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The tremendous burden of
cardiovascular disorders

Causes of death
World Health Organization, 2011

Global Atlas on cardiovascular disease
prevention and control, WHO 2011

About 17.3 million people have died
from CVDs in 2008, representing 30% of

all global deaths (www.who.int/

mediacentre/factsheets/fs317), killing more

people than all cancers.

Of these, 7.3 million (42%) deaths were
due to coronary heart disease and 6.2
million (36%) to stroke. It is estimated
that, by 2030, almost 23.6 million people

will die from CVDs.

In Europe, every year 4.3 million people

die from CVDs (www.ehnheart.org/cvd-
statistics), of whom more than 1.8 million

before the age of 75.

Over 20% males under 60 years have

ischemic heart disease

Heart failure is prevalent, deadly,

and expensive

HEART FAILURE STATISTICS (US MARKET)

Number of patients with congestive heart
failure

4,900,000

Acute myocardial
infarction (AMI)

Rapid development of myocardial necrosis
caused by a critical imbalance between the
oxygen supply and demand of the
myocardium

Frequency:

US: ~1.3 million cases AMI/year. Incidence is approximately 600
per 100,000 people.

UK: ~147 000 AMI per year in men, 121 000 in women, total
268,000 AMI per year

Mortality:

US: ~500,000-700,000 deaths caused by ischemic heart disease
per year

Risk factors for coronary artery disease:

Smoking

High blood pressure

High LDL and low HDL cholesterol level

Diabetes

Male gender

Age

Heredity

Medical therapies for

heart failure

Annual number of new heart failure cases 400,000

Percentage of heart attack patients that
develop heart failure within 6 years 20%

Five-year mortality rate for heart failure 50%

Percentage of heart failure patients over the

age of 65% (Medicare patients) 75%
Number of hospital admission each year for

which congestive heart failure is the primary
diagnosis 750,000

Total costs associated with heart failure 40BN

Source: American Heart Association
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New treatments for Synthetic or

recombinant

myocardial ischemia and biotherapeutic
heart failure

Cell Therapy

Source??

Gene Therapy
Relevant genes? @
Which vector?
Syringe
containing
factor, vector or

stem cells

infarct

@ border zone

Neoangiogenesis
Myocardial protection
Myocardial regeneration

Lessons from KO animal models

Gene delivery routes to induce therapeutic
vascular growth

Intravenous

Intracoronary

Intramyocardial (trans-endocardial)
Intramyocardial (trans-pericardial)
Intrapericardial

Perivascular

Coronary sinus

Molecular players in angiogenesis

Smooth muscle cells
Internal elastic lamina

Endothelial cells

Vessel maturation PDGF-B, TFG-f

\" ¢
" Angiopoietins > L
and remadeling Ephrins, Semaphorins . \ Degradation of

T basal membrane

MMPs  and extracellular

EC proliferation VEGF, FGF2

= a matrix
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EC migration VEGF, FGF2

Ligands and RTK families involved in
vascular development

From: N. W. Gale & G. D. Yancopulos. 1999. Genes Dev 9, 1055 - 1066

The NOGA system for transmyocardial
injection

An injection catheter incorporates the mapping capabilities of the
system. This provide a means by which tissues with different degrees
of viability and ischemia can be mapped in detail, allowing therapy to

be precisely targeted (eg, at the border zone of an infarct)

Left, electromechanical linear
local shortening map from an
injection procedure. The red
color represents low
contractility (severe
cardiomyopathy). The black
dots are injection sites.

Right, similar map at 4 month
follow-up, showing dramatic
improvement in contractility at
the site of injection.



Therapeutic angiogenesis:
Key observations from animal studies

® Single administration of recombinant
angiogenic proteins (VEGF, FGF)as
effective as 4 week infusion

® Young and healthy animals very
responsive to exogenous growth factors
in the context of ischemia

Large randomized placebo-controlled
trials for therapeutic angiogenesis

Study design

Phase II: double-blind, placebo-controlled
Groups: Placebo, SINGLE, DOUBLE

Route: Bilateral intra-arterial, days 1 and 30
Primary Endpoint: Change in PWT at day 90

Intra-coronary infusion of recombinant human VEGF-A to
improve perfusion and function of ischemic myocardium

Results

No changes in the clinical parameters in any of the groups

Conclusion

Intracoronary infusion of VEGF failed to improve perfusion

and function of ischemic myocardium compared to
placebo



Gene or protein therapy? Delivery systems for human gene therapy
Protein therapy:

Direct uptake of Viral vectors
Advantages: — Controlled dosing at administration oligonucleotides f:::mx:r:wruses
— No transmission of foreign genetic material or plasmid DNA Adenoviruses
ARV
Disadvantages: — Unstable in circulation Herpesviruses

— Variable stability in ti
ariable stability in tissues Chemical methods

< 2 weeks under best circumstances Liposomes Physical methods
requires polymers for delivery if >2 weeks Cationic lipids (Microinjection)
. Cationic polymers Electroporation
Gene thera py " Lipid- or polymer-protein conjugates Hydroporation
. _ ; ; Sonoporation
Advantages: EeESISE_eth exp_reslswg _ el Jet injection
— Potential for single-dose regimens and ce Protei Bombardment with DNA-coated gold
i rotein-DNA complex
specific therapy ote ) co p EXES beads (gene gun)
Transferrin/DNA conjugates
) Lactoferrin/DNA complexes .
Disadvantages:  — Difficult to produce and administer Poly-L-lysine/DNA conjugates DNA-complexed nanoparticles
- Asialoglycoprotein/DNA conjugates
— No present ability to regulate the dose Adenovirus/DNA conjugates Neo-organs

— Safety issues

Initial clinical results with naked plasmid

Therapeutic angiogenesis for
DNA (J. Isner’s group)

peripheral artery disease

% / Arterial transfer of a plasmid expressing VEGF165 in one
\ i y/ patient with severe limb ischemia
J‘ Isner“ Isner J.M. et al. 1996. Lancet 348, 370-374

Intramuscolar injection of VEGF165 plasmid in 9 patients
with non healing ischemic ulcers and/or rest pain
Baumgartner I. et al. 1998. Circulation 97, 11114-11123

Direct myocardial injection of VEGF165 expression plasmid
for myocardial ischemia
Losordo D.W. et al. 1998. Circulation 98, 2800-2804

Treatment of thromboangioitis obliterans (Burger's
disease) by intramuscular injection of VEGF165 plasmid
Isner J.M. et al.. 1998. J. Vasc. Surg. 28, 964-975

NB: None of these studies were placebo-controlled
and based upon objective end-points!

a Phase 1/2 Placebo-Controlled, Double-Blind, Dose-Escalating
VEGF Gene TranSfer in Humans Trial of Myocardial Vascular Endothelial Growth Factor 2
Gene Transfer by Catheter Delivery in Patients With
Chronic Myocardial Ischemia
Douglas W. Losordo, MD*: Peter R. Vale, MD*: Robert C. Hendel, MD: Charles E. Milliken, MS:

F. David Fortuin, MD; Nancie Cummings, RN: Richard A. Schatz, MD: Takayuki Asahara, MD;
Jeffrey M. Isner, MD: Richard E. Kuntz, MD

Number of patients: 19
12 randomized to phVEGF2 GTX

7 randomized to placebo injection

Total 6 injections at one time
Followed-up for 12 weeks

Primary endpoint:
CCS anginal class status
PRE-GT POST-GT
No adverse events
STRESS
Larger randomized trials have been undertaken REST

Vale P. et al., Circulation 2000




Angiography of the
lower extremity of a
patient with limb
ischemia before
(PRE) and 3 months
after (3 MO) the
transfection of a
VEGF165 plasmid/
liposome expression
vector

From: N. Ferrara & K. Alitalo. 1999.
Nature Medicine 5, 1359 - 1364

Tet-on/AAV inducible system:
controlled in vivo delivery of VEGF
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Angiography after VEGF gene transfer to human lower
limb artery: a randomized, placebo-controlled, double-

blinded phase Il study

Control VEGF-P/L

Primary endpoint: DSA at 3 months follow-up as
compared with the post-PTA angiograms

Significant increase in vascularity in the treated
groups

VEGF-Ad

Makinen et al, Mol Ther. 2002

Transduction with AAV-VEGF-A165 induces massive
formation of a-SMA-positive arterioles
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Zacchigna, S, et al. 2008. J. Clin. Invest. 118, 2062
Zentilin, L, et al. 2006. Blood 107, 3546.
Zacchigna, S, et al. 2005. Am J Pathol 167, 981
Arsic N. et al. 2003. Mol. Ther. 7. 450

TR MV ™®

0 HTA {]Aav-rtTa

control of in vivo transgene @

expression

Levels of VEGF165 mRNA in muscle

Days after injecton  VEGF/r18S RNA X 1000

etk

[ HIE - e
TR

TR TRE2/
miniChv.

AAV DNA genomes in muscle
1x1010

1x108
1x10°
1x10*
1x102
B s

AAV DNA molecules/muscle




Stable vessel formation requires prolonged

VEGF stimulation
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Tafuro, S, et al. 2009. Cardiovasc Res 83, 663.

Transduction of AAV-VEGFAses to the infarcted
myocardium in chronically instrumented dogs

Aortic blood pressure

" . N Injection of AAV vectors Coronary blood flow .
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AAV-VEGFA6s transduction dramatically improves

functional recovery of infarcted myocardium in
chronically instrumented dogs
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The VEGF family of angiogenic factors
and their receptors

VEGF-Ay
PIGF  VEGF-Ajs VEGF-D VEGF-C
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cell e
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(Fit-1)  (KDR/Flk-1)  (Fit-4)

Effects of AAV9-VEGFB transduction in pacing-
induced heart failure in dogs

Pacing time (weeks)

* JA/‘
1
80
40 AAV-VEGF
80 60 AAV-Control

Cardiomyocytes express functional VEGF receptors -
VEGF-R1 expression increases in hypoxia

Reduction of infarct size in rats injected with AAV-
VEGFA1e5 or AAV-VEGFB167

Multiple effects of VEGF family members at

the cardiovascular unit

Giacca M. and Zacchigna S., Gene Therapy 2012



Heart Failure

« >5 million affected with >400,000 new
cases per year

* 50% mortality within 5 years
« Over $30 billion/year in health care costs

Hypertension
mi

Molecular mechanisms of cardiac. contractility

Modulation of B-AR activity

4

Approach

Therapeutic gene

Overexpression of B- B-ARKct ' l'
ARK mutants “ s
Overexpression of AC  |AC-6 S cmem=’ ‘
=" -———— -
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4 .
’ .
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' ]
) ]
L) ]
Normalization of the Ca2* cycle "
Approach Therapeutic gene |+ o o’
Overexpression of SERCA2a Semm="
SERCA2a
Inhibition of PLB Ribozymes,
function siRNAs,

phosphomimetic
transdominant
mutant S16E

Inhibition of cardiomyocyte
apoptosis and/or increase in
cardiomyocyte contractility

Ca2+*-binding proteins

Parvalbumin,
S100A1

VEGF-B, IGF-1, AKT, PI-3K, Bcl2

The CUPID Trial with MYDICAR®

(AAV1-SERCA2a)
9 patients with advanced HF (NYHA Class IlI/IV, EF<30%)

Single intracoronary infusion of AAV1-SERCAZ2a in three
doses (Cohort#1: 1.4x10"; Cohort#2: 6x10'1; Cohort 3:
3x1012 viral particles)

6-12 month follow up:
Safe
Significant clinical
improvement

Phase Il trial started



Significant differences in the treated
versus control patients are found when
multiple-efficacy domain analysis is
applied, which simultaneously takes
into consideration a series of clinical
and instrumental parameters, but not
when ejection fraction alone (a precise
measurement of cardiac function) is
analyzed. This is a possible indication

warne _Time to Multiple Clinical Events that treatment at this stage slows
- progression but does not reverse the
' : : ‘ : ° ' N : o ” condition.
& - -
- P 2 -
- 5 A a4 a0 e -
r oam g, LVEF by Treatment Group
MYDICAR Low - i
q Ee = W - ;
O § "
= e i Pacebo sagn wia Low
MYOICAR Hon
,‘ v o A substantially larger number of
patients will be required to address this
WHF A MIA LWAD O Chvomiciactops @ Transplant [ Desmll  #NAD issue directly.
Aug 11, 2014

Celladon Announces Initiation of Clinical Trial to Investigate
MYDICAR in Patients With Heart Failure and a Left
Ventricular Assist Device (LVAD)
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Neonatal rat cardiomyocytes C. Collesi et al. 2008. J Cell Biol

Long-Term Effects of AAV1/SERCA2a Gene Transfer in Patients With Severe Heart
Failure: Analysis of Recurrent Cardiovascular Events and Mortality
Krisztina Zsebo, Alex Yaroshinsky, Jeffrey J. Rudy, Kim Wagner, Barry Greenberg, Mariell
Jessup and Roger J. Hajjar
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Evidence of long-term transgene presence was observed in high-dose patients.
No safety concerns were noted during the 3-year follow-up.
After a single intracoronary infusion of AAV1/SERCA2a in patients with

advanced heart failure, positive signals of cardiovascular events persist for
years.

Circulation Research Juuary 3, 2014

Is the adult heart a post-
mitotic organ?

Functionally, yes
& Cardiac repair after cardiomyocyte loss occurs through scarring
and not regeneration

 C14 dating indicates that, over a life time, less than 50% of
cardiomyocyte replicate (O Bergmann & J Frisen, Science 2009)

But

& A limited rate of cardiomyocyte renewal can be detected and is
sustained by replication of pre-existing cardiomyocytes (SE
Senyo & RT Lee, Nature 2013)

@ Increased cardiomyocyte division occurs in the infarcted
myocardium (AP Beltrami & P Anversa, NEJM 2001)

& Other species regenerate the heart by active replication of adult
cardiomyocytes (C Jopling & JC Ipsizua-Belmonte, Nature 2010)



Zacchigna and Giacca, Cardiovascular Research 2014

The microRNA pe

miR-1 regulates pool of proliferating ventricular
cardiomyocytes and ventricular expansion.

a-d, Transverse sections of wild-type (a) or beta-
MHC-miR-1 transgenic (b) hearts at E13.5. Boxed
areas are shown below at higher magnification (c,
d), with the black bar illustrating the narrowed
width of the compact layer in transgenic hearts. e,
1, Immunohistochemical staining in wild-type (e)
and transgenic (f) hearts using an antibody
specific to phosphohistone H3, to mark
proliferating cells. Arrows indicate proliferating
cells. g, Quantification of cycling cells shows a
statistically significant decrease (asterisk) in the
number of proliferating cells in miR-1 transgenic
hearts (n = 3). Error bars indicate standard
deviations. Abbreviations: la, left atrium; Iv, left
ventricle; ra, right atrium; rv, right ventricle.

Yong Zhao, Eva Samal and Deepak Srivastava

58

Nature 436, 214-220 (14 July 2005)

Cardiac-specific overexpression of miR-195 is sufficient to
drive cardiomyopathy

Requirement of miR-208 for cardiomyocyte hypertrophy and
fibrosis.

Clin et 2007:117: 2360-2376



% Ki-67+ EdU+ cardiomyocytes

miRNAs and cardiac arrhythmias
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Eulalio et al. 2012. Nature 492, 376

mMiRNAs increasing myocardial
proliferation in vivo — newborn rat heart

cel-miR-67 hsa-miR-590 hsa-miR-199a

Screening for cardiomyocyte proliferation
using a library of microRNA mimics

Ana Eulalio

40 human miRNAs phosphoH3 positivity

increase both rat
and mouse
cardiomyocyte
proliferation
Aurora B midbody

localization
Increase in cell number

mMiRNAs increasing myocardial
proliferation in vivo — newborn rat heart

cel-miR-67 hsa-miR-590 hsa-miR-199



miRNAs increasing CM proliferation in vivo
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mMiR-590 and miR-199a

markedly reduce infarct size
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Eulalio et al. 2012. Nature 492, 376

miR-590 and miR-199a induce proliferation
of differentiated cardiomyocytes

Myh6-cre/Esr1* x Z/EG adult mice
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myocardial function after Ml
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Target cells for miRNA action?

mMiR-590 and miR-199a induce proliferation
of pre-formed cardiomyocytes

Myh6-cre/Esr1* x Z/EG adult mice
Fate mapping experiment Infarction

N ) ! . AAV-microRNA
using tamoxifen-inducible, Edu Hawfst
cardiac Cre in GFP floxed LLLLL UL L Ly
mice Day: 0 7714 25" 30
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miR-590 and miR-199a induce proliferation
of pre-formed cardiomyocytes

miR-590

miR-199a

Identification of miR-590-3p and
miR-199a-3p target genes

Transfection of
A mouse cardiomyocytes
(hsa-miR-590-3p, hsa-miR-199a-3p)

v
Transcriptomic analysis
(deep sequencing)

As—fold changXA
697 mRNAs downregulated 1056 mRNAs upregulated
(641 genes)

Identification of miR-590-3p and
miR-199a-3p target genes

697 mRNAs downregulated
(641 genes)

siRNA screening
(601 genes)

knockdown of 45 genes
increase cardiomyocyte proliferation >2-fold

Mechanisms?

Among the 641 genes downregulated
by miR-590-3 and miR-199a-3p there are:

Myomesin 1 (Myom1)

Myomesin 2 (Myom?2)

Myosin light polypeptide 4 (Myl4)
Nebulin-related anchoring protein (Nrap)
Myosin IB (Myo1b)

Titin (Ttn)

Troponin T1, skeletal slow (Tnnt1)
Troponin T2 cardiac (Thnt2)

Cofilin2 (Cofilin2)

Dynamin1-like (Dnm1l)

Ankyrin repeat domain 52 (Ankrd52)
Nebulette (Nbl)

[dentification of
miR-590 and

miR-199a target genes
by deep sequencing

and HTS siRNA
screening



mIRNAS promoting cardiomyocyte miRNAs promoting cardiomyocyte proliferation
proliferation activate the YAP transcriptional activate YAP-induced transcription
coactivator _ CM proliferation

Gonsuelo Torrini
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Effect in human
cardiomyocytes?

Human fetal cardiomyocyte proliferation

Effect of selected miBNAs on the proliferation (AAV6 pri-miRNA  transduction)

of human ES cell-derived cardiomyocytes g
‘g>, 8 AAV GFP
AAV miR-33b AAV miR-199a AAV miR-1825
Alpha actinin EdU DAPI
Human fetal cardiomyocyte proliferation
(mimic transfection)
= 2 B miR-67
b I il
miR-33b* miR-199a-3p miR-1825
Human adult

Alpha actinin EdU DAPI CardlomYOCthS



Human adult cardiomyocytes replicating DNA

Adult human atrium

10% FCS on fibroblast feeder
AAV6-miR590-3p

7 days after transduction

Effect in large animals?
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Prolonged effect of miRNA mimics after
intracardiac injection
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miRNA mimics stimulate mMiR-590-3p mimic, adult heart
myocardial repair after Ml BrdU days 1-12 post-MI
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