 121

patients treated with Ara-C from The Cancer Genome Atlas

(TCGA) (Ley et al., 2013) and identified a large number of en-

riched pathways shared with our cell line predictions, including

oxidative phosphorylation (Farge et al., 2017) (NES = �1.994,

p = 1.1e�4) and RNA regulatory mechanisms (e.g., RNA degra-

dation: NES = �1.702, p = 0.0011) (Figures S1G and S1H).

As many non-coding genes act in a proximal and localized

manner (Schmitt and Chang, 2016), we evaluated coding and

non-coding cognate gene pairs for correlation with either resis-

tance or sensitivity to Ara-C and compiled a genome wide set

of 997 coding/non-coding sense/antisense gene pairs. Indeed,

we observed a significant positive correlation between sense-

antisense gene expression levels across the cell line panel

(Pearson correlation, median R = 0.5312; Wilcoxon rank-sum

test, p < 2.2e�16) (Figure 1E). Furthermore, cognate gene pairs

demonstrated significant positive correlation in drug sensitivity

(Pearson correlation, R = 0.5636, p < 2.2e�16) (Figure 1F).

Importantly, analysis of these same cognate gene pairs among

the TCGA AML patient cohort identified a similarly significant

positive correlation (Figures S2A–S2C). Interestingly, cognate

sense genes were found to be positively enriched in PI3K-Akt

(NES = 1.426, p = 0.0764) and MAPK signaling pathways

(NES = 1.787, p = 0.0040) (Figure S2D), implicating these

sense-antisense gene pairs in a number of the previously identi-

fied enriched pathways.

A CRISPRa Approach to Study AML Resistance to Ara-C
To functionally validate our predictive analysis in a high-

throughput manner, we established a CRISPRa-based system
ll line panel across 997 sense-antisense cognate gene pairs and 5,000 random

protein coding-lncRNA gene pairs across 997 sense-antisense cognate gene

t: Pearson’s R = 0.021, p = 0.1338).
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in AML cell lines to provide a comprehensive and integrative

genome-wide study of both the coding and non-coding genes

contributing to Ara-C resistance.

We identified theMOLM14 AML cell line to be the most appro-

priate model for our screening, as its IC50 (�0.13 mM) ranks it

among the most sensitive AML cell lines (Yang et al., 2013) (Fig-

ure 2A). Overexpression of the anti-apoptotic B cell lymphoma 2

(BCL2) gene increased the IC50 of MOLM14 for Ara-C, while

small hairpin RNA (shRNA)-mediated knockdown of DCK pro-

vided an even more significant protection, increasing its IC50

almost 300-fold (Figure 2B), confirming that sensitivity to Ara-C

can be readily manipulated.

We also tested synergistic activation mediator (SAM)-medi-

ated CRISPRa (Konermann et al., 2015) in MOLM14 cells as

compared with two additional leukemia cell lines, K562 and

HL60, and the previously validated HEK293T. Using a panel of

validated single guide RNAs (sgRNAs) targeting the promoters

of both coding (TTN, RHOXF2, ASCL1, HBG1) and non-coding

(MIAT, TUNA) genes (Chavez et al., 2015, 2016), we established

that the majority of sgRNAs gave the highest activation in

MOLM14 among the leukemia cell lines (Figure S3A).

Genome-wide CRISPRa Screening of Protein-Coding
Genes in AML
We next applied our CRISPRa platform to screen for protein-

coding genes using a genome wide sgRNA library (Konermann

et al., 2015) (Figure 2C). For library screening, cells were treated

for 14 days with 0.25 mM Ara-C, and cell viability monitored over

the treatment period (Figure S3B). Following treatment, sgRNA

abundances were quantified and analyzed for quality control

(Figures S3C–S3E). Transcript-level representation between T0

and T14 identified a host of genes enriched and depleted in

Ara-C-treated cells (Figures 2D and S3F). Interestingly, both

the correlation analysis and our forward genetic screen revealed

DCK to be the most significantly depleted gene, thereby indi-

cating that strong transcriptional activation of DCK by CRISPRa
Figure 2. CRISPRa Functional Screening of Coding Genes Modulating

(A) Distribution of Ara-C IC50 values across a panel of AML cell lines.

(B) Effect of BCL2 overexpression (blue) or DCK knockdown on sensitivity to Ara

(C) Schematic of CRISPRa pooled screening for the identification of genes whos

(D) Volcano plot summarizing the global changes in sgRNA representation of prot

genes validated herein (red text) or previously annotated (black text) to modulat

receiver operating characteristic analysis (Figure S3F). Red, enrichment in the CR

genes previously associated with differential Ara-C sensitivity and above the sign

S3C–S3F and S3H, and Table S4.

(E) Summary of GSEA of protein-coding genes ranked by CRISPRa screening us

See Table S3.

(F) Disease-free survival association with expression levels of ZBP1, MUL1, and

sensitivity-gene expression correlation analyses among patients treated with Ara

cutoff = 6.13 (low, n = 42; high, n = 79), log-rank test: p value = 0.0074. MUL1: VST

0.0033. PI4K2A: VST expression level cutoff = 7.23 (low, 36; high, n = 85), log-ra

(G) Ara-C efficacy measurements in MOLM14 cells expressing sgRNAs targetin

treatment. Data are represented as mean ± SD, n = 3. Welch two-sample t test:

(H) Modulation of apoptotic response upon stable expression of sgRNAs targeti

determined by annexin V and propidium iodide (PI) staining of cells treated with 0

sample t test: *p < 0.05. **p < 0.01, ***p < 0.001.

(I) Proliferation of unchallenged MOLM14 cells expressing sgRNAs targeting ZBP

represented as mean ± SD, n = 3. Welch two-sample t test: *p < 0.05. **p < 0.01

See also Table S7.
confers high sensitivity to Ara-C (Figures 1B and 2D). Indeed, this

was confirmed by overexpressing the top-scoringDCK targeting

sgRNA (Figure S3G). Furthermore, multiple genes suspected to

modulate sensitivity to Ara-C were also identified (Table S4).

GSEA identified a number of pathways congruent with our cell

line analysis (Figure 2E; Table S3). Importantly, we identified a

large overlap of 2,411 genes significantly enriched/depleted in

both our cell line and protein-coding CRISPRa screening (Fig-

ure S3H). We subsequently validated a subset of these genes,

including ZBP1, MUL1, and PI4K2A, whose expression was

associated with poor prognosis and decreased disease-free sur-

vival (Figure 2F). Cells expressing the relevant sgRNAs demon-

strated increased survival upon treatment with Ara-C (Figures

2G and S3I), and a decrease in apoptosis (Figures 2H and

S3J), thereby validating our findings. Importantly, the prolifera-

tive capacity of cells was not affected by the overexpression of

these sgRNAs (Figure 2I).

Functional Genome-wide Screening of lncRNAs in AML
To study the functional roles of lncRNA genes in Ara-C resis-

tance, we designed an sgRNA library using a comprehensive

set of 14,701 lncRNA genes, covering all major classifications

of lncRNAs (Figure 3A; Table S5).We designed at least 4 sgRNAs

per lncRNA, accounting for 22,253 transcriptional start sites

(TSSs), covering multiple TSSs per individual lncRNA. This re-

sulted in a library with 88,444 targeting guides (Figure 3A). We

termed this CRISPRa SAM-mediated approach ‘‘CRISPR acti-

vation of lncRNA’’ (CaLR).

To test our library, we picked sgRNAs targeting the TUNA

lncRNA gene (n = 4 sgRNAs) (Figure S4A) and two alternative

TSSs for the MIAT lncRNA gene (MIAT-01, n = 5 sgRNAs,

MIAT-06, n = 4 sgRNAs), and we confirmed activation of each

TSS using at least two sgRNAs (see Figures S3A, S4A, and

S4B). An additional set of randomized sgRNAs was also tested

on HEK293T and MOLM14, revealing that the majority of

sgRNAs demonstrated transcriptional activation in at least one
Ara-C Response

-C in MOLM14 cells. Data are represented as mean ± SD, n = 3.

e activation modulates sensitivity to Ara-C in MOLM14 cells.

ein-coding genes before and after 14 days of treatment with Ara-C. A subset of

e Ara-C sensitivity are labeled. A FDR threshold of 0.339 was determined by

ISPRa screening; blue, depletion in the CRISPRa screening; open black circles,

ificance threshold; filled black points, genes validated herein. See also Figures

ing annotated KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways.

PI4K2A, genes enriched in both protein-coding CRISPRa screening and drug

-C therapy within the TCGA-LAML patient cohort. ZBP1: VST expression level

expression level cutoff = 9.64 (low, n = 108; high, n = 13), log-rank test: p value =

nk test: p value = 0.038.

g ZBP1, MUL1, or PI4K2A based on normalized MTS reads following 48 hr of

*p < 0.05. **p < 0.01, ***p < 0.001.

ng ZBP1, MUL1, or PI4K2A in MOLM14 cells. The percentage of apoptosis is

.25 mM Ara-C for 72 hr. Data are represented as mean ± SD, n = 3. Welch two-

1, MUL1, or PI4K2A. Proliferation is quantified over 4 days (D1–D4). Data are

, ***p < 0.001.

Cell 173, 649–664, April 19, 2018 653



Mitophagy - animal

Tight junction

Cytokine-cytokine
receptor interaction

AGE-RAGE signaling
pathway in diabetic

complications

Protein processing in
endoplasmic reticulum

Rap1 signaling pathway

Jak-STAT signaling
pathway

Intestinal immune
network for IgA

production
Cell adhesion molecules

(CAMs)

Protein digestion and
absorption

AC106897.1

AC027307.1

AL359182.1

Complement and
coagulation cascades

TNF signaling pathway

Axon guidance

EGFR tyrosine kinase
inhibitor resistance

Glycerophospholipid
metabolism

Ras signaling pathway

Regulation of actin
cytoskeleton

Focal adhesion

Hippo signaling pathway

ECM-receptor interaction
Proteoglycans in cancer

Gap junction

PI3K-Akt signaling
pathway

AC063952.1

RMDN2-AS1

Phagosome

Adherens junction

GAS6-AS2

A

Sub-library Genes TSS sgRNAs

Human Intergenic  lincRNA 7,563 10,781 42,836

Human Antisense 5,532 8,545 33,965

Human Processed Transcript 1,606 2,927 11,643 

Non-Targeting Control 99

Total 14,701 22,253 88,543

B C

E

Intergenic

Antisense

Processed

lncRNA Coding Gene

D

0

5

10

15

FP
KM

 E
xp

re
ss

io
n 

Le
ve

l D
is

tri
bu

tio
ns

 o
f

C
R

IS
PR

a-
Te

st
ed

 G
en

es
 in

 A
M

L

Non-Coding
Genes

Protein Coding
Genes

***
***

Log2 Fold Change

Pe
rc

en
t o

f C
R

I S
PR

a 
G

en
es

 
D

et
ec

te
d 

in
 A

M
L

Noncoding 
Genes

Protein-Coding 
Genes

Noncoding 
Genes

Protein-Coding 
Genes

Figure 3. CRISPRa Functional Screening of Non-coding Genes Modulating Ara-C Response

(A) Left: summary of the CaLR library design specifications, including lncRNA gene numbers, transcriptional start sites (TSS), and total sgRNA numbers. Right:

relationships between coding genes and lncRNA genes for corresponding lncRNA classifications. See also Table S5.

(B) Volcano plot summarizing the global changes in sgRNA representation of non-coding genes before and after 14 days of treatment with Ara-C. A subset of

genes either validated herein to modulate Ara-C sensitivity (red text) or previously annotated in various cancer-related pathways (black text) are labeled. A FDR

threshold of 3.51e�5 was determined by analysis of nontargeting sgRNA negative controls at the transcript level (Figure S4H). Red points, enrichment in the

CRISPRa screening; blue points, depletion in the CRISPRa screening; filled black points, genes validated herein. See also Figures S4E–S4I and Table S6.

(C) Percentages of significantly enriched or depleted protein-coding or non-coding genes from CRISPRa screens detected in the TCGA-LAML patient samples.

Chi-square test: ***p = 6.92e�3,

(D) Gene expression level distributions of significantly enriched or depleted protein-coding or non-coding genes from CRISPRa screens detected in the TCGA-

LAML patient samples. Wilcoxon rank-sum test: ***p = 5.4e�7.

(E) Guilt-by-association pathway annotation of enriched genes identified in the CaLR screen. KEGG pathway gene sets were used for this analysis.

See also Table S7.

654 Cell 173, 649–664, April 19, 2018



0

0.5

1

0 0.25 0.5
0

0.5

1

0 0.25 0.5

0

0.5

1

0 0.25 0.5
0

0.5

1

0 0.25 0.5

B

C

μM Ara-CN
or

m
al

iz
ed

 V
ia

bi
lit

y

0

0.5

1

0 0.25 0.5

AL353148.1

**

0

0.5

1

0 0.25 0.5

AC012150.1 

**

0

0.5

1

0 0.25 0.5

LINC02426

*

**

AL157688.1

**
*

GAS6-AS2
**

1

2

3

D1 D2 D3 D4

AL353148.1

*

*

*

D

1

2

3

D1 D2 D3 D4

AL012150.1

*

1

2

3

D1 D2 D3 D4

GAS6-AS2

1

2

3

D1 D2 D3 D4

LINC02426

*

1

2

3

D1 D2 D3 D4

AL157688.1

**

*

*

*
*

**

Control GAS6-AS2

ANNEXIN V

PI

0

20

40

60

Control AL353148.1

Fo
ci

/C
el

l

*
G

F

E

**

Time CountsCe
ll 

Co
un

ts

AC012150.1

AC008073.2
**

**

1

2

3

D1 D2 D3 D4

AC008073.2

1

2

3

D1 D2 D3 D4

AC091982.2AC091982.2
**

**

AL359182.1
**

1

2

3

D1 D2 D3 D4

AL359182.1

*

++
+

+

++ ++ + +

++++++++++++++
+
+

+++++++++++++++++++++ ++++++ +++ ++

p = 0.035
Log-rank

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Time (Months)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

GAS6-AS2 Expr + +High Low

++

+++

+ ++ +

+++++++++++++++
+

+++++++++++++++++++++ ++++++++++ +++

p = 0.0026
Log-rank

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Time (Months)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

AC008073.2 Expr + +High Low

AC106897.1

1

2

3

D1 D2 D3 D4

AC106897.1

DAPIγ-H2AXMerge

Co
nt
ro
l

AL
35
31
48
.1

**

0

1

2

3

4

5

6

FC
Vi

ab
ili

ty

A

0

0.5

1

0 0.25 0.5

0

0.5

1

0 0.25 0.5

%
 o

f A
po

pt
os

is

*

* *

*

*

**
*

*

*
*

*

*

**

0

50

100

150

200

250

FC
 E

xp
re

ss
io

n

Disease Free Survival, AML

** ** * *** * ** ** ***

(legend on next page)

Cell 173, 649–664, April 19, 2018 655



of these cell lines (Figure S4D). Next, we carried out screening

using our CaLR library similar to that for the protein-coding

library above.

After quantifying sgRNA abundance, library preparations were

analyzed as above for potential technical bias (Figures S4E–

S4G). In order to estimate the false-positive rate within our non-

coding RNA screening, we included 99 non-targeting sgRNAs

(Figure 3A). These 99 non-targeting sgRNAs behaved as

expected (Figure S4G) and were utilized to determine an appro-

priate false discovery rate (FDR) cut-off to control for the false-

positive rate (Figure S4H). Interestingly, several cancer-associ-

ated lncRNA genes were identified among enriched sgRNAs,

including taurine up-regulated 1 (TUG1), HOXA transcript anti-

sense RNA, myeloid-specific 1 (HOTAIRM1), and plasmacytoma

variant translocation 1 (PVT1) (Figures 3B and S4I; Table S6).

Interestingly, expression analysis of lncRNAs and coding

genes from the TCGA AML patient cohort revealed that enriched

lncRNAs from our screen tended to be both detected at a higher

rate (p = 6.92e�3) and expressed more highly than depleted

lncRNAs (p = 5.4e�7), whereas a similar pattern was not

observed among the enriched/depleted protein-coding mRNAs

(Figures 3C and 3D).

Furthermore, guilt by association analysis of the enriched

lncRNAs identified two distinct gene set networks: (1) oxidative

phosphorylation and fatty acid metabolism, and (2) leukemia

development and progression (Figure S4J). Enrichment of these

pathways in the first network is reflective of the role of the mito-

chondria in regulating nucleotide metabolism, while specific

pathways enriched in the latter network include leukemia-asso-

ciated pro-survival pathways (e.g., interferon response, IL6/JAK/

STAT3 signaling, tumor necrosis factor alpha [TNF-a]/nuclear

factor kB [NF-kB] signaling) (Steelman et al., 2004; Stavropoulou

et al., 2016).

We compiled a short list of novel annotated lncRNAs to char-

acterize further, which were significantly enriched in both our

functional screening and our cell line analysis (Figure 3B). Co-

expression analysis to associate individual lncRNA transcript

levels with their most highly correlated protein coding genes
Figure 4. Validation of CaLR Screening Results

(A) Fold change (FC) of MOLM14 cell viability treated with 0.25 mMAra-C for 48 hr.

**p < 0.01, ***p < 0.001.

(B) Fold change (FC) of expression levels of targeted lncRNAs upon overexpres

mean ± SD, n = 3.

(C) Ara-C efficacy measurements in MOLM14 cells expressing sgRNAs targeti

treatment with the indicated concentrations of Ara-C. Data are represented as m

(D) Proliferation of unchallenged MOLM14 cells expressing sgRNAs targeting in

resented as mean ± SD, n = 3. Welch two-sample t test: *p < 0.05. **p < 0.01, **

(E) Left: modulation of apoptotic response upon stable expression of sgRNAs ta

screening in MOLM14 cells. The percentage of apoptosis is determined by anne

individual sgRNAs and treatedwith 0.25 mMAra-C for 72 hr. Data are represented

Right: representative flow cytometry plots of annexin V/PI staining intensities co

(F) Immunofluorescence images (left) for DAPI and phospho-gH2A.X staining in M

and treated with 25 mM Ara-C for 24 hr. Staining is quantified in the right panel. D

**p < 0.01, ***p < 0.001.

(G) Disease-free survival association with expression levels of GAS6-AS2 and A

resistance-gene expression correlation analyses among patients treated with Ara

level cutoff = 3.38 (low, n = 92; high, n = 29), log-rank test: p value = 0.035. AC0080

p value = 0.0026.

See also Figure S5 and Table S7.
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from our CCLE cell line panel identifiedmany of the pathways un-

covered in our global analysis, suggesting that these lncRNAs

play roles in survival pathways know to affect leukemia and

drug resistance (Figure 3E; Table S3).

Validation of Top lncRNA Candidates
To validate the findings from our screening experimentally, we

chose 11 genes significantly enriched and two genes signifi-

cantly depleted in our screening for further characterization (Fig-

ures 3B and 3E). Of these 13 genes selected from our screening,

10 were also found to be candidate genes predicted to influence

Ara-C response in our cell line analysis. The enriched sgRNAs re-

sulted in a significant protection over control cells, while the two

depleted genes resulted in decreased viability in response to

Ara-C (Figure 4A). Indeed, we confirmed increased lncRNA

expression across the different sgRNAs examined (Figure 4B).

To further characterize the ability of induced lncRNA expression

to resist Ara-C cytotoxicity, we treated cells expressing the rele-

vant sgRNAs with Ara-C (Figures 4C, S5A, and S5B). Expression

of each enriched sgRNA resulted in decreased Ara-C sensitivity

(Figures 4C and S5A), correlating with the protective effect

observed in Figure 4A, while the depleted lncRNA genes also

behaved as expected (Figure S5B).

To address how these lncRNAs may be promoting cell

viability, we examined lncRNA ability to promote either increased

proliferation or increased survival. Out of our candidate lncRNAs,

only three appeared to promote proliferation in the absence of

Ara-C (AL353148.1, LINC02426; AL157688.1) (Figures 4D,

S5C, and S5D), suggesting that their enrichment might be facil-

itated by increased proliferation. On the other hand, while all

sgRNAs were able to promote increased survival to some extent

(Figures 4E and S5E), both AC012150.1 and GAS6-AS2 (also

named GAS6 divergent transcript [GAS6-DT]) demonstrated a

significant ability to attenuate apoptosis (Figure 4E, right panel).

These results were further confirmed in an independent HL-60

hematopoietic cell line (Figures S5F–S5H).

Given that Ara-C promotes extensive genotoxic stress, we

tested if our lncRNAs may affect the DNA damage response
Data are represented as mean ± SD, n = 3. Welch two-sample t test: *p < 0.05.

sion of enriched sgRNAs versus endogenous levels. Data are represented as

ng the indicating genes based on normalized MTS reads following 48 hr of

ean ± SD, n = 3, Welch two-sample t test: *p < 0.05. **p < 0.01, ***p < 0.001

dicating genes. Proliferation is quantified over 4 days (D1–D4). Data are rep-

*p < 0.001.

rgeting a panel of significantly enriched sgRNAs as determined through CaLR

xin V and propidium iodide (PI) staining of MOLM14 cells stably infected with

asmean ±SD, n = 3.Welch two-sample t test: *p < 0.05. **p < 0.01, ***p < 0.001.

rresponding to two sgRNAs promoting survival versus nontargeting control.

OLM14 cells stably infected with sgRNAs targeting the lncRNA genes shown

ata are represented as mean ± SD, n = 3. Welch two-sample t test: *p < 0.05.

C008073.2, genes enriched in both non-coding CRISPRa screening and drug

-C therapy within the TCGA-LAML patient cohort. GAS6-AS2: VST expression

73.2: VST expression level cutoff = 4.39 (low, n = 93; high, n = 28), log-rank test:
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(DDR). Indeed, we found that the lncRNA AL353148.1 affected

DDR response following Ara-C treatment (Figure 4F).

For two of our candidate lncRNAs (GAS6-AS2 and

AC008073.2), not only were they identified as candidates in

both our cell line analysis and functional CaLR screening, but

higher expression levels of these lncRNA genes were also asso-

ciated with poor prognosis and decreased disease-free survival

in AML patients treated with Ara-C (Figure 4G).

Taken together, these data reify our screening process as a

platform to identify clinically relevant lncRNAs that may modu-

late Ara-C cytotoxicity through targeting a number of cellular

processes.

lncRNA GAS6-AS2 Regulates the GAS/AXL
Signaling Axis
We next integrated our computational analysis with both the

coding and non-coding functional screens. Statistical analysis

demonstrated significant enrichment of 7 sense-antisense gene

pairs (Chi-square test, p < 2.2e�16) (Figures 5A and S2B). Of

the 7 cognate pairs identified, GAS6/GAS6-AS2 appeared to

be one of the best candidate pairs for further analysis as both

were highly enriched,GAS6 is already known toplay an important

role in drug resistance in cancer, including AML (Figure S6A),

while the role and function of GAS6-AS2 remains unknown.

To confirm the on-target effect of our CRISPRa sgRNA, we

overexpressed 8 different GAS6-AS2-targeting sgRNAs (Fig-

ure S6B). As expected, the majority of these sgRNAs led to a

significant increase in cell survival (Figure 5B). Importantly, we

found a strong correlation between the levels of GAS6-AS2 acti-

vation and the resistance to Ara-C, indicating a dose-dependent

specific effect of GAS6-AS2 (Figures 5B and 5C). Similarly,

expression of the strong inducer sgRNAs #1 and #3 promoted

decreased sensitivity to Ara-C (Figures 5C and 5D) and a potent

ability to reduce apoptosis (Figure 5E). Thus, the GAS6-AS2

lncRNA appears to be a bona fide promoter of Ara-C resistance.

AML is known to develop as a multi-clonal disease, and resis-

tant clones are frequently observed in early stages of the disease.

The selective pressure of treatment leads to rapid clonal evolu-

tion and the emergence of resistant clones. Indeed, following

Ara-C treatment of a mixed population of two MOLM14 cells,
Figure 5. GAS6-AS2 Promotes Drug Resistance In Vitro and In Vivo

(A) Integration of drug resistance-gene expression correlative analysis and forwar

significance thresholds, a higher number than expected by chance alone (Chi-sq

(B) Fold change (FC) of MOLM14 cell viability treatedwith 0.25 mMAra-C for 48 hr.

as mean ± SD, n = 3. Welch two-sample t test: *p < 0.05. **p < 0.01, ***p < 0.001

(C) Pearson correlation between cell viability versus GAS6-AS2 expression level

(D) Ara-C efficacy measurements in MOLM14 cells expressing sgRNAs #1 and

treatment. Data are represented as mean ± SD, n = 3. Welch two-sample t test:

(E) Left: representative flow cytometry data of MOLM14 cells expressing either co

labeled with viability (propidium iodide [PI]) and apoptotic (annexin V) markers. Rig

Data are represented as mean ± SD, n > 3, Welch two-sample t test: *p < 0.05. *

(F) Competition assay between populations of MOLM14 control-Blue and MOLM

cytometry plots. Right: ratios between red and blue cells over time. Data are rep

***p < 0.001.

(G) Schematic of an orthotopic xenograft competition assay between control (blu

(H) Ratios of control (blue) versus GAS6-AS2 (red) MOLM14 cells from bone mar

(I) Representative flow cytometry results of cells harvested from mouse bone m

for 5 days.

See also Figure S6.
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one expressing high GAS6-AS2 (labeled with red florescent pro-

tein) and the other expressing a non-targeting sgRNA (labeled

with blue florescent protein), the GAS6-AS2 expressing clone

emerged as dominant and was significantly enriched post-treat-

ment (Figure 5F). These results were also confirmed in vivo as

outlined in Figure 5G, with NSG mice engrafted with equal

numbers of GAS6-AS2 overexpressing and control MOLM14

cells. Analysis of the bone marrow found significant enrichment

(p = 0.002) of the GAS6-AS2-red cells (red/blue cells = 10.9 ±

6.4) (Figures 5H, 5I, S6D, and S6E). Importantly, within a non-

treated cohort, both populations of cells were present in an equal

ratio, demonstrating that GAS6-AS2 did not exert a proliferative

advantage (Figures 5H and 5I). Furthermore, mice transplanted

with GAS6-AS2 overexpressing cells alone had a greater tumor

burden post-Ara-C treatment as compared with control cells

(Figure S6F).

Several lncRNAs have been shown to exert their functional role

by cis-regulation of neighboring genes (Rinn and Chang, 2012),

and this is further supported by our genome wide analysis of

sense-antisense cognate gene pairs (Figures 1E, 1F, and 5A).

As GAS6-AS2 lies in an antisense head-to-head manner with

GAS6 (Figure S6G), we hypothesized that the GAS6/GAS6-

AS2 cognate gene pair may function in this manner. Importantly,

GAS6-AS2 displayed nuclear (and cytoplasmic) localization (Fig-

ure S6H), suggesting that it may have the potential to regulate the

GAS6 locus. GAS6 is an important ligand for the TYRO3-AXL-

MERTK (TAM) receptor tyrosine kinase signaling axis, controlling

known pro-survival signals in AML (Wu et al., 2017). Indeed, up-

regulation of GAS6/TAM signaling strongly correlates with resis-

tance to chemotherapy and is a predictor of poor survival (Hong

et al., 2008). In line with our hypothesis, GAS6 expression levels

were found to be strongly correlated withGAS6-AS2 expression

upon CRISPRa modulation (Figure 6A). In addition, we also

observed a striking correlation between these cognate gene

pairs across the diverse 760 CCLE cell line panel (Pearson’s

R = 0.8762, p < 2.2e�16) (Figure 6B), as well as for a diverse

set of primary human cancer types including AML (Figures 6C

and S7A).

Activation of the GAS6/TAM pathway has been reported to

promote MAPK, JAK/STAT, and NF-kB signaling (Schoumacher
d genetic screenings identifies seven sense-antisense gene pairs that pass all

uare test: p = 9.85e�7).

Cells expressing individual sgRNAs targetingGAS6-AS2. Data are represented

.

for each of the 8 sgRNAs targeting GAS6-AS2.

#3 targeting GAS6-AS2 based on normalized MTS reads following 48 hr of

*p < 0.05. **p < 0.01, ***p < 0.001.

ntrol or GAS6-AS2-targeting sgRNAs, treated with 25 mM Ara-C for 24 hr and

ht: percentage of apoptosis determined from quantification of staining results.

*p < 0.01, ***p < 0.001.

14 GAS6-AS2-Red following 25 mM Ara-C treatment. Left: representative flow

resented as mean ± SD, n > 3. Welch two-sample t test: *p < 0.05. **p < 0.01,

e) and GAS6-AS2 (red) MOLM14 cells with Ara-C treatment.

row of mice treated and analyzed at day 17 as outlined in (G).

arrow 17 days following transplantation and treatment with vehicle or Ara-C
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Figure 6. GAS6-AS2 Activates GAS6/TAM

Signaling

(A) Pearson correlation between GAS6-AS2 and GAS6

expression levels following GAS6-AS2 activation. Data

are represented as mean of triplicate measurements.

(B) Pearson correlation between GAS6-AS2 and GAS6

expression levels across the 760 cancer cell lines

analyzed (Figures 1A and 1B).

(C) Pearson correlation between GAS6-AS2 and GAS6

expression levels in AML patient samples.

(D) Western blot analysis of differential GAS6/TAM

signaling activation in response to individual control or

GAS6-AS2 sgRNA overexpression.

(E) Pearson correlation between GAS6-AS2 and AXL

expression levels in AML patient samples.

(F) Pearson correlation between GAS6-AS2 and AXL

expression levels across the 760 cancer cell lines

analyzed (Figures 1A and 1B).

(G) Expression levels of GAS6-AS2, GAS6, and AXL in

MOLM14 and K562 cell lines.

(H) Ara-C efficacy measurements in MOLM14 and K562

cell lines, based on normalized MTS reads following

48 hr treatment with the indicated concentrations of

Ara-C. Data are represented as mean ± SD, n = 3.

See also Figure S7.
and Burbridge, 2017), with both MEK-ERK and S6K-RPS6

signaling axes being known downstream targets of TAM

signaling (Xu et al., 2017). Western blot analysis of lysates from

cells expressing three distinct GAS6-AS2 targeting sgRNAs

confirmed activation of the GAS6/TAM pathway (Figure 6D).

Importantly, both pERK and pRPS6 were strongly phosphory-

lated in response to GAS6-AS2 activation (Figure 6D).

Surprisingly in a variety of cancer subtypes, including AML,

GAS6-AS2 expression levels share strong correlations not only

with GAS6 but also to its target receptor AXL (Figures 6E and

S6B). AXL correlation was also mirrored in our 760 CCLE cell

line panel (Pearson’s R = 0.6064, p < 2.2e�16) (Figure 6F) and

by overexpression of GAS6-AS2 in both MOLM14 and HEK293

cells in vitro (Figure S7C). These data suggested that GAS6-

AS2 may be able to regulate the TAM receptor signaling axis at

a number of levels.

To further investigate the role of GAS6-AS2 in regulating GAS6

and AXL, we took advantage of the K562 leukemia cell line,

which we found to express high levels of GAS6-AS2, GAS6,
and AXL relative to MOLM14 (Figure 6G) and

that we demonstrate to be highly resistant to

Ara-C treatment (Figure 6G). Interestingly,

knockdown of GAS6-AS2 using two specific

locked nucleic acid (LNA)-enhanced anti-

sense oligonucleotides (ASOs) led to a signif-

icant decrease in both GAS6 and AXL mRNA

levels (Figures 7A, S7I, and S7J) as well as

an increased sensitivity of K562 cells to the

activity of Ara-C (Figure 6B).

Previous studies found that AXL transcrip-

tion is regulated by methylation of CpGs up-

stream of its TSS (Mudduluru and Allgayer,

2008). Direct methylation analysis using a
bisulfite assay identified 6 highly methylated sites in the AXL pro-

moter. Correspondingly, GAS6-AS2 overexpressing cells show

significant decreases in methylation of these CpG sites (Fig-

ure 7C), suggesting that GAS6-AS has the potential to act in

both a cis- and trans-acting manner.

To characterize the global function of GAS6-AS2 in cancer, we

performed an unbiased k-means clustering based on coding and

non-coding gene expression across 53 AML patients (Garzon

et al., 2014) (Figure S7D). A large number of genes known to

be regulated by promoter methylation were clustered together

with GAS6-AS2 (Figure 7D), supporting our hypothesis that

GAS-AS2 mediates CpG modification.

Based on these results, we hypothesized that GAS6-AS2

trans-activity may function through a DNA methyltransferase.

An unbiased screening of our CCLE panel for candidate DNA

methyltransferases that would correlate with Ara-C sensitivity

identified decreased expression of DNMT1 and DNMT3A

(Figure 7E). Importantly, we observed GAS6-AS2 to be signifi-

cantly enriched in RNAs bound to DNMT1 using a DNMT1
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RNA-IP sequencing (RIP-seq) dataset (Figure 7F) (Di Ruscio

et al., 2013). This suggests that GAS6-AS2 mediates trans-regu-

lation of AXL by coordinating activity of DNMT proteins at the

AXL promoter.

Thus, our data support a model whereby increased transcrip-

tion and expression of GAS6-AS2 promotes upregulation of

both the GAS6 ligand and its TAM receptors to promote

cellular survival and resistance to Ara-C treatment in AML

(Figure 7G).

DISCUSSION

Although thousands of lncRNAs have now been detected and

annotated in the human genome, the need to characterize their

functions remains a critical challenge. Here, we developed a

global approach to integrate computational analysis of cell line

pharmacogenomic datasets with functional CRISPRa screens

targeting coding and non-coding genes. This approach aimed

to uncover integratedmechanisms regulating normal cellular ho-

meostasis and disease and was applied to identifying functional

lncRNAs modulating the cytotoxic effect of Ara-C, a front-line

chemotherapy agent frequently used in the treatment of AML

patients.

Because lncRNAs are poorly annotated, we developed a bio-

informatic framework to facilitate the prioritization of candidate

genes by their functional and physiological relevance. Using

pharmacogenomic and transcriptomic data, we obtained a list

of coding and non-coding genes whose expression levels are

associated with cellular response to Ara-C. Our list identified

many of the coding genes and pathways previously shown to

regulate the response to Ara-C treatment. In addition, not only

did this analysis reveal a large number of lncRNAs to influence

response to Ara-C, but it also implicated a pattern of cis-regula-

tion by lncRNAs on their adjacent cognate coding genes. Thus,

this analysis provides us with a unique resource that can both

deliver a wealth of novel predictive biomarkers for response to

therapy and prioritize functionally relevant genes identified

through functional screening.

For our purposes, functional screening was carried out with

CRISPRa-based technologies using both an established pro-

tein-coding sgRNA library (Konermann et al., 2015) and a new

genome wide non-coding sgRNA (CaLR) library. In adapting

the CRISPRa technology, we found that appropriate cell models

and optimization are critical. For our new CaLR library, we chose

to generate sgRNAs targeting lncRNA genes that are well anno-

tated. This, in turn, enabled extensive promoter coverage up-

stream of TSSs and targeting of multiple TSSs for individual
(B) Modulation of Ara-C response upon GAS6-AS2 knockdown via ASO in K56

*p < 0.05. **p < 0.01, ***p < 0.001.

(C) Methylation of CpG islands in the HEK293T AXL promoter following modula

***p < 0.001.

(D) Gene ontology analysis of coding genes clustered with GAS6-AS2 as determ

(E) Drug sensitivity-gene expression Pearson correlation values of DNA methyltra

red. See also Figure 1B.

(F) Distribution of FPKM-normalized transcript abundances associated with DNM

(G) Model summarizing the mechanism by which GAS6-AS2 regulates GAS6/TA

See also Figure S7.
lncRNA genes. In addition, this screening approach offers the

advantage of driving lncRNA overexpression from the endoge-

nous genomic locus, enabling us to capture cis-acting and

nuclear lncRNA functions, which cannot be readily studied by

traditional overexpression approaches (Shechner et al., 2015).

It should be noted, however, that as some genes harbor

other small non-coding RNAs including microRNAs and small

nucleolar RNAs (snoRNAs) within intronic regions, driving

expression from the endogenous promoter may also result in

their expression.

Indeed, our novel CaLR approach identified lncRNAs that

facilitate resistance to Ara-C treatment. These data demonstrate

that many lncRNA genes are functionally relevant for cancer and

modulate distinct cellular programs. Integrating coding and non-

coding screening approaches also allows us to categorize

lncRNA genes by function, and although we have applied these

libraries to the identification of novel genes involved in chemo-

therapeutic resistance, this platform alone can be applied to

the functionalization of lncRNAs across a wide range of biolog-

ical questions.

Thus, complete integration of computational cell line analysis,

coding/non-coding CRISPRa screens, and patient outcome

data resulted in the discovery of a distinct set of 7 cognate

sense-antisense gene pairs. Of these seven pairs, we pursued

the GAS6/GAS6-AS2 cognate gene pair as drivers of resistance

to Ara-C in AML.We found that GAS6-AS2 functions through cis-

regulation of its adjacent cognate gene, coding for the GAS6

ligand, as well as the trans-regulation of its receptor AXL to drive

aberrant downstream signaling of this pathway.

While each of these approaches as individual modules

(computational and screening) has been shown to be useful to

identify genes regulating specific cellular processes, each har-

bors inherent limitations and bias requiring extensive validation

of hits. However, our integrated approach described here

serves as a more powerful framework for the screening and dis-

covery of protein-coding and non-coding networks regulating

biological processes, thereby providing a resource to facilitate

improvements toward the annotation and functionalization of

non-coding RNAs at large. Our analysis suggests that there

are a substantial number of coding and non-coding genes

that, at a minimum, serve as predictive biomarkers that corre-

late with differential Ara-C responses and may serve as

therapeutic targets for the tuning of Ara-C response through

modulation of their expression levels. Indeed, this approach

may facilitate the identification of novel high confidence and

clinically relevant therapeutic opportunities across a broad

spectrum of human diseases.
2 cells. Data are represented as mean ± SD, n = 3, Welch two-sample t test:

tion of GAS6-AS2 expression. n = 12, Chi-square test: *p < 0.05. **p < 0.01,

ined by k-means clustering (cluster #6).

nsferases. Genes enriched beyond a Z score threshold of ± 1.16 are colored in

T1 versus IgG.

M signaling.
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lenti dCAS-VP64_Blast Konermann et al., 2015 Addgene #61425

lenti MS2-P65-HSF1_Hygro Konermann et al., 2015 Addgene #61426

Human CRISPR Activation Library Konermann et al., 2015 Addgene #1000000057

pSB700 Cerulean-Zhang2.0 Chavez et al., 2016 Addgene #79378

pCDH-puro-Bcl2 Cheng et al., 2013 Addgene #46971

pMD2.G Didier Trono Addgene #12259

psPAX2 Didier Trono Addgene #12260

shDCK Sigma-Aldrich TRCN0000009934

shDCK Sigma-Aldrich TRCN0000196649

shDCK Sigma-Aldrich TRCN0000196362

Chemicals, Peptides, and Recombinant Proteins

5-Bromo-2-deoxyuridine (BrdU) Sigma-Aldrich B5002

Cytarabine Sigma-Aldrich PHR1787

FxCycle PI/RNase Staining Solution Invitrogen F10797

PureLinc DNase Invitrogen 12185-010

Hygromycin B Gold InvivoGen Ant-hg-1

Zeocin InvivoGen Ant-zn-1

Blasticidin InvivoGen Ant-bl-1

Puromycin Gibco A11138-03

FastDigest Esp3I Thermo Scientific #FD0454

APC-Annexin V BioLegend 640920

NEBNext� High-Fidelity 2X PCR Master Mix New England Biolabs #M0541

ATP New England Biolabs #B0756A

10X T4 Ligation Buffer New England Biolabs #B0202

T7 DNA ligase New England Biolabs #M0318

T4 PNK New England Biolabs #M0201

Critical Commercial Assays

qPCR Lentivirus Titration Kit abm LC900

CellTiter 96 Aqueous Non-Radioactive Cell

Proliferation Assay

Promega G5421

(Continued on next page)

Cell 173, 649–664.e1–e8, April 19, 2018 e1



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TOPO TA Cloning Kit for Sequencing Invitrogen 45-0030

EZ DNA Methylation-Direct Kit ZYMO RESEARCH D5020

QIAprep Spin Miniprep Kit QIAGEN 27106

PureLink RNA Mini Kit Invitrogen 12183025

PureLink HiPure Plasmid Filter Maxiprep Invitrogen K2100-17

RETROscript Kit Invitrogen AM1710

Experimental Models: Cell Lines

Human: MOLM14 (Male) N/A N/A

Human: HL60 (Female) N/A N/A

Human: K562 (Female) N/A N/A

Human: HEK293T (Female) N/A N/A

Experimental Models: Organisms/Strains

NSG (6-8 weeks old) mice (Female) Jackson Laboratory 005557

Oligonucleotides

GapmeR GAS6-AS2 #1 (ID 174250) Exiqon 300600

GapmeR GAS6-AS2 #2 (ID 174298) Exiqon 300600

GapmeR MALAT1 Exiqon 300600

GapmeR Negative Control A Exiqon 300610

sgRNA TUNA Invitrogen GGCGGCGTCGGGGTCCCTAC

sgRNA TTN Invitrogen CCTTGGTGAAGTCTCCTTTG

sgRNA MIAT Invitrogen ATGCGGGAGGCTGAGCGCAC

sgRNA RHOXF2 Invitrogen ACGCGTGCTCTCCCTCATC

sgRNA ASCL1 Invitrogen CGGGAGAAAGGAACGGGAGG

sgRNA HBG Invitrogen CTTGACCAATAGCCTTGACA

sgRNA Control 1 Invitrogen GCAGCTCGACCTCAAGCCGT

sgRNA Control 2 Invitrogen GTACTCCAATCCGCGATGAC

sgRNA Control 3 Invitrogen GTCGGTGATCCAACGTATCG

sgRNA Control 4 Invitrogen GCGCCTTAAGAGTACTCATC

sgRNA Control 5 Invitrogen GTATGGTGAGTAGTCGCTTG

CaLR sgRNA (See Table S5 for sequences) Invitrogen N/A

PCR sequencing primers (See Table S7 for

oligos used)

Invitrogen/IDT N/A

qPCR primers (See Table S7 for oligos used) Invitrogen N/A

Deposited Data

CTRP Ara-C Drug Sensitivity Data Basu et al., 2013; Rees et al., 2016 https://portals.broadinstitute.org/ctrp/

CCLE Gene Expression Data Barretina et al., 2012 https://portal.gdc.cancer.gov/

DNMT1 IP- and IgG IP Sequencing Data Di Ruscio et al., 2013 SRR358674, SRR358675

AML Patient Sample Gene Expression Data Garzon et al., 2014 SRP050272

CRISPRa sgRNA Counts This Paper Tables S4 and S6

Software and Algorithms

FlowJo 10 FlowJo N/A

FlowLogic Miltenyi Biotec N/A

KALUZA Beckman Coulter N/A

Fiji imageJ LOCI Schindelin et al., 2012; Schneider

et al., 2012

Image Lab BIO RAD N/A

R Statistical Software https://www.r-project.org/ N/A

Picard http://broadinstitute.github.io/picard/ N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

STAR https://github.com/alexdobin/STAR Dobin et al., 2013

SAMtools http://samtools.sourceforge.net/ Li et al., 2009

Subread http://subread.sourceforge.net/ Aken et al., 2016; Liao et al., 2014

biomaRt http://bioconductor.org/packages/

release/bioc/html/biomaRt.html

Durinck et al., 2005

DESeq2 http://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Love et al., 2014

fgsea Bioconductor http://bioconductor.

org/packages/release/bioc/html/

fgsea.html

Sergushichev, 2016

CRAN: gProfiler https://cran.r-project.org/web/

packages/gProfileR/index.html

Reimand et al., 2016

Cytoscape http://www.cytoscape.org/ Smoot et al., 2011

TCGAbiolinks http://bioconductor.org/packages/

release/bioc/html/TCGAbiolinks.html

Colaprico et al., 2016

CRAN: survival package in R https://cran.r-project.org/web/

packages/survival/index.html

Therneau, 2015

CRAN: survminer https://cran.r-project.org/web/

packages/survminer/index.html

Kassambara and Kosinski, 2017

CutAdapt https://cutadapt.readthedocs.

io/en/stable/

Martin, 2011

MAGeCK https://sourceforge.net/p/mageck/

wiki/Home/

Li et al., 2014

Funcpred http://www.funcpred.com/ Perron et al., 2017

ToppCluster web server https://toppcluster.cchmc.org/ Kaimal et al., 2010

Human lncRNA CRISPRa gRNA Library Design https://github.com/vorasaurus/

Genome-Wide-CRISPR-Guide-

Construction

N/A

Other

BD LSR II flow cytometer BD N/A

GALLIOS FLOW CYTOMETER Beckman Coulter N/A

ChemiDoc Imaging System BIO RAD N/A

StepOnePlus Applied Biosystems N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Dr. Pier

Paolo Pandolfi (ppandolf@bidmc.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

MOLM14 (male) and K562 (female) cell lines were maintained in RPMI supplemented with 10% FBS, 2 mmol/L glutamine, and

100 U/mL penicillin/streptomycin (Invitrogen). HEK293T (female) cells were maintained in DMEM supplemented with 10% FBS,

2 mmol/L glutamine, and 100 U/mL penicillin/streptomycin (Invitrogen). HL60 (female) cells were maintained in IMDM supplemented

with 10% FBS, 2 mmol/L glutamine, and 100 U/mL penicillin/streptomycin (Invitrogen).

Adult female NSG mice (6–8 weeks old) mice were obtained from Jackson Laboratory (Bar Harbor, ME). Animals were used

in accordance with a protocol reviewed and approved by the Institutional Animal Care and Use Committee at BIDMC

(Protocol #082-2014).

Ara-C (Sigma-Aldrich) was diluted in sterile water to a working concentration of 1 mM.
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METHOD DETAILS

Guide RNA cloning
sgRNAswere cloned as previously published (Chavez et al., 2016). Briefly, the sgRNA expression vector pSB700 Cerulean-Zhang2.0

(Addgene #79378) was modified by Gibson assembly to contain the pac puromycin resistance gene. The modified vector was di-

gested with BsmBI and was gel-purified. A pair of 25 nt oligos containing the appropriate overhang was then ligated into the vector

by mixing 1 mL of the cut vector (normalized to 100-200 ng/mL), 0.5 mL of each primer at a 100 mM stock concentration, 2 mL of 10x T4

DNA ligase buffer, and 1 mL of T4 DNA ligase (NEB #M0202T) into a total ligation volume of 20 mL. Ligations were left at room tem-

perature overnight, and 1 mL of the ligation product was subsequently transformed into 10 mL of NEB Stable cells (NEB #C3040I).

Resulting colonies were verified by Sanger sequencing.

RNA isolation and RT-qPCR
Total RNA was purified from cell lines and tissues using the PureLink RNA Mini Kit (Invitrogen). For qPCR analysis, 2 mg of total RNA

was reverse transcribed into cDNA using the RETROscript Kit (Invitrogen). SYBR-Green qPCR analysis was then performed using

Applied Biosystems StepOnePlus in accordance with the manufacturer’s protocol.

Determination of IC50

To determine the half maximal inhibitory concentration (IC50), we grew cells for 48 h at a range of concentrations of Ara-C (32

to 0.03 mM). Cell numbers were measured by CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay (Promega).

Signal was measured using a Glomax Multi+ (Promega) plate reader. The normalized measurements were used to obtain survival

curves and IC50 values. For DCK knockdown we used MISSION shRNA (Sigma-Aldrich TRCN0000009934, TRCN0000196649,

TRCN0000196362), which were transduced according to standard protocols. For BCL2 overexpression we used pCDH-puro-

Bcl2 (Addgene #46971), which was transduced according to standard protocols. Two different LNA-based GapmeR (Exiqon) anti-

sense oligonucleotides (ASOs) were designed to target GAS6-AS2 specifically. The ASOs were transfected at a concentration of

50 mM using Lipofectamine 2000 according to standard protocols.

Cellular proliferation and titer
To determine cellular proliferation rates, 1e5 cells were plated in 24-well plates. Each day, 100 mL of cell suspension was transferred

to a well of a 96-well plate, and cell titer was measured by the CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay

(Promega). Signal was measured using a Glomax Multi+ (Promega) plate reader.

Cell cycle analysis
Cells were treated with 0.03 mg/mL BrdU (Sigma-Aldrich B5002-100MG), incubated at 37�C for 30 minutes, and fixed in 70%

ethanol. Then, the cells were treated with 1.5 M HCl for 30 minutes at room temperature and then incubated in 100 mL of 0.5 g bovine

serum albumin (BSA) in 100 mL 1x PBS for 10 minutes. Mouse anti-BrdU antibody (Cell Signaling Technology #5292) was added at a

1:200 dilution and then incubated for 1 h at room temperature. Cells were subsequently incubated with goat ant-mouse IgG (H+L)-

Alexa Fluor 488 (Thermo Fisher A-11001) for 30 minutes at room temperature. Propidium iodide (PI) staining was performed on cells

resuspended in FxCycle PI/RNase staining solution (Invitrogen F10797). Fluorescence was measured using a CytoFLEX flow cytom-

eter (Beckman Coulter) and analyzed by FlowJo v10.

Apoptosis
Cells were centrifuged, media was removed, and cells were resuspended in 100 mL of Annexin V Binding Buffer (BD PharMingen)

containing 1 mg/ml propidium iodide (Sigma-Aldrich) and APC-Annexin V (BioLegend) for 15 minutes. 400 mL of Annexin V Binding

Buffer (BD PharMingen) was then added to the samples. Fluorescence was measured using a BD LSR II flow cytometer or Gallios

flow cytometer (Beckman Coulter) and then analyzed using the FlowLogic software (Miltenyi Biotec) or FlowJo V10.

Immunofluorescence for detection of gH2A.X foci
Cells were fixed in 3.7% formaldehyde in PBS for 10 min, permeabilized with 0.5% Triton in PBS, and blocked with 5% BSA in PBS.

Mouse anti-gH2A.X primary antibody was used (Cell Signaling Technology #9718). Appropriate Alexa Fluor 488-conjugated second-

ary antibodies were then added (Invitrogen). Images were taken with a Zeiss LSM 880 confocal microscope. At least 50 nuclei per

condition were analyzed.

Nuclear/cytoplasmic fractionation
Fractionation of the cells to separate nucleus and cytoplasm was performed using PARIS-kit (Ambion) following the manufacturer’s

protocol. The efficiency of the separation of the two fractions was assessed by qPCR amplification with primers targeting the nu-

cleus-specific lncRNA MALAT1, followed by 2% agarose gel electrophoresis in 1x Tris-Acetate-EDTA buffer.
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Xenotransplantation of human leukemic cells
Animals were used in accordance with a protocol reviewed and approved by the Institutional Animal Care and Use Committee at

BIDMC (Protocol #082-2014). NSGmice were obtained from Jackson Laboratory (Bar Harbor, ME). Mice were housed in sterile con-

ditions using high-efficiency particulate arrestance-filtered micro-isolators and fed with irradiated food and acidified water. Adult

mice (6–8 weeks old) were sublethally irradiated with 250 cGy of total body irradiation 24 h before injection of leukemic cells. Cultured

AML cell lines werewashed twice in phosphate-buffered saline (PBS), cleared of aggregates and debris using a 0.2-mmcell filter, and

suspended in PBS at a final concentration of 0.2 million cells per 200 ml of PBS per mouse for intravenous injection. Xenograft tumors

were generated by injecting AML cells (in 200 ml of PBS) in the tail vein of NSGmice. Daily monitoring of mice for symptoms of disease

(ruffled coat, hunched back, weakness, and reduced motility) determined the time of killing for injected animals with signs of distress

(Saland et al., 2015). 10 days following transplantation, NSGmice were treated with Ara-C (Sigma-Aldrich) at a dose of 30mg/kg/day

for 5 days. At day 17, bone marrow was harvested from the mice, and cells were analyzed using a BD LSR II flow cytometer (BD

Bioscience). The results were analyzed using FlowJo v10.3 and Microsoft Excel 2016.

Western blotting
Cells were lysed in RIPA buffer (Boston BioProducts) supplemented with protease (Roche) and phosphatase (Roche) inhibitors.

Laemmli buffer with a 5% final concentration of b-mercaptoethanol was added to the samples, which were then boiled, separated

on NuPAGE 4%–12% Bis-Tris gradient gels (Invitrogen), and transferred to polyvinylidine difluoride membranes (Immobilon P, Milli-

pore). Membranes were then probed with the indicated antibodies. Antibodies for western blotting: Anti-TYRO3 (5585), anti-ERK

(9102), anti-phospho-ERK (9101), anti-phospho-S6 (2211), anti-S6 (2217), anti-STAT3 (4904), and anti-phospho-STAT3 (9136) anti-

bodies were purchased from Cell Signaling Technology. Anti-Actin (A3853) was purchased from Sigma Aldrich. Anti-phospho-

TYRO3/MERTK (PA5-37808) was purchased from Invitrogen.

Sodium bisulfite conversion of DNA
DNAmethylation status was examined by methylation-specific PCR of genomic DNA treated with sodium bisulfite using the EZ DNA

Methylation-Direct kit (Zymo Research). Primers were used as described (Mudduluru and Allgayer, 2008).

Human cancer cell line analysis
Ara-C sensitivity data from human cancer cell lines were obtained from the Cancer Target Discovery And Development (CTD2) data-

base (Basu et al., 2013; Rees et al., 2016), and cell lines with corresponding RNaseq profiles available from the Cancer Cell Line

Encyclopedia (CCLE) Genomic Data Commons (GDC) legacy archive were compiled, resulting in a total of 760 cell lines withmatched

Ara-C area under the dose-response curve (AUC) values and RNAseq profiles (Barretina et al., 2012). AUC values were regressed on

annotations describing tissue of origin and cancer subtype (‘‘ccle_primary_site,’’ ‘‘ccle_primary_hist,’’ ‘‘ccle_hist_subtype_1’’) using

linear regression and then Z-scaled (Table S1).

RNAseq datasets were downloaded as pre-aligned .bam files. Bam files were converted to .fastq files using Picard’s SamToFastq

(v1.130). Resultant .fastq sequencing files were then aligned to the hg38 reference genome with default STAR single-pass alignment

(v2.5.2b) (Dobin et al., 2013). Realigned .bam files were sorted by name using SAMtools v1.3 (Li et al., 2009). Coordinates were map-

ped to Ensembl gene IDs with featureCounts (Subread v1.5.2) as denoted by the Ensembl v89 annotation using features ‘‘-p -B -s 0’’

(Aken et al., 2016; Liao et al., 2014).

Ensembl IDs were converted to gene names using the biomaRt package in R (Durinck et al., 2005). Genes were demarcated as

either ‘‘protein-coding’’ or ‘‘noncoding’’ if the annotated gene_biotype was either ‘‘protein_coding’’ or one of ‘‘lincRNA,’’ ‘‘antisense,’’

‘‘processed_transcript,’’ ‘‘transcribed_processed_pseudogene,’’ ‘‘transcribed_unitary_pseudogene,’’ ‘‘transcribed_unprocessed_

pseudogene,’’ ‘‘macro_lncRNA,’’ ‘‘scRNA,’’ ‘‘TEC,’’ ‘‘3prime_overlapping_ncRNA,’’ ‘‘sense_intronic,’’ ‘‘bidirectional_promoter_

lncRNA,’’ ‘‘sense_overlapping,’’ or ‘‘unprocessed_pseudogene,’’ respectively, to maintain consistency with noncoding annotations

as obtained from analysis of the CaLR library annotations for downstream analysis. Transcript counts per gene were normalized by

DESeq2, and genes with arithmetic means lower than 0.5 were filtered from further analysis (Love et al., 2014). Normalized counts

were subjected to the varianceStabilizingTransformation (VST) function from DESeq2 prior to downstream analysis.

Pearson correlation coefficients between Ara-C lineage-regressed AUC values and VST-transformed gene expression levels were

calculated and then Z-scaled, similarly as previously described (Rees et al., 2016) (Table S1). A significance threshold was deter-

mined by receiver operatic characteristic (ROC) analysis using a curated set of genes associated with differential Ara-C response

as true positives (Table S2), which identified an optimal threshold of Z = 1.16. Gene set enrichment analysis was performed using

fgsea (Sergushichev, 2016) using pathway annotations from the Kyoto Encyclopedia of Genes and genomes (KEGG) (Kanehisa

and Goto, 2000). Pearson correlation coefficients to quantify co-expression between genes were assessed using VST-transformed

gene expression levels. The threshold for significant Pearson correlation between gene pairs was determined as the Pearson corre-

lation coefficient associated with the 99th percentile among 5,000 random protein-coding/noncoding gene pairs. Sense-antisense

cognate gene pairs were selected based on the presence of ‘‘-AS’’ in the noncoding gene symbol and the detection of the corre-

sponding coding gene.

Guilt-by-association pathway annotation of individual lncRNAs was performed as follows. First, Pearson correlation coefficients

between VST-transformed gene expression levels of each gene of interest and all other genes across the cancer cell line panel
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were ranked, and the genes with Pearson correlation coefficients above the 99th percentile were used to determine enriched KEGG

pathways using the gProfiler package with the parameters ‘‘max_p_value = 0.05, min_isect_size = 5’’ (Reimand et al., 2016). Network

visualizations were produced in Cytoscape v3.4.0.

Disease-free survival analysis
151 RNAseq datasets preprocessed to read counts per gene via HTSeq from the TCGA LAML patient cohort were obtained through

TCGAbiolinks in R (Colaprico et al., 2016). Of these available datasets, 123 patients were subjected to an Ara-C-containing treatment

regimen, which were used for disease-free survival analysis. The resultant RNAseq count matrices were filtered of genes whose me-

dian read count was 0 and then subjected to the varianceStabilizingTransformation (VST) function from DESeq2 prior to downstream

analysis. To determine relative associations of gene expression levels with disease-free survival, a Cox proportional hazards model

was developed using sex, age over 60, white blood cell count over 16, and cytogenetic risk as covariates using the ‘‘coxph’’ function

in the survival package in R (Therneau, 2015). The resultant coefficients per gene from the model were ranked and subjected to gene

set enrichment analysis with the fgsea package in R using the KEGG pathway annotations. In building Kaplan-Meier curves, thresh-

olds for the binary classification of gene expression were determined using the ‘‘surv_cutpoint’’ function, survival analysis was per-

formed with the ‘‘survfit’’ function, and visualizations were obtained using the ‘‘ggsurvplot’’ function, all in the survminer package in R

(Kassambara and Kosinski, 2017).

Human lncRNA CRISPRa library design
Transcripts from the Human GENCODE V22 (GRCh38, https://www.gencodegenes.org/releases/22.html) long non-coding RNA

gene annotation set with the biotypes lincRNA, antisense, 3_prime_overlapping_ncRNA, processed_transcript, sense_intronic

and sense_overlapping were retrieved and merged with the Broad human lincRNA catalog (Cabili et al., 2011). Annotated miRNA

primary transcripts were then excluded from the list. Transcripts whose exons overlap extensively with RefSeq protein coding genes

in the sense direction but are nevertheless categorized in one of the previously mentioned biotypes due to lack of predicted coding

potential were also excluded. From the resulting list of 14,701 lncRNA loci, a set of 22,253 Transcription Start Sites (TSS) was ob-

tained, which included transcripts belonging to the same gene. The nucleotides located 50-1000 bp upstream of each TSS were ex-

tracted from the UCSC Genome Browser, which has been determined to be the optimal region to design guides for gene activation

(Gilbert et al., 2014). For each target location, two guides proximal to an NGG PAM sequence and separated by a minimum of 50 bp

were selected on both the positive and negative strand, generating four possible guides as close as possible to each target TSS.

Guide sequences containing degenerate nucleotides or inappropriate restriction sites were filtered from the final library, resulting

in a library of 88,444 novel lncRNA targeting guides and 99 non-targeting guides validated in a previous study (Wang et al., 2014).

Human lncRNA CRISPRa library chip design and synthesis
For sgRNA library chip synthesis, each librarymember was designed to span 103 nucleotides in total, incorporating three separate 20

nt priming regions flanking the relevant sgRNA sequence. These regions included a universal 20 nt forward primer region, a 20 nt

forward sub-pool primer region, a 43 nt region containing the variable sgRNA sequence, and a 20 nt universal reverse primer

sequence. The library was partitioned into four sub-pools, which could be amplified individually through use of the sub-pool

forward primers or altogether through use of the universal forward primer. The four sub-pools included were an antisense sub-library

(33,965 elements), a lincRNA sub-library (42,836 elements), an alternate class sub-library (11,643 elements), and a non-targeting

sub-library (99 elements). These human lncRNA CRISPRa sgRNA oligonucleotide libraries were synthesized on a standard

Agilent array.

Lentivirus production
HEK293T cells were seeded 1 day before transfection. Cells were transfected the next day at 80%–90% confluency. For each dish,

15 mg of plasmid containing the vector of interest, 3.5 mg of pMD2.G, and 13 mg of psPAX2 (Addgene) were transfected using 90 mL

Lipofectamine 2000 and 20 mL Plus Reagent (Life Technologies). Supernatant was collected 48 h and 72 h after transfection and

filtered with a 0.45-mm PVDF filter (Millipore).

Pooled lncRNA CRISPRa screening for Ara-C response
MOLM14 cells were transduced with dCAS9-VP64 (Addgene #61425) and MS2-P65-HSF1 (Addgene #89308) simultaneously and

cultured with high concentrations of Blasticidin (1 mg/mL) (Invivogen) and Hygromycin B (8 mg/mL) (Invivogen) for 14 days. The len-

tiviral CaLR library was generated in HEK293T as previously described. Supernatant containing viruses was collected 24-72 h after

transfection, and viral titer was measured by qPCR Lentivirus Titration (Titer) Kit (abm). 72 h after transfection, stable MOLM14 SAM

cells were infected with the CaLR library at a ratio of at least 500 cells/sgRNA. MOLM14 SAMCaLR cells were cultured in Puromycin

(GIBCO) at a concentration of 1 ng/ml for 5 days. After 5 days, 500 cells/sgRNAwere collected, and DNAwas extracted using a stan-

dard phenol-chloroform protocol. The remaining cell pool, at a density of 500 cells/sgRNA, was subsequently cultured with Ara-C at a

concentration of 0.25 mM (Sigma-Aldrich) for 14 days and then harvested for DNA extraction. Amplification of the specific sgRNAs

was performed using NEBnext High Fidelity 2X Master Mix (New England Biolabs) in a single-step reaction as previously described

(Joung et al., 2017b). In brief, a small amount of DNA from each sample was PCR amplified (20-36 cycles) using primers designed to
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amplify the unique sgRNA from the genome (F: AATGAT ACGGCGACCACCGAGATC TACACTCTT TCCCTACACGACGCTCTT

CCG ATC TTA AGT AGAGGC TTT ATA TAT CTT GTGGAA AGG ACG AAA CACC, R: CAA GCAGAAGACGGC ATA CGAGAT TCG

CCT TGGTGACTGGAGTTCAGACGTGTGCTC TTCCGA TCTGCCAAG TTGATA ACGGAC TAGCCTT). PCR products were run

on an agarose gel to determine optimal PCR conditions. Next, the entire DNA of the sample was split to 48 PCR reactions, each

amplified with a barcoded reverse primer and forward primers 1-10 (Table S7). PCR products were pooled and cleaned using

QIAquick spin columns (QIAGEN). Products were tested for concentration and specificity using High sensitivity D1000 ScreenTape

(Agilent) and qPCR. Libraries were pooled and sequenced using the Illumina NextSeq 500 platform (HarvardMedical School Biopoly-

mers Facility, Boston).

Pooled protein-coding CRISPRa screening for Ara-C response
Protein-coding gene screening was performed using the human CRISPR activation library from Konermann et al. (2015) (Addgene

#1000000057). Screening was performed as described for our CaLR screen.

CRISPRa screening deconvolution and analysis
The provided annotation library files were filtered sequentially using the following criteria: (1) duplicate entries of the same guide

sequence, gene ID, and transcript ID, (2) guide RNA sequences annotated for more than one transcript, and (3) transcripts or genes

represented by a single guide RNA. Raw .fastq sequencing files were trimmed with CutAdapt (v1.11) for the 50 primer GCTTTATA

TATCTTGTGGAAAGGACGAAACACC for the protein-coding gene library or GCTTTATATATCTTGTGGAAAGGACGAAACACCG

for the noncoding gene library using the additional options ‘‘–m 20 –M 60’’ (Martin, 2011). Trimmed files were then matched to the

guide sequences from the filtered library files using the MAGeCK count function (Tables S4, S5, and S6) (Li et al., 2014). Guide

RNAs were further filtered such that they must be detected in at least half of the analyzed samples. Read counts were then subjected

to MAGeCKmle analysis, modeling each experimental iteration as a separate batch, as suggested by principal component analysis,

to obtain log fold changes and Wald test false discovery rates. Corresponding gene IDs were mapped to corresponding gene sym-

bols via biomaRt (Durinck et al., 2005).

To determine an appropriate significance threshold for the CaLR screening results, the 99 nontargeting guides were combined to

form a set of 21 simulated genes. The threshold for which 20/21 of these simulated genes would be considered not significant was

determined to correspond to a false discovery rate of 3.51e-5, suggestive of an empirical false positive rate of 4.76% using this

threshold.

An appropriate significance threshold for the protein-coding CRISPRa library was determined using a receiver operating charac-

teristic (ROC) analysis as described above using a curated set of genes associated with differential Ara-C response (Table S2). Due to

the absence of nontargeting guides in this library, an analysis to control the empirical false positive rate could not be performed in this

analysis.

Transcript abundances in AML
151 RNaseq datasets preprocessed to normalized FPKM counts via HTSeq from the TCGA LAML patient cohort were obtained

through TCGAbiolinks in R (Colaprico et al., 2016). FPKM values were log2-transformed after the addition of a unit pseudocount.

Genes were considered detectable if their median log2 (FPKM + 1) values were greater than 0 and their 90th percentile log2
(FPKM + 1) values were greater than 0.1, similar to previously used criteria (Hu et al., 2014).

Global pathway annotation of enriched lncRNAs
Predicted functional annotation of significantly enriched lncRNAs was performed using the funcpred tool (https://www.funcpred.

com) (Perron et al., 2017). Briefly, this tool uses functional enrichment of the neighborhood of a lncRNA derived from co-expression

networks based on GTEx expression profiling data to infer its putative function. We used a co-expression network based on all GTEx

tissues and examined the functional enrichment of significant lncRNAs as defined by the Hallmark Gene Sets contained in the

Molecular Signatures Database from the Broad Institute (http://software.broadinstitute.org/gsea/msigdb/). Interactions between

functional annotations deemed significant using a 5% false discovery rate threshold were collated by annotations within each

gene, and highly enriched interactions were demarcated as such when associations appeared at least 15 times. Networks of these

highly enriched interactions were generated in Cytoscape using the ‘‘edge-weighted spring-embedded layout’’ function with minor

adjustments for improved visualization (Smoot et al., 2011).

K-means clustering of RNaseq from AML patient samples
Raw .fastq files from Garzon et al. (2014) were downloaded from the SRA archive (SRP050272) and then subjected to preprocessing

as described for the human cancer cell line analysis above. Transcriptome profiles were filtered out based on low mappability to

either the hg38 genome (< 80%) or the Ensembl-annotated transcriptome (< 20%). Pearson correlation coefficients between

gene pairs of interest were determined using VST-transformed gene counts. Prior to k-means clustering analysis, VST-transformed

gene counts were normalized by gene using a Z-score scaling. The appropriate number of clusters was determined using the gap
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statistic, and the k-means algorithmwas performed with 17 clusters using Lloyd’s algorithm. Functional annotation enrichment of the

gene cluster containing GAS6-AS2 was performed using the ToppCluster web server (Kaimal et al., 2010). The server uses the

ToppGene tool to perform enrichment analyses of gene ontology (GO) and pathways, as previously described (Chen et al., 2007).

Pan-cancer co-expression analysis
Data used for co-expression analyses between GAS6-AS2, GAS6, and AXL in different cancer types were obtained from the TANRIC

database (Li et al., 2015) and the Firehose Broad GDAC portal.

RNA-IP analysis
Raw .fastq files corresponding to DNMT1 IP- and IgG IP-RNaseq datasets were obtained from the SRA archive (SRR358674,

SRR358675) (Di Ruscio et al., 2013). Resultant .fastq sequencing files were then aligned to the hg38 reference genome with default

STAR single-pass alignment (v2.5.2b) (Dobin et al., 2013). Realigned .bam files were sorted by name using SAMtools v1.3 (Li et al.,

2009). Coordinates were mapped to Ensembl gene IDs with featureCounts (Subread v1.5.2) as denoted by Ensembl v89 annotation

using features ‘‘-p -B -s 0’’ (Aken et al., 2016; Liao et al., 2014). Genes were then normalized by fragments per kilobase of transcript

permillionmapped reads (FPKM), with gene length determined by featureCounts, and then FPKMvalueswere log2-transformed after

the addition of a 1e-5 pseudocount. Log-transformed counts from DNMT1-IP were then subtracted from the log-transformed counts

from IgG-IP, which segregated into three clusters representing transcripts associated predominantly with DNMT1, transcripts asso-

ciated predominantly with IgG, and transcripts associated with both DNMT1 and IgG.

QUANTITATIVE AND STATISTICAL ANALYSIS

Statistical analysis was performed using R Statistical Software (https://www.r-project.org/) and Excel (Microsoft). All reported

P values are two-tailed, and for all analyses, p% 0.05 is considered statistically significant, unless otherwise specified. Specific de-

tails concerning statistical tests for individual experiments are noted in the relevant Figure legends.

Replicates for individual experiment types are outlined here:

CRISPRa screening targeting protein coding genes, n = 2.

CRISPRa screening targeting lncRNA genes, n = 2.

All qPCR of cells expressing sgRNA, n > 3, groups were compared using Welch two sample t test.

All cell viability by MTS, n > 3, groups were compared using Welch two sample t test.

All apoptosis assay by ANNEXIN V, n = 3, groups were compared using Welch two sample t test.

DNA damage by gH2AX, n = 50, from 2 staining, groups were compared using Welch two sample t test.

DNA methylation by sodium bisulfite assay, n > 10, groups were compared using Chi-square test.

Cell cycle analysis by BrdU/PI, n = 3, groups were compared using Welch two sample t test.

Western blot, n = 3, groups were compared using Welch two sample t test.

Competition experiment in mouse model, n = 20, groups were compared using Welch two sample t test.

For detailed statistical analysis of the computational analysis see Method Details.
DATA AND SOFTWARE AVAILABILITY

Custom scripts were used for data preprocessing, statistical analysis, and data visualization as described previously. Code used in

this study is available upon request by the Lead Contact Dr. Pier Paolo Pandolfi (ppandolf@bidmc.harvard.edu).
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Figure S1. Identification of Protein-Coding and Non-coding Gene Biomarkers Correlated with Differential Ara-C Response, Related to

Figure 1

(A) Pipeline for identification of protein-coding and noncoding gene biomarkers of differential Ara-C response across 760 cancer cell lines. See also Figures 1A

and 1B.

(B) Distribution of Ara-C drug sensitivities across 760 pan-cancer cell lines profiled by both CCLE and CTD2 studies, quantified by their Z-scaled area under the

dose response curve (AUC) values without removing lineage-specific effects.

(C) Representative effect of regressing lineage-specific annotations fromAra-C AUC values between hematopoietic and non-hematopoietic cells. Wilcoxon rank-

sum test: *p < 2.2e-16. N.S, p = 0.7208.

(D) Receiver operating characteristic (ROC) analysis of drug sensitivity-gene expression correlations to determine the optimal Z-score threshold (Z = 1.16). Genes

curated from the literature as responsive to Ara-C (Table S2) passing this Z-score threshold were considered true positives, whereas other genes not within this

curated list passing this Z-score threshold were considered false positives.

(E) Distributions of drug sensitivity-gene expression correlations for annotated genes (Table S2) versus all genes in the analysis.

(F) Representative KEGG pathways from GSEA of protein-coding genes ranked by drug sensitivity-gene expression correlation values as shown in Figures 1B

and 1C. See Table S3.

(G) Summary of GSEA of protein-coding genes ranked by disease-free survival association strength using annotated KEGG (Kyoto Encyclopedia of Genes and

Genomes) pathways. Clinical and transcriptomic data from the TCGA-LAML patient cohort was used for this analysis. Disease-free survival association was

quantified by the magnitude of the coefficient from a Cox proportional hazards model for each gene, with patient sex, age over 60, cytogenetic risk, and white

blood cell count above 16 as covariates.

(H) Representative KEGG pathways from GSEA of protein-coding genes ranked by disease-free survival association strength as shown in Figures 1B and 1C.

Clinical and transcriptomic data from the TCGA-LAML patient cohort was used for this analysis.



p < 2.2e-16

D

A

Gene Pairs Correlated with Ara-C Resistance Gene Pairs Correlated with Ara-C Sensitivity
C

Gene Pair Type # Pairs # Gene Pairs, Both Genes 
Correlated with Ara-C 
Sensi vity

# Genes Pairs, Sense Gene 
Correlated with Cognate 
An sense Gene

Overlap

Sense-An sense 
Pairs

997 113 786 101

Random Pairs 5,000 291 50 10

B

ACOXL ACOXL-AS1 INHBA INHBA-AS1 P4HA3 P4HA3-AS1

B4GALT1 B4GALT1-AS1 IQCJ-SCHIP1 IQCJ-SCHIP1-AS1 PIK3IP1 PIK3IP1-AS1

BDNF BDNF-AS ISPD ISPD-AS1 PINK1 PINK1-AS

CCDC183 CCDC183-AS1 ITGB5 ITGB5-AS1 PRICKLE2 PRICKLE2-AS2

CDKN2A CDKN2A-AS1 KIRREL3 KIRREL3-AS2 PRICKLE2 PRICKLE2-AS3

COL5A1 COL5A1-AS1 KRT7 KRT7-AS PRKG1 PRKG1-AS1

CPEB2 CPEB2-AS1 LACTB2 LACTB2-AS1 RBPMS RBPMS-AS1

CXXC5 CXXC5-AS1 LIFR LIFR-AS1 RERG RERG-AS1

DOCK9 DOCK9-AS2 LOXL1 LOXL1-AS1 RMDN2 RMDN2-AS1

EGFR EGFR-AS1 LRP1 LRP1-AS ROR1 ROR1-AS1

EXOC3 EXOC3-AS1 MAMDC2 MAMDC2-AS1 SEMA5A SEMA5A-AS1

FAM83A FAM83A-AS1 MKX MKX-AS1 SLC2A1 SLC2A1-AS1

FLNC FLNC-AS1 MRVI1 MRVI1-AS1 SPON1 SPON1-AS1

FRMD6 FRMD6-AS1 NALCN NALCN-AS1 TGFB2 TGFB2-AS1

FRMD6 FRMD6-AS2 NDST1 NDST1-AS1 THSD4 THSD4-AS1

FTCD FTCD-AS1 NEURL1 NEURL1-AS1 TM4SF1 TM4SF1-AS1

FUT8 FUT8-AS1 NEXN NEXN-AS1 TM4SF19 TM4SF19-AS1

GAS6 GAS6-AS2 NTRK3 NTRK3-AS1 VLDLR VLDLR-AS1

GRM5 GRM5-AS1 OSBPL10 OSBPL10-AS1 ZNF667 ZNF667-AS1

GSN GSN-AS1 OSMR OSMR-AS1 ZNF793 ZNF793-AS1

IGFBP7 IGFBP7-AS1 P3H2 P3H2-AS1

ADARB2 ADARB2-AS1 MYB MYB-AS1

AP4B1 AP4B1-AS1 MYCBP2 MYCBP2-AS1

CCND2 CCND2-AS2 NOP53 NOP53-AS1

CCNT2 CCNT2-AS1 PABPC5 PABPC5-AS1

DCUN1D2 DCUN1D2-AS PAXBP1 PAXBP1-AS1

DLGAP1 DLGAP1-AS4 PCCA PCCA-AS1

DLGAP1 DLGAP1-AS5 PLCH1 PLCH1-AS1

ELFN1 ELFN1-AS1 PRC1 PRC1-AS1

ENTPD1 ENTPD1-AS1 RNF219 RNF219-AS1

FAM53B FAM53B-AS1 SLC25A30 SLC25A30-AS1

FBXW7 FBXW7-AS1 SLCO4A1 SLCO4A1-AS1

FOXD2 FOXD2-AS1 SMAD1 SMAD1-AS2

GABPB1 GABPB1-AS1 SMC5 SMC5-AS1

GTF3C2 GTF3C2-AS1 SSBP3 SSBP3-AS1

HHATL HHATL-AS1 THAP9 THAP9-AS1

INTS6 INTS6-AS1 TMPO TMPO-AS1

INTS9 INTS9-AS1 USP3 USP3-AS1

KCNIP2 KCNIP2-AS1 ZBED3 ZBED3-AS1

LANCL1 LANCL1-AS1

MAPKAPK5 MAPKAPK5-AS1

MRGPRG MRGPRG-AS1

Figure S2. Identification of Sense-Antisense Gene Pairs Highly Correlative with Differential Ara-C Response, Related to Figure 1

(A) Pearson correlation distributions of gene pair expression levels in the TCGA-LAML patient samples across 997 sense-antisense cognate gene pairs and 5,000

random protein coding-lncRNA gene pairs. Wilcoxon rank-sum test: p < 2.2e-16.

(legend continued on next page)



(B) Summary of gene pair analysis to select pairs with correlated gene expression levels and high drug sensitivity-gene expression correlations. The enrichment of

sense-antisense gene pairs is much larger than the enrichment of random coding-non-coding gene pairs. Chi-square test: p < 2.2e-16.

(C) List of protein-coding/cognate antisense gene pairs identified to be highly correlated in expression levels with each other and have significant drug sensitivity-

gene expression correlations.

(D) Representative KEGG pathways from GSEA of cognate genes among sense-antisense gene pairs ranked by drug sensitivity-gene expression correlation

values.
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Figure S3. CRISPRa Functional Screening of Coding Genes Modulating Ara-C Response, Related to Figure 2

(A) Fold change (FC) of expression levelsmodulated byCRISPRa for a cohort of single sgRNAs representing various protein-coding and lncRNA genesmodulated

in HEK293T (black), MOLM14 (red), K562 (blue), or HL60 (yellow) cells. Data are represented as mean ± SD, n = 3.

(B) Cell titers of Ara-C treated or untreated MOLM14 over the time course of the CRISPRa screening.

(C) Correlation of the sgRNA levels represented in the sequencing libraries across experimental batches. Mapped sequencing read abundances were trans-

formed using the variance-stabilizing transformation (VST) in DESeq2.

(D) Distributions of sgRNA levels across the four protein-coding CRISPRa sequencing libraries. Mapped sequencing read abundances were transformed using

the variance-stabilizing transformation (VST) in DESeq2.

(E) Principal component analysis of sgRNA levels across the four generated sequencing libraries. PC, principal component.

(F) Receiver operating characteristic (ROC) analysis of protein-coding CRISPRa screening results to determine optimal FDR threshold (FDR = 0.339). Genes

curated from the literature as responsive to Ara-C (Table S2) passing this Z-score threshold were considered true positives, whereas other genes not within this

curated list passing this Z-score threshold were considered false positives.

(G) Modulation of Ara-C response upon stable expression of an sgRNA targeting DCK in MOLM14 cells. Data are represented as mean ± SD, n > 3. Welch two

sample t test: *p < 0.05. **p < 0.01, ***p < 0.001.

(H) Overlap of protein-coding genes enriched in both the drug sensitivity-gene expression correlative analysis and the CRISPRa screen.

(I) Modulation of Ara-C response upon stable expression of sgRNAs targeting PXDC1, TUFT1, or ZNF532 in MOLM14 cells. Data are represented as mean ± SD,

n > 3. Welch two sample t test: *p < 0.05. **p < 0.01, ***p < 0.001

(J) Representative distributions of annexin V and propidium iodide co-staining intensities of MOLM14 cells expressing the indicated sgRNAs as determined by

flow cytometry. See also Figure 2H.
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Figure S4. CRISPRa Functional Screening of Non-coding Genes Modulating Ara-C Response, Related to Figure 3

(A) Fold change (FC) of expression levels modulated by CRISPRa for sgRNAs predicted to target the TUNA lncRNA in MOLM14 cells. Data are represented as

mean ± SD, n = 3.

(legend continued on next page)



(B) Fold change (FC) of expression levels by CRISPRa for sgRNAs predicted to target a previously annotated TSS (MIAT-01) of and an alternative, predicted TSS

(MIAT-06) of the MIAT lncRNA gene in MOLM14 cells. Data are represented as mean ± SD, n = 3. See (C).

(C) Chromosomal localizations and predicted transcriptional start sites of MIAT-01 and MIAT-06 transcript isoforms.

(D) Left panels: fold change (FC) of expression levels modulated by CRISPRa with predicted sgRNAs for a cohort of lncRNA genes in either HEK293T (black bars)

or MOLM14 (red bars) cells. Data are represented as mean ± SD, n = 3. Right panel: a heatmap representation of these data.

(E) Distributions of sgRNA levels across the four CaLR sequencing libraries. Mapped sequencing read abundances were transformed using the variance-sta-

bilizing transformation (VST) in DESeq2.

(F) Principal component analysis of sgRNA levels across the four generated CaLR sequencing libraries. PC, principal component.

(G) Correlation of the sgRNA levels represented in the CaLR sequencing libraries across experimental batches. Mapped sequencing read abundances were

transformed using the variance-stabilizing transformation (VST) in DESeq2.

(H) Analysis of nontargeting guides in the CaLR library to determine the optimal FDR threshold (FDR = 3.51e-5), corresponding to an empirical false positive rate of

4.76%. Genes above this FDR threshold were considered significant.

(I) Specific pathways identified in a guilt-by-association co-expression analysis for lncRNAs associated with enriched sgRNAs. MSigDB pathway gene sets were

used for this analysis.

(J) Overlap of lncRNA genes enriched in both the drug sensitivity-gene expression correlative analysis and the CaLR screen.
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Figure S5. Validation of Enriched sgRNAs Targeting lncRNAs in the CaLR Screening, Related to Figure 4

(A) Modulation of Ara-C response upon stable expression of sgRNAs targeting CaLR-enriched lncRNAs in MOLM14 cells. Data are represented as mean ± SD,

n > 3. Welch two sample t test: *p < 0.05. **p < 0.01, ***p < 0.001.

(B) Modulation of Ara-C response upon stable expression of sgRNAs targeting CaLR-depleted lncRNAs in MOLM14 cells. Data are represented as mean ± SD,

n > 3. Welch two sample t test: *p < 0.05. **p < 0.01, ***p < 0.001.

(C) Modulation of cellular proliferation in the absence of Ara-C treatment upon stable expression of sgRNAs targeting AC087477.5 or RMDN2-AS1 in MOLM14

cells. Proliferation is quantified over four days (D1-D4). Data are represented as mean ± SD, n = 3.

(legend continued on next page)



(D) Cell cycle analysis of MOLM14 cells with stable expression of sgRNAs targeting LINC02426, AL353148.1, AL157688.1, or control as determined by bro-

modeoxyuridine (BrdU) incorporation. Left panel: representative flow cytometry scatterplots. Right panel: quantification of cell cycle phases for each cell line.

Data are represented as mean ± SD, n > 3. Welch two sample t test: *p < 0.05. **p < 0.01, ***p < 0.001.

(E) Modulation of apoptotic response upon stable expression of sgRNAs targeting AC087477.5, RMDN2-AS1, or control in MOLM14 cells. The percentage of

apoptosis is determined by annexin V and propidium iodide (PI) staining of MOLM14 cells stably infected with individual sgRNAs and treated with 0.25 mMAra-C

for 24 hours. Data are represented as mean ± SD, n > 3. Welch two sample t test: *p < 0.05. **p < 0.01, ***p < 0.001.

(F) Fold change (FC) of expression levels of targeted lncRNAs upon overexpression of enriched sgRNAs versus endogenous levels in HL60 cells. Data are

represented as mean ± SD, n = 3.

(G) Modulation of Ara-C response upon stable expression of sgRNAs targeting the indicated CaLR-enriched lncRNAs in HL60 cells. Data are represented as

mean ± SD, n > 3. Welch two sample t test: *p < 0.05. **p < 0.01, ***p < 0.001.

(H) Modulation of apoptotic response upon stable expression of sgRNAs targeting AC106897.1, A008073.2, AC091982.2, GAS6-AS2, or control in HL60 cells.

The percentage of apoptosis is determined by annexin V and propidium iodide (PI) staining of HL60 cells stably infected with individual sgRNAs and treated with

0.25 mM Ara-C for 24 hours. Data are represented as mean ± SD, n > 3. Welch two sample t test: *p < 0.05. **p < 0.01, ***p < 0.001.
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#7 GCCCCGTCCGGGAGGGAGGT

#8 TGACCCCCCCACCTCCCTCC
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Figure S6. GAS6-AS2 Activates GAS6/TAM Signaling, Related to Figure 5

(A) Disease-free survival association with expression levels of GAS6, enriched in both protein-coding CRISPRa screening and drug sensitivity-gene expression

correlation analyses, among patients treated with Ara-C therapy within the TCGA-LAML patient cohort. VST expression level cutoff = 9.20 (low, n = 49; high, n =

72), log-rank test: p value = 0.029.

(legend continued on next page)



(B) List of sgRNA sequences used to target the GAS6-AS2 TSS for CRISPRa. See Figures 5B and 5C.

(C) Fold change (FC) of GAS6-AS2 expression levels in MOLM14 cells for individual sgRNAs targeting GAS6-AS2. Data are represented as mean ± SD, n = 3.

(D) Ara-C dose-response profiles of MOLM14 cells with GAS6-AS2 overexpression (RED) or control (BLUE).

(E) Cellular proliferation curves of MOLM14 cells with GAS6-AS2 overexpression (RED) or control (BLUE).

(F) Representative flow cytometry scatterplots demonstrating tumor burden in xenograft murine models of AML following Ara-C treatment (upper panel – GAS6-

AS2-RED, lower panel Control-BFP). See Figures 5H and 5I.

(G) Chromosomal localization and organization of the GAS6 and GAS6-AS2 genomic locus.

(H) Left panel: cellular localizations of GAS-AS2 andMALAT1 lncRNAs, as determined by nuclear fractionation followed by PCR. Right panel: nuclear/cytoplasmic

ratio of GAS6-AS2 and MALAT1, based on qPCR. Data are represented as mean ± SD, n > 3.

(I) Fold change (FC) of GAS6-AS2 (left panel) and GAS6 (right panel) expression levels modulated by GAS6-AS2 overexpression via CRISPRa (sgRNA #4) and

subsequent GAS6-AS2 knockdown via ASO in HEK293T cells. Data are represented as mean ± SD, n > 3. Welch two sample t test: *p < 0.05. **p < 0.01,

***p < 0.001.

(J) Fold change (FC) of GAS6-AS2, GAS6, and AXL expression levels modulated by GAS6-AS2 overexpression via CRISPRa (sgRNA #4) followed by either GAS6-

AS2 or control ASO in HEK293T cells. Data are represented as mean ± SD, n > 3. Welch two sample t test: *p < 0.05. **p < 0.01, ***p < 0.001.
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Figure S7. GAS6-AS2 Regulates AXL in trans, Related to Figures 6 and 7

(A) Relationship of GAS6-AS2 and GAS6 expression levels across a panel of patient tumor samples representative of different cancer subtypes from TCGA.

PRAD – Prostate Adenocarcinoma; BLCA – Urothelial Bladder Carcinoma; KIRC – Kidney Renal Clear Cell Carcinoma; LGG – Lower Grade Glioma; CESC –

Cervical Squamous Cell Carcinoma; GBM – Glioblastoma Multiforme; HNSC – Head-Neck Squamous Cell Carcinoma; KIRP – Cervical Kidney Renal Papillary

Cell Carcinoma.

(B) Relationship of GAS6-AS2 and AXL expression levels across a panel of patient tumor samples representative of different cancer subtypes from TCGA. CESC –

Cervical Squamous Cell Carcinoma; LUAD – Lung Adenocarcinoma; PRAD – Prostate Adenocarcinoma; BLCA – Urothelial Bladder Carcinoma.

(C) Fold change (FC) of AXL gene expression levels upon GAS6-AS2 CRISPRa targeting in MOLM14 and HEK293 cell lines. Data are represented as mean ± SD,

n > 3. See also Figure 6E.

(D) K-means clustering of coding genes (black) and lncRNAs (red) based on gene expression levels in AML patients (Garzon et al., 2014). GAS6-AS2 is contained

in cluster #6. See also Figure 7D.

(E) Schematic of putative modulation of CpG methylation and concomitant regulation of AXL gene expression.
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