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PageRank

HITS



PAGERANK



BRIN, PAGE & GOOGLE

HISTORY

• PageRank is (part of) the algorithm used by Google in ranking the 
pages in its results. 

• Developed in 1996 with the first paper on it published in 19982: 
“we present Google, a prototype of a large-scale search engine 
which makes heavy use of the structure present in hypertext “ 

• Or, in other words,“we take advantage of the link structure of the 
Web to produce a global “importance” ranking of every web 
page.”1 

• The origin of PageRank can be traced back to methods in 
bibliometrics, sociometry, and possibly other fields.
1Page, L., Brin, S., Motwani, R. and Winograd, T., The PageRank Citation Ranking: Bringing Order to the Web, Stanford InfoLab, 1999

2 Brin, S. and Page, L., The anatomy of a large-scale hypertextual Web search engine,  Computer networks and ISDN systems, 30(1-7), pp.107-117, 1998



USING LINKS TO GET SCORES

MAIN IDEA

• We want to assign a value to each page that is independent from 
the query, i.e., a static score. 

• We model a user randomly following links across web pages. 

• What is the limit distribution of “where the user is” across all the 
pages? 

• A user is without any memory of the page from where he/she 
came… 

• …it seems like a case for using a Markov chain!



RANDOM WALK ON A GRAPH

A SIMPLE EXAMPLE
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We are visiting page A, where can move either to page B or D. 
We select where to move uniformly at random.



RANDOM WALK ON A GRAPH

A SIMPLE EXAMPLE
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We are visiting page B, where can move either to page C, D, or E. 
We select where to move uniformly at random.



RANDOM WALK ON A GRAPH

A SIMPLE EXAMPLE
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We can formalise this random walk 
by defining a stochastic matrix
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from node A to B



AND THE STATIONARY DISTRIBUTION

FORMALISATION AS A MARKOV CHAIN

Finding the probability distribution of the web page out idealised 
user is in then time tends to infinity

R =
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Finding the stationary distribution of the Markov chain with the 
following transition matrix:

Is equivalent to



NODES WITHOUT OUTGOING EDGES

DANGLING NODES

A first problem that can appear in defining the stochastic matrix  is 
the presence of “dangling nodes”

R

B C

D Node without outgoing edges: 
how to assign probabilities to 
go to another page?

A simple fix is to suppose that the user will go somewhere else 
uniformly at random: [ 1

N
1
N ⋯ 1

N ]



PAGES WITHOUT INCOMING OR OUTGOING LINKS

PROBLEMS

A
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D

Node without incoming edges: 
we have probability 0 of returning 
to it once we leave it

The same problem is also present 
for nodes D and E

Group of nodes without outgoing edges: 
we can never leave them once entered



HOW TO MAKE THE USER SMARTER

TELEPORTING

• It is common to have “sinks” where it is impossible to exit by only 
following the links… 

• …or pages that we cannot go back to. 

• This produces an imbalance in our scores, that can potentially be 
exploited. 

• In fact our idealised user can be a little bit smarter. At every page it 
can: 

• Move following one of the links in the page… 

• …or go to a random page



AND THE TRANSITION MATRIX

TELEPORTING

• Move to a linked page with probability  

• Move to random page with probability  

•  can be considered a “damping factor” or “probability that 
our user decides to go to another website”
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AND THE TRANSITION MATRIX

TELEPORTING

• We assign a probability of  of landing on any particular page. 

• The previous matrix can also be written as:
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P = α

1
1
1
1
1

[ 1
5

1
5

1
5

1
5

1
5 ] + (1 − α)

0 1
2 0 1

2 0

0 0 1
3

1
3

1
3

0 1
2 0 1

2 0
0 0 0 0 1
1 0 0 0 0

“Jump vector”



AND THE TRANSITION MATRIX

TELEPORTING

P = α
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We usually write it as P = α ⃗1 T ⃗J + (1 − α)R

Can we find something about  that helps us in computing the 
PageRank of all pages (i.e., the stationary distribution)? 
Can we have a solution that is independent from any initial guess 
that we might have to perform?

P



AND THE STATIONARY DISTRIBUTION

TELEPORTING

• With this “teleporting” trick we can now go to any other web page 
in one step. 

• Which means that all entries of  are positive. 

• Which means that we can apply the Perron-Frobenius theorem 
(actually one reformulation of it): 

If  is a positive row (or column) stochastic matrix then: 

1. The eigenvalue  is the largest eigenvalue and has multiplicity  

2. There is a unique stochastic eigenvector for the eigenvalue 

P

P

1 1

1



USING THE PERRON-FROBENIUS THEOREM

COMPUTING PAGERANK EXACTLY

⃗π P = λ ⃗π

The PageRank vector of the transition matrix  is the unique 
stochastic eigenvector corresponding to the eigenvalue 

P
1

⃗π P = ⃗π

In out case , thus:λ = 1

Which is a linear system, we know how to solve it…

…except that  is a square matrix with a few billions of rows.P



A PRACTICAL APPROACH

COMPUTING PAGERANK ITERATIVELY

• Usually we do not solve exactly the PageRank for a set of web 
pages. 

• We use an iterative methods that, in fact, converges quite rapidly. 

• The main idea is that, if we start from a stochastic vector , 
maybe giving equal probability to each page… 

• …then  for a large enough  would be a good approximation 
of the exact solution .

⃗x

⃗x Pt t
⃗π

See also: Pavel Berkhin, A Survey on PageRank Computing, Internet Mathematics Vol. 2, No. 1: 73-120, 2005



A PRACTICAL APPROACH

COMPUTING PAGERANK ITERATIVELY

In pseudocode this could be expressed as:

⃗x 0 = random()
Start with a random 

probability distribution

⃗x t = ⃗x t−1 (α ⃗1 T ⃗J + (1 − α)R)
Update the vector 

by multiplying it by P

do 

while  | ⃗x t − ⃗x t−1|1 ≥ ε

Until the difference between the vectors 
in two consecutive iterations is below  ε > 0



USING PAGERANK FOR SPECIFIC TOPICS  

TOPIC-SPECIFIC PAGERANK

• In addition to computing PageRank scores for all pages we can 
limit the computation to single topics. 

• How?  

• Simply change the probability distribution for the “teleportation”, 
i.e., the “jump vector”. 

• Start with a (non-empty) set  of pages specific to a certain topic. 

• Your jumps can only be inside .

S

S



USING PAGERANK FOR SPECIFIC TOPICS  

TOPIC-SPECIFIC PAGERANK

P = α ⃗1 T ⃗JS + (1 − α)R

⃗JSi = {
1

|S |
if i ∈ S

0 otherwise

Given a set of pages , we consider a topic-specific jump vector  in 
the equation:

S ⃗JS

With the elements of  now defined as:⃗JS

We will find a set  of pages with positive PageRank, thus 
obtaining the solution  of “topic specific PageRank for ”

Y ⊇ S
⃗πS S



FOR DIFFERENT USERS

PERSONALISED PAGERANK

• We might want to add a special PageRank score for every user, 
depending on the topics he/she is interested in. 

• For example, based on a set of favorite web pages. 

• However, performing the PageRank computation for every user is 
too expensive. 

• We can use the linearity of PageRank.



AND LINEARITY OF PAGERANK

PERSONALISED PAGERANK

Let  and  be two disjoints of “topic specific” pages.S1 S2

Suppose that the corresponding PageRank scores are  and .⃗π1 ⃗π2

For a user that is interested in the first topic with weight  and 
in the second topic with weight , with  we can 
compute the corresponding PageRank scores as

w1 ≥ 0
w2 ≥ 0 w1 + w2 = 1

w1 ⃗π1 + w2 ⃗π2

Hence we can compute personalised PageRank scores with a 
weighted sum of pre-computed scores.



AND REL=NOFOLLOW

MANIPULATION OF PAGERANK

• There is an implicating conflict between the indexing (especially the 
one performed by Google) and the people managing the websites. 

• Google needs to keep the search results relevant to the user. 

• Normal and spam websites wants to rank high in the search results. 

• To mitigate some of the problems, the “rel=nofollow” attribute was 
added to HTML. 

• A link like: 
<a href="http://www.example.com/" rel="nofollow">Link</a> 
would not be considered for the purpose of computing the 
PageRank score.



HITS



TWO TYPES OF SCORES

HUBS AND AUTHORITIES

This page links a lot of other pages. 
It can be considered an hub.

This page is linked by a lot of other 
pages. It can be considered an 
authority.



TWO TYPES OF SCORES

HUBS AND AUTHORITIES

• Hubs are pages that are important not for their content, but for the 
links that they provide toward pages with interesting content. 

• Authorities are pages that are important for their content; 
therefore, they are linked by many pages. 

• The hyperlink-induced topic search (HITS) algorithm assigns two 
different scores to each page, an authority and a hub score. 

• The main idea behind the algorithm is: 

• A good hub points to pages with high authority score. 

• A good authority is pointed by pages with high hub scores.



TWO TYPES OF SCORES

HUBS AND AUTHORITIES

• Differently from PageRank, HITS is usually computed when the 
query is executed: 

• A set of pages is obtained by some other methods (e.g., by 
looking at the text content of the page). 

• We consider the subset of pages that we have retrieved (which 
will probably have very few links to each other) as a root set. 

• We add to the root set all pages pointed and pointing to it. 

• In this extended set we compute the two scores, that can now be 
used for ranking.



HUBS AND AUTHORITIES

HOW TO COMPUTE SCORES

The hub score  of a page  is defined as:h(x) x

h(x) = ∑
x→y

a(y)

The sum of the authority scores for all pages linked by .x

The authority score  of a page  is defined as:a(x) x

a(x) = ∑
y→x

h(y)

The sum of the hub scores for all pages that links to .x



HUBS AND AUTHORITIES

HOW TO COMPUTE SCORES

As with PageRank, we can compute the scores analytically. 
But here we illustrate an iterative method

h̄t(x) = ∑
x→y

at−1(y)

Start with all hub and authority scores set to . 
At each time step  update them as:

1
t > 0

āt(x) = ∑
y→x

ht−1(y)

But if we only perform this update we might not converge! 
We need to normalise the scores:

ht(x) =
h̄t(x)

∑y (h̄t−1(y))2
at(x) =

āt(x)

∑y (āt−1(y))2


