Per le seguenti funzioni di variabile complessa si determino le singolarità isolate, specificandone il tipo, e si calcoli il residuo in tali singolarità isolate

$$\frac{\sin z}{z^2} - \frac{\cos z}{z} , \quad \frac{\sin (\pi/z)}{(1-z^2)^2} .$$

Soluzione per $\frac{\sin z}{z^2} - \frac{\cos z}{z}$: Le funzioni seno e coseno sono olomorfe su tutto il piano complesso, e hanno una singolarità essenziale a $z=\infty$, mentre 1/z e $1/z^2$ sono olomorfe su tutto il piano complesso tranne che in z=0, e regolari a $z=\infty$. Pertanto le singolarità della funzione possono essere solo in z=0 e $z=\infty$.

Per analizzare il comportamento in z=0, partiamo dalla serie di Taylor centrata in z=0 delle funzioni seno e coseno

$$\sin z = z - \frac{z^3}{6} + \mathcal{O}(z^5) , \quad \cos z = 1 - \frac{z^2}{2} + \mathcal{O}(z^4) .$$

Da queste, moltiplicando per $1/z^2$ o 1/z termine a termine, otteniamo

$$\frac{\sin z}{z^2} = \frac{1}{z} - \frac{z}{6} + \mathcal{O}(z^3) , \quad \frac{\cos z}{z} = \frac{1}{z} - \frac{z}{2} + \mathcal{O}(z^3) .$$

Infine prendendo la differenza troviamo che i primi termini dell'espansione in z=0 della funzione sono

$$\frac{1}{z} - \frac{z}{6} + \mathcal{O}(z^3) - \left(\frac{1}{z} - \frac{z}{2} + \mathcal{O}(z^3)\right) = \frac{z}{3} + \mathcal{O}(z^3) ,$$

da cui concludiamo che z=0 è una singolarità rimuovibile (e infatti uno zero di ordine 1).

Per studiare il comportamento in $z=\infty$, osserviamo che non essendoci alcuna singolarità fuori dall'origine, i coefficienti della serie di Taylor-Laurent attorno a $z=\infty$ coincidono con quelli della serie centrata in z=0. Vediamo quindi dal calcolo fatto sopra che la funzione è senz'altro singolare in $z=\infty$, perchè la serie ha potenze positive di z (i.e. negative di 1/z), e inoltre che il residuo è nullo perchè manca il termine 1/z nello sviluppo. Inoltre tutte le potenze positive dispari di z hanno coefficiente non nullo perchè i contributi dalla serie del seno e del coseno hanno coefficienti diversi e non c'è cancellazione. Dunque $z=\infty$ è una singolarità essenziale.

Soluzione per $\frac{\sin(\pi/z)}{(1-z^2)^2}$: La funzione $\sin(\pi/z)$ ha una singolarità essenziale in z=0 ed è olomorfa in tutti gli altri punti incluso $z=\infty$, mentre la funzione $1/(1-z^2)^2$ ha poli doppi (i.e. di ordine due) in $z=\pm 1$ ed è olomorfa in tutti gli altri punti incluso $z=\infty$. Dunque per la funzione prodotto le possibili singolarità isolate sono in z=0 e in $z=\pm 1$, mentre in $z=\infty$ sarà senz'altro olomorfa ma comunque il residuo potrebbe essere non nullo. Iniziamo dall'analizzare $z=\infty$ e $z=\pm 1$ e lasciamo il punto z=0 dove abbiamo una singolarità essenziale per ultimo.

Come abbiamo già detto $z = \infty$ non è una singolarità, ma in ogni per calcolare il residuo dobbiamo ottenere lo sviluppo in serie di TL in potenze di 1/z e guardare al coefficiente di $(1/z)^1$. Lo sviluppo della funzione seno dà

$$\sin(\pi/z) = \frac{\pi}{z} + \mathcal{O}(z^{-3}) .$$

Invece sviluppando $1/(1-z^2)^2$ troviamo

$$\frac{1}{(1-z^2)^2} = \frac{1}{z^4} \frac{1}{(1-\frac{1}{z^2})^2} = \frac{1}{z^4} \left(1 + \mathcal{O}(z^{-2}) \right) = \frac{1}{z^4} + \mathcal{O}(z^{-6}) .$$

Pertanto facendo il prodotto abbiamo

$$\frac{\sin(\pi/z)}{(1-z^2)^2} = \frac{\pi}{z^5} + \mathcal{O}(z^{-7}) .$$

Vediamo che lo sviluppo parte da $(1/z)^5$ e contiene solo potenze ≥ 5 di 1/z, dunque $\mathrm{Res}_{\frac{\sin(\pi/z)}{(1-z^2)^2}}(\infty)=0$.

Passiamo quindi ad analizzare $z=\pm 1$. Visto che la funzione è dispari il tipo di singolarità è identico nei due punti, e il residuo ha lo stesso valore. Quindi possiamo restringerci a z=1. Anche se $1/(1-z^2)^2$ ha uno polo di ordine 2 in z=1, questo non è vero per la funzione moltiplicata per $\sin(\pi/z)$ perchè $\sin(\pi/z)$ si annulla in questo punto. Per determinare il tipo di singolarità isolata dobbiamo determinare l'ordine dello zero di $\sin(\pi/z)$ in z=1. La serie di Taylor dà

$$\sin(\pi/z) = \left(\frac{d}{dz}\sin(\pi/z)\right)\Big|_{z=1} (z-1) + \mathcal{O}((z-1)^2)$$
$$= \left(-\frac{\pi}{z^2}\cos(\pi/z)\right)\Big|_{z=1} (z-1) + \mathcal{O}((z-1)^2)$$
$$= \pi(z-1) + \mathcal{O}((z-1)^2).$$

Dunque abbiamo uno zero di ordine 1 al numeratore e uno zero di ordine 2 al denominatore, e in totale la funzione ha un polo di ordine 1. Per determinare il residuo possiamo sostituire lo sviluppo del seno nella formula per il residuo a un polo di ordine 1

$$\operatorname{Res}_{\frac{\sin(\pi/z)}{(1-z^2)^2}}(1) = \lim_{z \to 1} (z-1) \frac{\pi(z-1) + \mathcal{O}((z-1)^2)}{(1-z^2)^2}$$
$$= \lim_{z \to 1} (z-1) \frac{\pi(z-1) + \mathcal{O}((z-1)^2)}{(z-1)^2(z+1)^2}$$
$$= \frac{\pi}{4}.$$

In alternativa possiamo utilizzare direttamente la formula per il residuo al polo di ordine 1 sulla funzione prima di sviluppare il seno, e riconoscere che il limite prende la forma del rapporto incrementale

$$\operatorname{Res}_{\frac{\sin(\pi/z)}{(1-z^2)^2}}(1) = \lim_{z \to 1} (z - 1)^{\frac{\pi}{2}} \frac{\sin(\pi/z)}{(z-1)^{\frac{\pi}{2}}(z+1)^2}$$

$$= \frac{1}{4} \lim_{z \to 1} \frac{\sin(\pi/z)}{z-1}$$

$$= \frac{1}{4} \left(\frac{d}{dz} \sin(\pi/z) \right) \Big|_{z=1}$$

$$= \frac{\pi}{4} .$$

In ogni caso abbiamo ottenuto che $z=\pm 1$ sono poli di ordine 1 e $\operatorname{Res}_{\frac{\sin(\pi/z)}{(1-z^2)^2}}(\pm 1)=\frac{\pi}{4}$.

Infine consideriamo z=0. Abbiamo il prodotto di una funzione regolare in questo punto per una funzione che ha una singolarità essenziale, e quindi la funzione prodotto ha anche una singolarità essenziale. Determinare il residuo al polo tramite lo sviluppo in serie dei fattori non è pratico in questo caso, perchè moltiplicando la serie di $\sin(\pi/z)$ con infinite potenze negative di z per la serie di $1/(1-z^2)^2$ con infinite potenze positive di z possiamo ottenere la potenza 1/z da infiniti termini del prodotto (tutte le volte che moltiplichiamo $1/z^{2k+1}$ per z^{2k} , $k \in \mathbb{N}$). Possiamo però prendere la seguente scorciatoia per calcolare il residuo: sappiamo che

$$\operatorname{Res}_{\frac{\sin(\pi/z)}{(1-z^2)^2}}(0) = \int_{\gamma_0} \frac{dz}{2\pi i} \frac{\sin(\pi/z)}{(1-z^2)^2} ,$$

dove γ_0 è un cammino circolare in senso antiorario intorno a z=0, che non contenga al suo interno alcuna altra singolarità oltre a z=0. Visto che la funzione integranda ha solo un numero finito di singolarità isolate in tutto il piano complesso, notiamo che anche al di fuori della curva γ_0 ci sono solo un numero finito di singolarità isolate. Pertanto possiamo calcolare l'integrale usando il teorema esterno dei residui, e otteniamo¹

$$\operatorname{Res}_{\frac{\sin(\pi/z)}{(1-z^2)^2}}(0) = -\operatorname{Res}_{\frac{\sin(\pi/z)}{(1-z^2)^2}}(1) - \operatorname{Res}_{\frac{\sin(\pi/z)}{(1-z^2)^2}}(-1) - \operatorname{Res}_{\frac{\sin(\pi/z)}{(1-z^2)^2}}(\infty) = -\frac{\pi}{2} .$$

Bonus: Verifichiamo il calcolo del residuo in z = 0 utilizzando la somma infinita che dà il coefficiente di 1/z. A tal fine vediamo che facendo il prodotto delle serie

$$\sin(\pi/z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \frac{\pi^{2k+1}}{z^{2k+1}} ,$$

¹Questo argomento in generale ci dice che se una funzione è olomorfa su tutto il piano complesso tranne un numero finito di singolarità isolate, allora la somma dei residui in tutte le singolarità, incluso il residuo in $z = \infty$, deve sempre essere 0.

e

$$(1-z^2)^{-2} = \sum_{k=0}^{\infty} {\binom{-2}{k}} (-1)^k z^{2k} ,$$

il termine 1/z ha coefficiente dato dalla somma su k dei prodotti dei termini con lo stesso indice k nelle due serie, ovvero

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)!} \pi^{2k+1} {\binom{-2}{k}} .$$

Ricordando la definizione del "coefficiente binomiale" lo possiamo riscrivere come²

$$\binom{-2}{k} = \frac{-2(-2-1)\dots(-2-k+1)}{k!} = (-1)^k \frac{2(2+1)\dots(2+k-1)}{k!} = (-1)^k \frac{(k+1)!}{k!} = (-1)^k k.$$

Infine riscrivendo $k = \frac{1}{2}((2k+1)-1)$, troviamo

$$\sum_{k=0}^{\infty} \frac{(-1)^k k}{(2k+1)!} \pi^{2k+1} = \frac{\pi}{2} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} \pi^{2k} - \frac{1}{2} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \pi^{2k+1} = \frac{\pi}{2} \cos \pi - \frac{1}{2} \sin \pi = -\frac{\pi}{2} \ .$$

2

Si trovi la più generale funzione f(z) olomorfa su tutto il piano complesso tranne che per un polo di ordine 2 in z = i con residuo $\operatorname{Res}_f(i) = -3i$ e che è limitata in un intorno di $z = \infty$.

Soluzione: Affinché la funzione abbia un polo di ordine 2 in z=i con il residuo richiesto, la serie di TL in z=i deve essere

$$f(z) = \frac{c_{-2}}{(z-i)^2} + \frac{-3i}{z-i} + \sum_{n=0}^{\infty} c_n (z-i)^n ,$$

con c_{-2} e $\{c_n\}_{n\geq 0}$ numeri complessi arbitrari. A questo punto notiamo che

$$F(z) = f(z) - \frac{c_{-2}}{(z-i)^2} - \frac{-3i}{z-i} ,$$

$$(1+z)^{\alpha} = \sum_{k=0}^{\infty} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1)k!} z^{k} .$$

Quando $\alpha = n \in \mathbb{N}$, solo i primi n termini della somma, ovvero quelli con $k = 0, \ldots, n-1$, contribuiscono, e per questi termini possiamo utilizzare che $\Gamma(n+1) = n!$ e $\Gamma(n-k+1) = (n-k)!$ per ritrovare l'usuale formula per lo sviluppo di un binomio. In questo caso termini con $k \geq n$ nella somma si cancellano perché la funzione $\Gamma(n-k+1)$ al denominatore viene valutata in un intero non-positivo, e la funzione Γ ha un polo di ordine 1 in questi punti, per cui il coefficiente diventa nullo.

 $^{^2}$ Ora che conosciamo la funzione Γ , possiamo anche scrivere in generale lo sviluppo di $(1+z)^{\alpha}$ come

é una funzione olomorfa su tutto il piano complesso, e per via dell'assunzione sulla funzione f è anche limitata in un intorno di $z=\infty$, in quanto la funzione che stiamo sottraendo da f(z) ha limite nullo per $z\to\infty$. Quindi possiamo applicare il teorema di Liouville e concludere che F(z) deve essere costante, i.e. $F(z)=c_0\in\mathbb{C}$. Pertanto concludiamo che la forma più generale per f(z) è

$$f(z) = \frac{c_{-2}}{(z-i)^2} + \frac{-3i}{z-i} + c_0 ,$$

con c_{-2} e c_0 numeri complessi arbitrari.