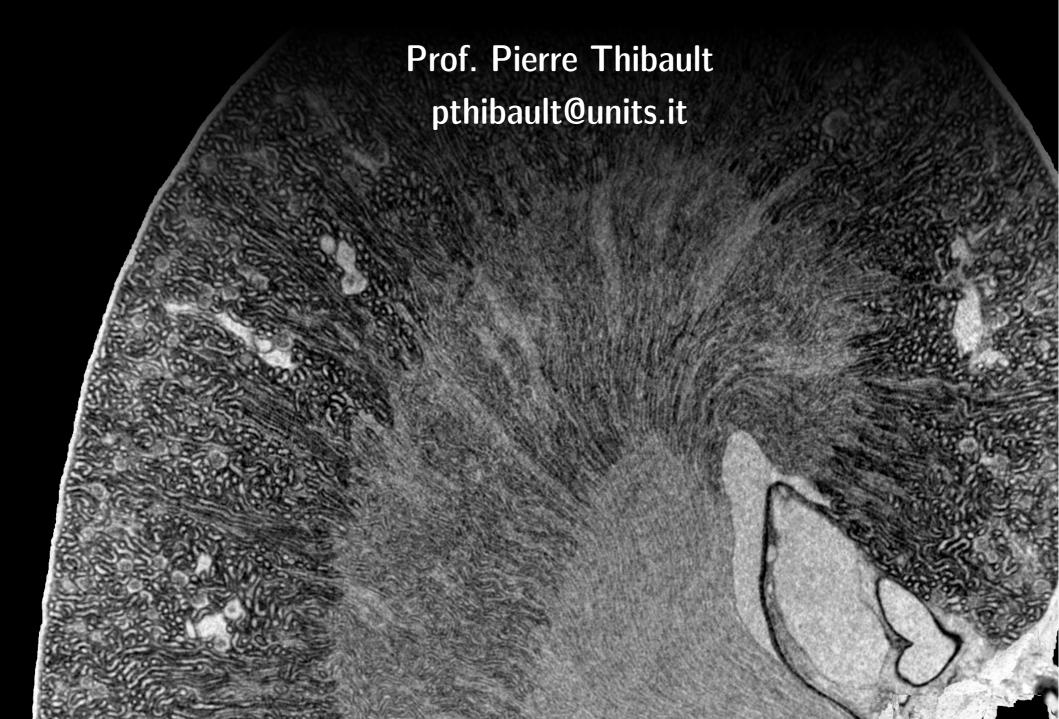
Image Processing for Physicists



Overview

 More on image representations (Fourierrelated concepts)

- DCT -> Discrete Cosine Transform

-WFT __ Windowed Fourier Transform

-WT -> Wavelet Transform

Image representations

$$f(x,y) = \sum_{n} c_n B_n(x,y)$$

Cn: coefficients

Bn: basis functions

(most convenient; or honormal
basis)

$$f(m,n) = \sum_{k,l} F_{kl} e^{2\pi i \left(\frac{mk}{M} + \frac{nl}{N}\right)}$$

$$B_{kl}(m,n)$$

 $D = \sum_{k} F_{k} e^{2\pi i k \eta} N \qquad \omega = e^{2\pi i \eta}$

$$\begin{cases}
f
\end{cases} = \begin{cases}
111 & \cdots & 1 \\
1 & \omega & \omega^* & \cdots \\
1 & \omega^* & \omega^* & \cdots \\
1 & \omega^* & \omega^* & \cdots
\end{cases}$$

$$f(x) = \langle x|f \rangle$$

$$= \langle x|1|f \rangle$$

$$= \langle x|(\xi|k)(k|)|f \rangle$$

$$= \langle x|(\xi|k)(k|f)|f \rangle$$

$$= \langle x|k \rangle \langle k|f \rangle$$

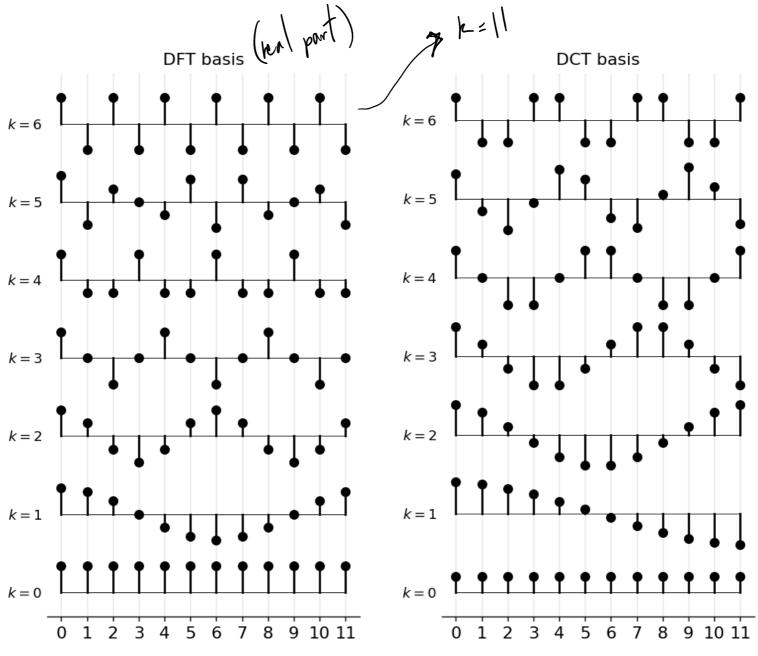
$$= \langle x|f \rangle \langle x|f \rangle$$

$$= \langle x|f$$

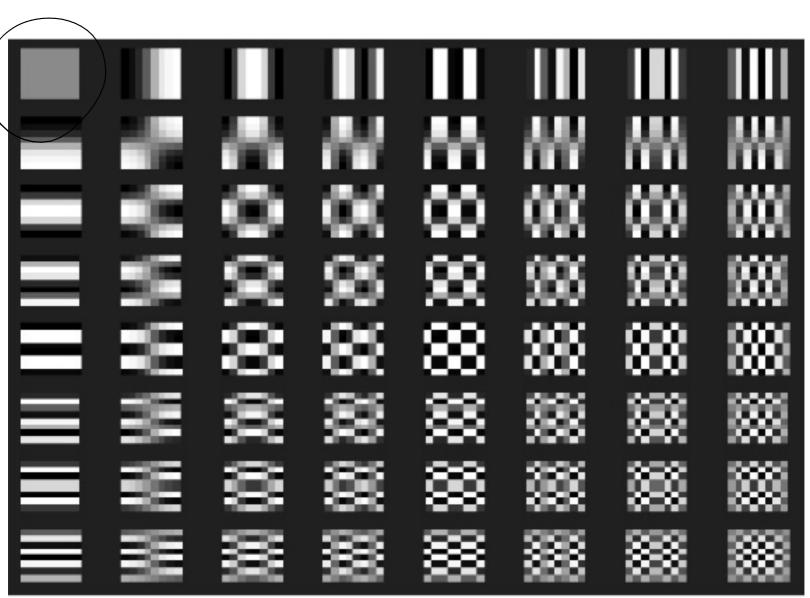
DFT: a simple chong

A variation on the theme of DFT





64 DCT basis vectors for 8x8 image



complete orthonormal basis for

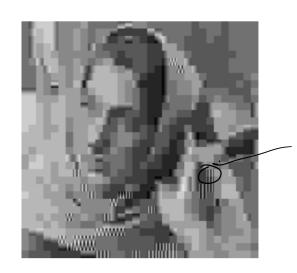
Image compression

1:1 bit rate

32:1 bit rate

compression compression some information some lost

8:1 bit rate



128:1 bit rate

Historical overview

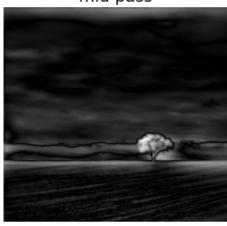
- 1822 Fourier: Fourier transform
- 1946 Gabor: Short-time Fourier transform (STFT)
- 1974 Ahmed, Natarajan & Rao: Discrete Cosine Transform
- 1980s Morlet, Mallat, Daubechies, ...: Wavelets

Bandpass filtering

original

low pass

mid pass



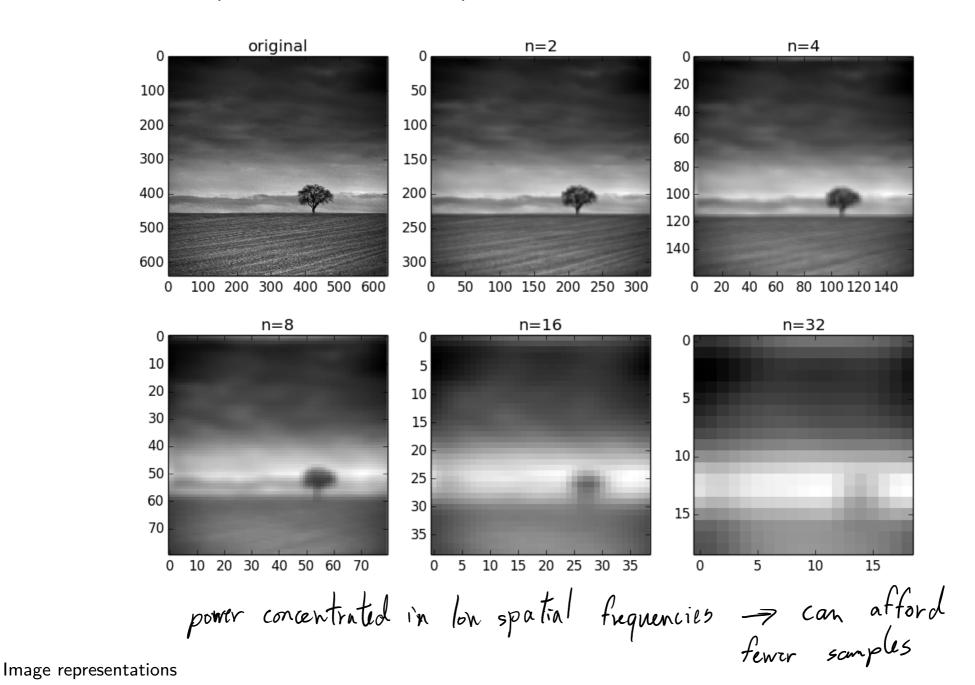
high pass

Don't need high spatial resolution

Need high spatial resolution

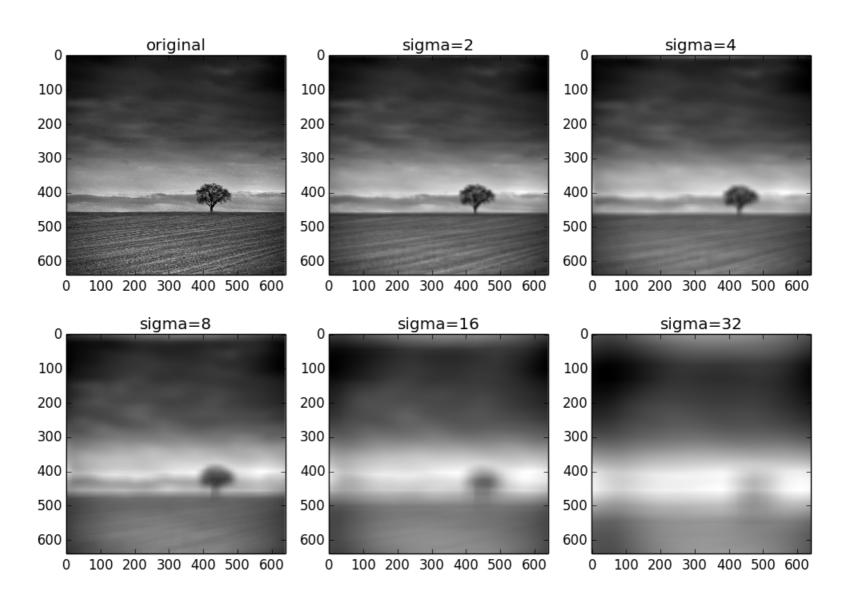
Multiresolution analysis

Subsampling (taking every nth pixel) successively reduces high frequency content



Multiresolution analysis

Multiple filtering with Gaussian filters, sigma determines resolution

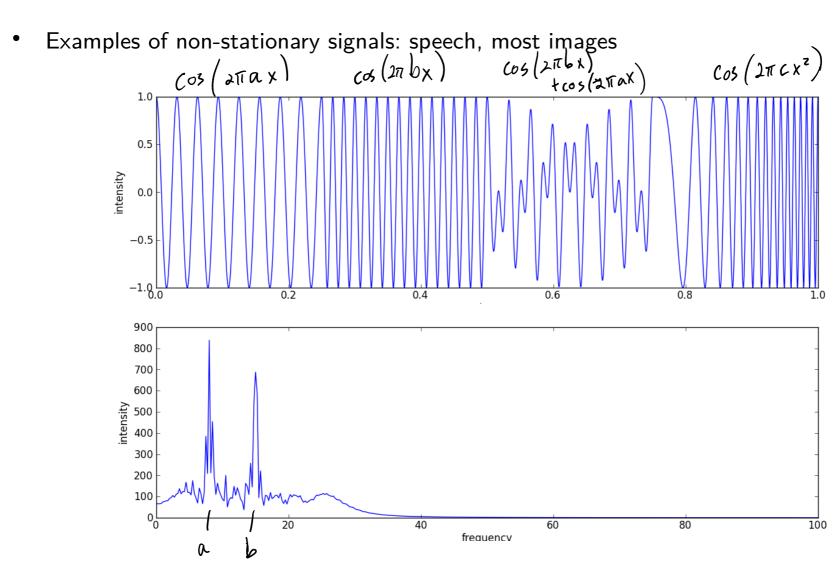


Pyramid representation

Scale-space representation, pyramidal representation
used in imaging for feature extraction Level 0 (apex) Level J-1 $N/2 \times N/2$ Level J (base

Stationary vs. non-stationary signals

- Stationary signals: frequency doesn't change over time (spatially over the image)
- Non-stationary signals: frequency changes over time (spatially over the image)



FT insufficient to localize the frequencies in our signal (image)

Windowed Fourier transform

- Windowed Fourier transform is part of the field of "time-frequency analysis"
- Also known as Short-time Fourier Transform (STFT)
- Time-frequency representations are used in many different contexts (Audio, image processing/optics, quantum mechanics)
- Idea: slice up signal into small parts, analyze each separately
 - Multiply with window function w (of width d) at position $\times 0$

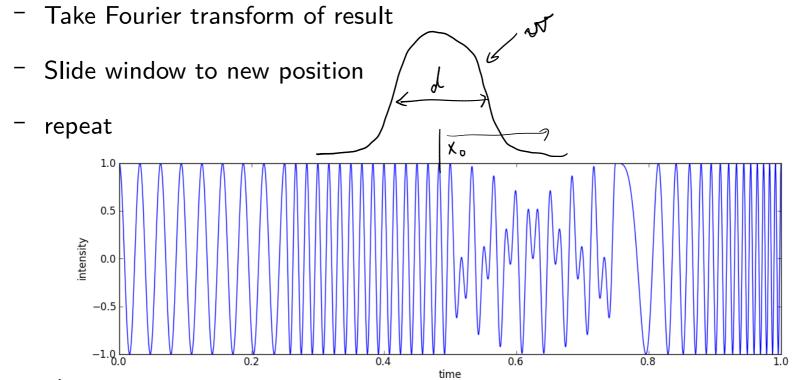
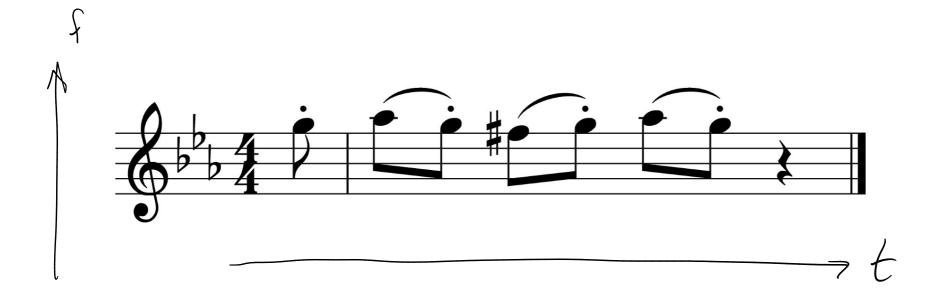
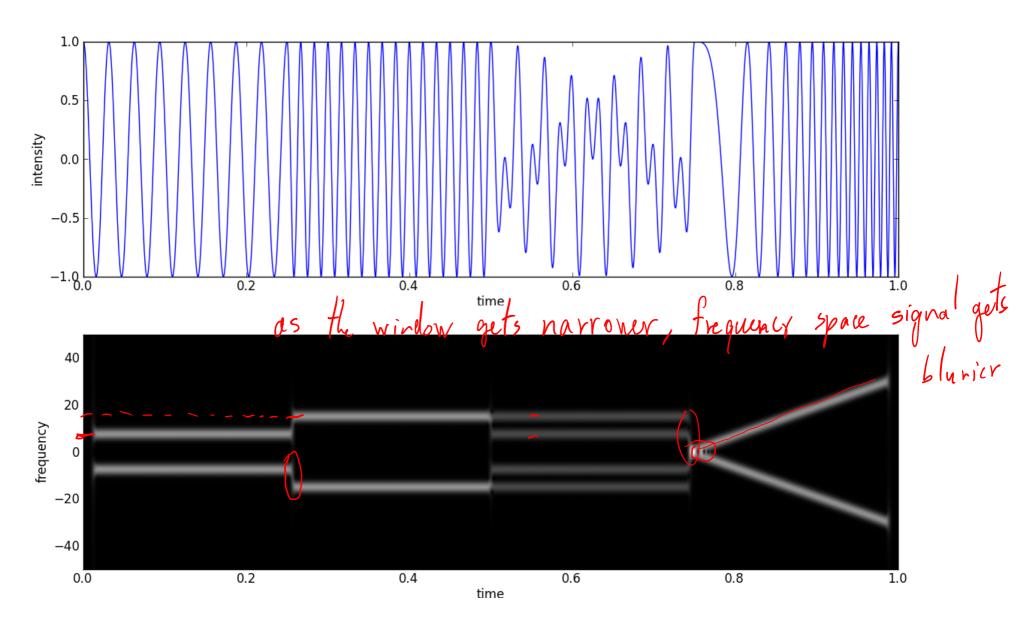


Image representations

Analogy to audio signals



Spectrogram



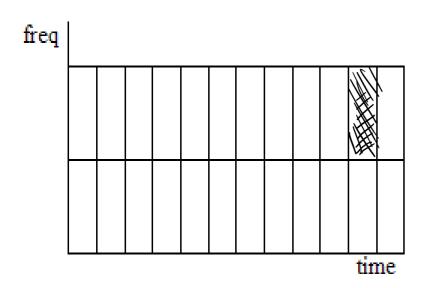
Uncertainty relation

 $\int_{X} \int_{f}^{2} \frac{1}{4\pi}$

better frequency resolution

broader windows

Finite area in the time-frequency plane



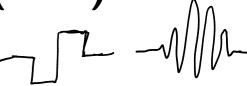
fireq time

• This is limitation of WFT and hence development of wavelets

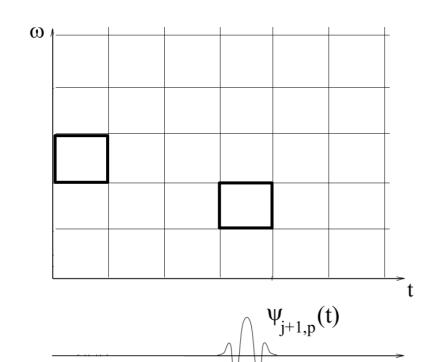
Continuous wavelet transform (WT)

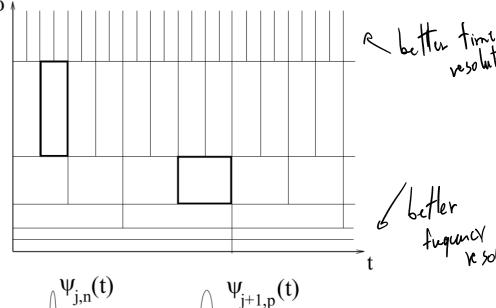
Parameters: translation and scaling

$$wT(S,X_o) = \int_{-\infty}^{\infty} f(x) \psi_{S,X_s}(x) dx$$



Analyze signal at different scales instead of different frequencies



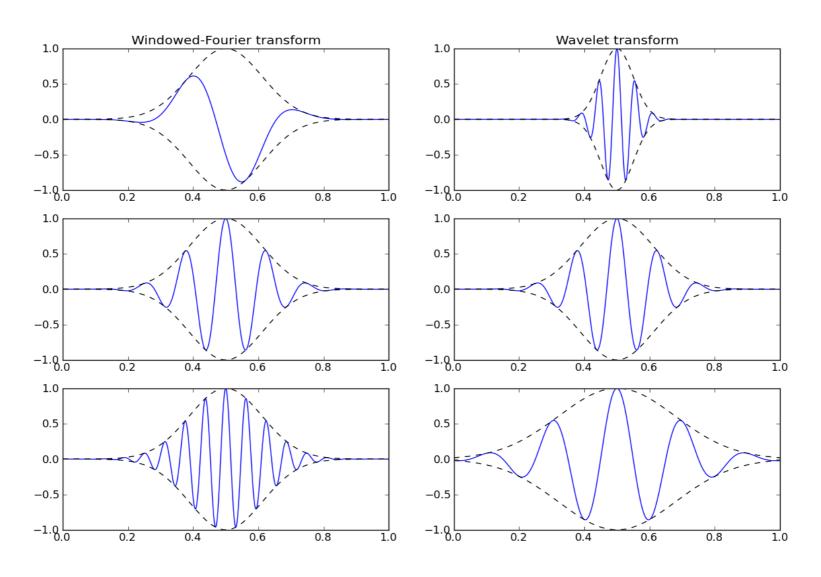


WFT vs WT

WFT - keep window width constant Wavelet - keep shape constant

- change modulation

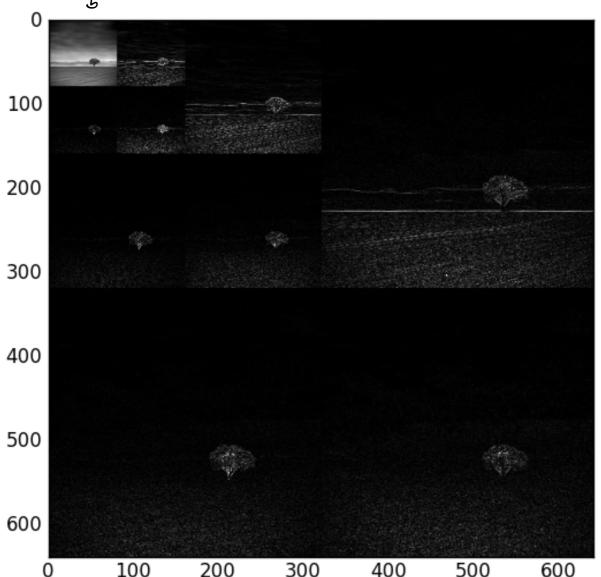
- change scale



Discrete Wavelet decomposition of image

Perform each DWT, collect and tile all coefficients

Here: 3 level decomposition



JPEG 2000 is based on wavelets

Summary

- Images can be represented by different basis functions.
- Fourier basis: localized in frequency, delocalized in real space.
- Windowed Fourier Transform: localized to some extent in both spaces
- Wavelet analysis decomposes a signal in position and scale (instead of position and frequency as for WFT).
- Sparse representations are representations in which the image content is represented by a few relevant coefficients, while the other pixels are close to zero
- Sparse representations have advantages for compression, denoising, ...