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Overview

* More on image representations (Fourier-

related concepts)
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Image representations
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Discrete Cosine Transform

A variation on the theme of DFT
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Discrete Cosine Transform

DFT basis (W‘\ \OW)Y\/ }L—ﬁ \\ DCT basis
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Discrete Cosine Transform
64 DCT basis vectors for 8x8 image 6
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Discrete Cosine Transform

Image compression
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Historical overview

1822 Fourier: Fourier transform

1946 Gabor: Short-time Fourier transform (STFT)

1974 Ahmed, Natarajan & Rao: Discrete Cosine Transform

* 1980s Morlet, Mallat, Daubechies, ... : Wavelets
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Bandpass filtering

original

low pass

mid pass high pass

Don't need high spatial Need high spatial
resolution resolution
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Multiresolution analysis

Subsampling (taking every nt pixel) successively reduces high frequency content
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Multiresolution analysis

Multiple filtering with Gaussian filters, sigma determines resolution
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Pyramid representation

l Scale-space representation, pyramidal representation
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Stationary vs. non-stationary signals

* Stationary signals: frequency doesn't change over time (spatially over the image)

Non-stationary signals: frequency changes over time (spatially over the image)

* Examples of non-stationary signals: speech, most images
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Windowed Fourier transform

* Windowed Fourier transform is part of the field of “time-frequency analysis”
* Also known as Short-time Fourier Transform (STFT)

* Time-frequency representations are used in many different contexts (Audio, image

processing /optics, quantum mechanics)
* Idea: slice up signal into small parts, analyze each separately

— Multiply with window function w (of width d) at position x0

— Take Fourier transform of result -

— Slide window to new position

~ repeat
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Analogy to audio signals
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Spectrogram
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Uncertainty relation
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* Finite area in the time-frequency plane
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* This is limitation of WFT and hence development of wavelets
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Continuous wavelet transform (WT)

* Parameters: translation and scaling /ljl W
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Source: Mallat, “A wavelet tour of signal processing”
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WFT vs WT

WEFT - keep window width constant  Wavelet - keep shape constant

- change modulation - change scale

Windowed-Fourier transform

Wavelet transform
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Discrete Wavelet decomposition of image

* Perform each DWT, coIIec/? and tile all coefficients 5
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Summary

* Images can be represented by different basis functions.
* Fourier basis: localized in frequency, delocalized in real space.
* Windowed Fourier Transform: localized — to some extent — in both spaces

* Wavelet analysis decomposes a signal in position and scale (instead of position

and frequency as for WFT).

* Sparse representations are representations in which the image content is
represented by a few relevant coefficients, while the other pixels are close to

Z€ro

* Sparse representations have advantages for compression, denoising, ...
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