INFORMATION

RETRIEVAL

mailto:lmanzoni@units.it

LECTURE OUTLINE

*NOW AVAILABLE VIA THE INFORMATION SUPERHIGHWAY

Web Detecting

content
Crawling .

Storage

Duplicates and

near-duplicates

But first of all...

BASICS OF WEB SEARCH

TERMINOLOGY
BASICS

 HTTP and HTTPS. Protocols used to transmit web pages.
 HTML. The markup language used to encode web pages

* URL. Universal resource locator, (protocol + hostname + resource).

E.g, https://www.example.com/a/resource.html has

* https: protocol
* www.example.com: hostname

 /a/resource.html: resource

TERMINOLOGY

LINKS

Static web pages. The content does not change between multiple
requests.

Dynamic web pages. Automatically generated pages, e.g., in
response to a query to a database.

Anchor text. The text visualised for a link:
Anchor text

In-links: set of links that refer to a web page (notice that they are
not contained in the web page).

Out-links: set of links from a web page (this can be obtained by
looking at the web page)

THE WEB AS A GRAPH

AT DIFFERENT LEVELS

* The web can be seen as a graph on different levels:

» A page is a node of the graph, with outgoing edges given by
the links that it contains.

* A PLD (pay-level-domain, like example.com, amazon.com, etc.)
is a node with outgoing edges given by all the links contained in
the pages on the PLD.

* In both cases, the distribution of in-degrees and out-degrees of
the nodes is far from the classical random graph model (the
Erd6s—Rényi model), it is more closely modelled by a power law

distribution f(x) = ax~*.

BOWTIE SHAPE

STRUCTURE OF WEB LINKS

Tendrils SCC. By following hyperlinks it is

possible to reach each other page in
sEC

IN. Pages that can reach SCC, but
cannot be reached by pages in SCC.

OUT. Pages that can be reached from
SCC, but cannot reach SCC.

Tubes. Direct links from IN to OUT

Tube Tendrils. Pages reachable from IN that

lead nowhere or that reach only pages

@ :
o Disconnected in OUT.

SOME REAL-WORLD DATA

2012 WDC HYPERLINK GRAPH

* The 2012 Web Data Commons (WDC) hyperlink graph includes
about 3.5 billions of web pages and 128 billions of links.

« We will see the results on

* The in- and out-degree distribution of the nodes.

* The presence of a bow-tie shape.

 All of this at the pay-level-domain (PLD) level.

Available at http://webdatacommons.org/hyperlinkgraph/2012-08/topology.html

http://webdatacommons.org/hyperlinkgraph/2012-08/topology.html

A GRAPH OF PLD

‘100500. jDblo''30n’moxnews.com

minecraftforum.net animationplayhouse.com
-~ dnwnthisvid

L o
hogkeyfights. 2o \ ’H" hirds.com technorati.com
Sy |QSFJrE!aelshirt.t:om,’gry ' /'. carambaty.ru

icecastles.com™, drdrum.com
- .
cyprien fr

tinyurl.com

1000notes.com

youtube.com

.disqus.com , / google.com
.cubicle1? N & /f.livejournal.com
3~ acebodypepad.com % |inkwithin.com
wordpress.or mu.nu
._r;i_inimalistco == o / / 8
: co //CIassit:alvalues.c@loo_Olrea ‘mesvilaweh.cat
& 7 :

azspotnet 'sapo.pt memeorandum.com

= ¥ blogspot.com
automattic.com com N W
instagr.am~" / flickr.com : // ,‘I\\ histats.com

'/ nytimes.com ™4 " over—blog.com\'
petervidani.com ** /pyahoo.com .
gmpg.org "'"9-00”/ J; ‘ \ \'zoomblog.com imdhb.c
® canalblo

.com
. . ¥

wikipedia.org Pjmedia.com i/ '\ eltangoysusinvitados.com

bllogg.s.

- wordpress.com Kk limited. .
/+ o —vodpod.com 'p> Y i %
twitter.

blogia.com
creativecommons.org

.flickr.ne blogalaxia.com
wikimedia.org

. yahoo.com.au
gwika.com / rivals.com

wiktionany.org
-
perublogs.com

DISTRIBUTION OF DEGREES

AT THE PLD LEVEL

Both axes have a logarithmic scale

1E+07
1E+06
1E+05
1E+04
1E+03

number of PLDs
number of PLDs

1E+02
1E+01

focisens] 1E+00 o0
1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

in-degree out-degree

@ In-degree emmpower law 1.56 ® out-degree e power law 1.49

In-degree distribution Out-degree distribution
(PLD level) (PLD level)

While the exact distribution of incoming and outgoing links is not

) seems a good

completely understood, a power law (i.e., f(x) = ax™

approximation.

THE BOWTIES STRUCTURE

AT THE PLD LEVEL

Tendrils
514k

LSCGE C1HE

22.3 million 13.3m
51.94% 30.98%

O Disconnected

O 3.5m
C 8.2%

THE DEEP WEB

THE PART OF THE WEB THAT IS DIFFICULT TO INDEX

Web pages that are difficult or impossible to index are part of the
deep or hidden web.

Not to be confused with the dark web/darknet, a small portion of
the deep web that has been purposefully made inaccessible.

It is estimated to be larger than the conventional web.

Usually contains private sites (where login might be needed or
there are no incoming links), form results, and scripted pages
(e.g., were the links are generated by scripts).

WEB CRAWLERS

WEB CRAWLERS

AKA SPIDERS

Web crawling is the process of gathering pages from the Web to
index them.

The process is carried on by web crawlers, also called spiders.

While retrieving a single web page is simple...
...web crawling must take into account the scale of the web...

...and the fact that the content to index is not under the control
of the people building the index.

VISITING WEB PAGES

SEEN, UNSEEN, AND UNKNOWN PAGES

Set of pages with URL found Set of unvisited web pages
by the crawler but not visited for which the URL is not known

THE UNSEEN WEB

URL FRONTIER

SET OF VISITED PAGES

SEED PAGES

A set of known web pages Set of pages that the
from which the crawling starts crawler has visited

ESSENTIAL PROPERTIES OF A WEB CRAWLER

EVERY WEB CRAWLER MUST HAVE THEM

* Robustness. A web crawler must not be blocked by spider traps,
web pages built to force a crawler to fetch an infinite amount of

pages from a specific domain.

« Sometimes spider traps are not malicious. Just imagine a

“calendar” page that every time allows to go to the “next
month” and generates the new pages dynamically.

 Politeness. A web crawler cannot overload a web server with

requests. All requests to a domain must be adequately spaced in
time and policies like the one in “robot.txt” must be adhered to.

ROBOT.TXT
WHAT WE CAN INDEX

A robot.txt file in a web server provides some information on what
a crawler is allowed to index

Which crawlers should apply o tories that should

the following directives Het be inclead

User-agent: * / Directives for a specific bot:

Disallow: /cgi-bin/ disallow everything
Disallow: /tmp/

Disallow: /private/ Directives for a specific bot:

allow everything

User- agent BadBot
Disallow:

File containing the set of URL

User-agent: GoogleBot

available for crawling

Disallow: (//////

Sitemap: http://www.example.com/sitemap.xml

GOOD PROPERTIES OF A WEB CRAWLER

A WEB CRAWLER SHOULD, IF POSSIBLE, HAVE THEM

» Distributed. Indexing the entire web from a single machine is
infeasible, the web crawler should be able to execute from
multiple machines

 Scalable. It should be possible to increase the crawl rate by simply

adding more machine and bandwidth.

Performance and efficiency. The crawler should try to make
efficient use of system resources (e.g., by not blocking when
waiting for the response from a server).

GOOD PROPERTIES OF A WEB CRAWLER

A WEB CRAWLER SHOULD, IF POSSIBLE, HAVE THEM

Quality. The crawler should have a bias toward “useful” pages.

Freshness. The content on the web is always changing, thus the
crawler should revisit already visited pages to obtain a fresh copy.

A crawler should visit a page with a frequency that approximate
the rate of change of the page.

Extensible. There might be new data format, new protocols, etc.
and the crawler should be able to be extended to handle them.

ARCHITECTURE OF A WEB CRAWLER

BASIC STRUCTURE

Robot.txt
Fingerprints Policies URL set

DNS

P

« REMOVE St REMOVE
Emmmmme FETCH EES PARSE R DUPLICATE Bl ™ -* B DUPLICATE
PAGES URL

|
- URL FRONTIER -

ARCHITECTURE OF A WEB CRAWLER

BASIC STRUCTURE

Robot.txt
Fingerprints Policies URL set

rd i
’ i

REMOVE
PRESSSN -c BN)\ o BN) b | a7p B
PAGES URL

L URL FRONTIER S ——
https://www.example.com/some page.html

The fetch module retrive an URL to crawl from the URL frontier

ARCHITECTURE OF A WEB CRAWLER

BASIC STRUCTURE

Robot.txt
Fingerprints Policies URL set

DNS

> sl

.lv

T.2: %l

REMOVE
PRESSSN -c BN)\ o BN) b | a7p B
PAGES URL

' URL FRONTIER S ——
https://www.example.com/some page.html

The DNS resolver find which IP address corresponds to www.example.com

—)

ey ==

=

ARCHITECTURE OF A WEB CRAWLER

BASIC STRUCTURE

Robot.txt
Fingerprints Policies URL set

E

| REMOVE
Namemmmmme FETCH PARSE mmmma DUPLICATE e —>
Ja.2 g PAGES URL

GET some page.html

URL FRONTIER -

The fetch module asks for the web page to the server

ARCHITECTURE OF A WEB CRAWLER

BASIC STRUCTURE

Robot.txt
Fingerprints Policies URL set

DNS

»"/;#

E
i
z

ot =

‘*“'/ REMOVE o REMOVE
PEESSSSSEN TCH SN oo BN o o) ca7p SN BESN |)p||CATE
URL
B B PAGES URL
' ._

i
|

|
- URL FRONTIER -

The fetch module receives the web page

ARCHITECTURE OF A WEB CRAWLER

BASIC STRUCTURE

Robot.txt
Fingerprints Policies URL set

/.w" ,, Links:..
Content

REMOVE FILTER REMOVE
ma FETCH PARSE pummme DUPLICATE smmmmms URL DUPLICATE
PAGES URL

URL FRONTIER -

The page is parsed, the links and the main content extracted

ARCHITECTURE OF A WEB CRAWLER

BASIC STRUCTURE

Robot.txt
Fingerprints Policies URL set

Links:.. %
= Content:...

,-/ |
4 i
g |

REMOVE
PRESSSN -c BN)\ o BN) b | a7p B
PAGES

URL FRONTIER -

—

e

Before indexing the page is checked with a set of “fingerprints” of other
pages to verity if it is a duplicate.

ARCHITECTURE OF A WEB CRAWLER

BASIC STRUCTURE

Robot.txt
Fingerprints Policies URL set

NS %
P Links:... F‘

v |
s il

—

K REMOVE e REMOVE
GRS FETCH R PARSE S DUPLICATE SRl * =" B DUPLICATE
PAGES URL

URL FRONTIER -

The newly extracted URL are normalised and filtered to eliminate the ones
that should not be crawled.

e

ARCHITECTURE OF A WEB CRAWLER

BASIC STRUCTURE

Robot.txt
Fingerprints Policies URL set

7y Links:...

.lv

/../'/-/
f/
v‘éﬁ"____,_ " ,.._f’

—

REMOVE FILTER REMOVE
FETCH mmmmme PARSE mmmmms DUPLICATE S URL mmmmme DUPLICATE
PAGES URL

URL FRONTIER -

Finally, before being inserted into the URL frontier (the set of URL to visit),
already visited URL are removed.

e

SELECTION OF THE NEXT URL
REQUIREMENTS

* We need an architecture that allows to:
Keep only one connection open to the host.

Ensure a waiting time of at least a few second between
requests.

Have a bias for pages with higher priority.

* We present one possible architecture for achieving these goals.

* Multiple threads can extract URL from the URL frontier.

THE URL FRONTIER
l

PRIORITISER \

Bl N
Manage G i 5o

. F front queues

\

Priority

BIASED FRONT QUEUE SELECTOR
BACK QUEUE ROUTER

M
?nage B back queues
Politeness

BACK QUEUE SELECTOR

FRONT AND BACK QUEUES

FOR PRIORITY AND POLITENESS

» The prioritiser assign an integer priority between 1 and F to each
new URL

e There are F front FIFO queues (one for each priority).

« Each of the B back queues has the properties that:
* The queue is non-empty while crawling is in progress.
» Each queue contains URL from a single host.

* To do so we need to keep a mapping from hosts to queues.

FRONT AND BACK QUEUES

FOR PRIORITY AND POLITENESS

* We keep an heap that returns the minimum time to wait to
contact again an host.

We extract the top of the heap, wait the required time, and
extract a new URL from the corresponding queue.

If the queue is now empty, then a new URL is taken from the front
queues in a biased manner (i.e., higher probability of being
selected to higher priority queues).

 |If the URL is from an host with an already assigned queue then
it is inserted in that queue, and the extraction is repeated.

FRESHNESS

AND HOW TO SELECT WHAT TO RE-CRAWL

A HEAD request is a kind of request where the server send some

information about a page, but not the page itself. Among the
information there is the “Last-modified” time.

We can use HEAD requests to check pages for freshness.

However, it is impossible to constantly check all pages.

We must decide a policy on what pages to check.

We have two metrics: freshness and age.

FRESHNESS

A BINARY WAY OF MEASURING “OLD” PAGES

update update

A page is fresh if the crawler has the most recent copy of the page,

otherwise the page is stale.

Freshness = fraction of web pages that are currently fresh.

FRESHNESS
A BINARY WAY OF MEASURING “OLD” PAGES

Should we optimise for freshness?

Actually there can be unintended consequences.

Suppose that a page updates very frequently (e.g., every minute).

You will almost always have a stale copy of the page.

If you have limited resources for crawling then a good strategy
would be to never crawl that page again: it will always be stale
after a very short time.

Which is not what the user want. Hence we can optimise for age.

AGE

A MORE REFINED WAY OF FINDING OUTDATED PAGES

W
o
< /

update update

A page start ageing when it is modified. Its age returns to O
when it is crawled again.

Age = time passed since the first update after a crawl event.

AGE

A MORE REFINED WAY OF FINDING OUTDATED PAGES

Suppose that a page is updated A times a day.

Then its expected age at time 7 after it was visited last time is:

l

Age(A, 1) = J P(Change at time x)(t — x) dx

0

The probability of a page changing at a certain time x can be estimated:
according to studies, the updates to a web page follows a Poisson distribution,

hence we obtain:
{

Age(A, 1) = [Ae™(t — x) dx
0

AGE

A MORE REFINED WAY OF FINDING OUTDATED PAGES

By trying to minimise the expected age of a set of pages we will visit them all.

02Age(l, 1) e
ot?

Notice that the rate of increase of the age function (its second derivative) is

always positive for 4 > 0 (which is always the case).

This means that not visiting a web page has an increasing cost the older the
page gets. We will never conclude that we do not have to visit a web page.

STORAGE

(AND GOOGLE BIGTABLE)

BIGTABLE
AND WIDE COLUMN STORES

BigTable, by Google is a NoSQL database used internally at
Google since 2005. From 2015 it is available as a service.

Two similar open source projects are:

» Apache HBase (https://hbase.apache.org)

* Apache Accumulo (https://accumulo.apache.org)

Maps three values into a byte array:
a row and column keys as arbitrary strings plus a timestamp.

Distributed database initially developed to store web pages.

Original BigTable paper: https://www.usenix.org/legacy/event/osdi0é/tech/chang/chang.pdf

https://hbase.apache.org
https://accumulo.apache.org
https://www.usenix.org/legacy/event/osdi06/tech/chang/chang.pdf

ONE TABLE
AND MANY TABLETS

Each database contains exactly one
(logical) table.

The data are saved in an immutable
way. This also helps in the case of

failure recovery

Any change to a tablet is recorded
in a transaction log.

Recent data are stored in RAM and
periodically merged to reduce the

One logical table... ...is partitioned into total number of disk files.

multiple tablets...

...which are distributed across
thousands of machines

ROWS IN BIGTABLE

The data are organised by rows. Rows are partitioned into tablets based
on their row key.

Each row can have a different (and large) number of columns.

Columns are grouped in column families. In fact, column keys have the
syntax family:quantifier.

The column family is the basic unit of access control and usually all data
stored in the same family have the same type.

Timestamps (multiple versions)

Column index

com.cnn.www CONTENTS ANCHOR:CNN.COM

Row index

DUPLICATES AND NEAR-DUPLICATES

THE PROBLEM

DUPLICATED WEB PAGES

Studies show that about 30% of the crawled pages are duplicates
or near-duplicates of the other 70%.

Duplicates can be created by spam or plagiarism...
...but also via mirror sites.

Duplicates or near-duplicates provide very little information to the
user while consuming resources for crawling and indexing.

There exist algorithms to mitigate this problem, without
comparing each document across all already-indexed documents.

1 Fetterly, Dennis, Mark Manasse, and Marc Najork. "On the evolution of clusters of near-duplicate web pages.”

DETECTING EXACT DUPLICATES
CHECKSUMMING

The detection of exact duplicate is relatively easy;
it can be performed by comparing the checksums of the documents

One of the simplest kinds of checksums is
to simply sum all the bytes in the document

"The quick brown fox jumps over the lazy dog”

84 104 101 32113 117 10599 107 32 ... 32100 111 103

There are more complex checksum algorithms where the position of the bytes
is considered (like CRC - cyclic redundancy check),

NEAR-DUPLICATES

WHAT THEY ARE AND HOW TO DETECT THEM

Detecting near-duplicates is more complex...

...but even defining them is more problematic:
E.g., same text but different advertising/formatting
Slight difference in text due to small edits

In general a similarity measure is defined...

...and two documents are considered near-duplicates above a
certain threshold.

NEAR-DUPLICATES
TWO SCENARIOS

Detecting near-duplicates can happen in two scenarios:

Search. When the goal is to find the duplicates of a given
document.

Discovery. When, given a collection, the goal il to find all pairs of
duplicates or near duplicates.

Similarity-based IR techniques can be used in the search scenario.

For the discovery scenario more efficient techniques are usually
employed, e.g., fingerprints.

FINGERPRINTS
A POSSIBLE ALGORITHM

All non-word content is removed
The document is parsed into words

The quick brown fox jumps over the lazy dog

Words grouped in n-grams for some n

The quick brown jumps over the

Continues quick brown fox over the lazy

in the next slide .
brown fox jumps the lazy dog

fox jumps over

FINGERPRINTS
A POSSIBLE ALGORITHM

Words grouped in n-grams for some n
A subset of n-grams is selected

The quick brown jumps over the i
quick brown fox

quick brown fox over the lazy
fox jumps over

brown fox jumps the lazy dog

fox jumps over

The hashes are stored The n-grams are hashed
in an inverted index

1490

i
P

FINGERPRINTS
HOW TO SELECT A SUBSET

» Two documents are considered near-duplicates they share enough n-
grams (by measuring, for example, the Jaccard coefficient).

* |t is essential to have a "good” way of selecting which subset of
n-grams to keep:

* Random selection is a bad choice: the overlap between randomly
selected n-grams of identical documents can be low!

* A better choice is to select all n-grams starting with the same letter.

* Another choice is to select all n-grams with hash value equal to
0 mod p for some choice of p.

SIMHASH

A MORE RECENT FINGERPRINTING TECHNIQUE

The
Quick

Extract a set of features
(e.g., words) each with
Brown a weight (e.g., frequency)

Fox

For each word compute a unique hash of b bits
(the desired size of the fingerprint)

Continues :
in the next slide The Quick Brown

0101 1100 1001

SIMHASH

A MORE RECENT FINGERPRINTING TECHNIQUE

The Quick Brown Fox

0101 1100 1001 0001

Start with a vector of size b with all positions initially set to O

SIMHASH

A MORE RECENT FINGERPRINTING TECHNIQUE

The Quick Brown Fox

0101 1100 1001 0001

-2 +1 +1

Look at the first bit of the hash of every word.
Add the weight to the word if the bit is 1.
Subtract the weight of the word if the bit is O

SIMHASH

A MORE RECENT FINGERPRINTING TECHNIQUE

The Quick Brown Fox

0101 1100 1001 0001

+2 5 - -1

MWe do the same for the second bit

SIMHASH

A MORE RECENT FINGERPRINTING TECHNIQUE

The Quick Brown Fox

0101 1100 1001 0001

-2 -1 -1

mWe do the same for the third bit

SIMHASH

A MORE RECENT FINGERPRINTING TECHNIQUE

The Quick Brown Fox

0101 1100 1001 0001

+2 -1 +1 +1

The hash value w

of the document We do the same for the fourth bit

We obtain a sequence of b bits by setting

a bit to 1 for positive values and to 0 otherwise

FINDING THE CONTENT

FINDING THE CONTENT

UNDERSTANDING THE PROBLEM

Main Content Block

1
Facilitating The Spread Of Knowledge And Innovation In Professional Software Development Mere Q z SIGNUP/LOGIN v ;

NEW
I nfo Q Development Architecture & Al, ML and Data Culture & DevOps Videos with SofthCevgf!elnce

. S . . San Francisco Nov 11 - 15
Design Engineering Methods Transcripts | oo . 200

New York Jun 15-19, 2020

En |®x | BA| Fr | Br
1,557,098 Sep unique visitors

«~/ FEATURED: Streaming Machine Learning Reactive Microservices Containers Observability Docker 5 essential software architecture p...

InfoQ Homepage > News > MIT Debuts Gen, A Julia-Based Language For Artificial Intelligence

EMERGING TECHNOLOGIES

MIT Debuts Gen, a Julia-Based Language for Artificial Intelligence

ofy LIKE (T biscuss - N

JUL 04,2019 « 2MIN READ In a recent paper, MIT researchers introduced Gen, a general-purpose
probabilistic language based on Julia that aims to allow users to express RELATED CONTENT

by . : : : :
models and create inference algorithms using high-level programming .

Sergio De Simone > The Road to AI’tIﬁCIal @1
constructs. Intelligence: An Ethical Minefield \

FOLLOW JUN 28, 2019

To this aim, Gen includes a number of novel language constructs, such as a
generative function interface to encapsulate probabilistic models, combinators E?lffabr?/olnkeﬂg?:)enazses New Computer Vision
to create new generative functions from existing ones, and an inference library 0CT 28, 2019
providing high-level inference algorithms users can choose from.
Google Announces U pdates to AutoML Vi§ion
Although Gen is not the first probabilistic programming language, MIT f\gfe’ AutoML Video, and the Video Intelligence

researchers say existing ones either lack generality at the modelling level, or 0CT 22,2019

HOW TO FIND WHERE THE CONTENT IS
TAGS AND TOKENS

The main content of the page might be only a fraction of the total
area. The rest is advertisement, navigation links, etc.

From the point of view of the user the rest is noise that can have a

negative effect on the ranking.

We need a way to identify the non-main content of the page and
either ignore it or reduce its weight.

An observation is that, usually, the main content of the page
contains less tags than the rest of the page.

HOW TO FIND WHERE THE CONTENT IS
TAGS AND TOKENS

Document slope curve

Location of the main content

s @
=
e
>

2]
(©))
O
o
——
(@)
| -
)
0O
S
=)
L

How to find it?

Number of tokens

HOW TO FIND WHERE THE CONTENT IS
TAGS AND TOKENS

Document as a binary vector of length N (the number of tokens) with:

: { 1 if the k-th term is a tag
=

0 otherwise

Find two “cutting points” i and j with 1 <i <j < N maximising:

Tags before content non-tags in the content Tags after content

ANOTHER POSSIBILITY
LOOKING AT THE DOM

To parse a webpage a browser construct a representation using
the HTML tags.

This representation is the DOM (Document Object Model)

It is a tree-like structure that can be navigated to find the major
components of a web page.

A set of heuristics and filtering techniques can be used to remove
images, advertising, and leave only the content.

It is also possible to analyse the visual feature of a page to
identify the location of the main content.

ANOTHER POSSIBILITY
LOOKING AT THE DOM

b <script type="text/javascript'>.</script>
V¥ <div class="infoq" id="infoq">
<\—— ###### SITE START ####HH####H ——>
b <header class="header nocontent">..</header> 1c 1 1 1
<header class="header nocontent">.</head This is the location of the main content of
Vv <main>
Vv <article data-type="news" class="article"> the examp|e page, helpfu”y Iabeled
Vv <section class="section container white">
::before 1 " 1 n
L LeTore container innerts with the class “article__content
» <p class="crumbs">..</p>
p <div class="actions">.</div>
p <div class="actions heading__container article__heading">..</div>
p <p id="translated_jp" class="article__translated">..</p>
p <script type="text/javascript'">.</script>
p <div class="article__actions actions">..</div>
Vv <div class="columns article__explore">
::before
V¥ <div class="column article__main" data-col="4/6">
p <div class="column article__metadata metadata'>..</div>
v <div class="article__content">
<!—— Start PSA Section —>
<!—— End PSA Section —>
b <div class="article__data">..</div>
p <input type="hidden" name value="Thank you for your review!" id="cr_messages_submitSuccess">
p <input type="hidden" name value="Rating is required" id="cr_messages_ratingRequired">
p <input type="hidden" name value="MIT Debuts Gen, a Julia-Based Language for Artificial Intelligence" id="cr_item_title">
» <input type="hidden" name value="Sergio De Simone" id="cr_item_author">
p <input type="hidden" name value="http://www.infoq.com/news/2019/07/mit—-gen—-probabilistic-programs/" id="cr_item_url">
p <input type="hidden" name value="news" id="cr_item_ctype">
p <input type="hidden" name value="en" id="cr_item_lang">
p <input type="hidden" name value="1562223600000" id="cr_item_published_time">
» <input type="hidden" name value="6230" id="cr_item_primary_topic">
<script type="text/javascript">ContentRating.readMessages(); ContentRating.readContentItem();</script>
b <script type="text/javascript'">.</script>
p <div class="widget article__fromTopic topics">..</div>
</div>
p <script type="text/javascript">.</script>
p <input type="hidden'" name value="6230" id="cont item

