Introduction to Test
Driven Development

Let's start with
Development

Software development practice

N OW 4 d d TESt Clean code that works
D rive n Test first

Small steps, fast feedback

Easy to understand

Easy to evolve

Clean code

Easy to maintain

Sustains delivery pace

Example of Ugly Code

TerrariaClone class from the GitHub
repository ITerrariaClone.

= > 6500 lines of code

= > 1300 lines of code for init() method
= Deeply nested if and for statements
= Many other “issues”

if (ic !'= null) {
if (ic.type.equals("workbench")) {
for (ux=0; ux<3; ux++) {
for (uy=0; uy<3; uy++) {
if (mousePos[0] >= ux*x40+6 & mousePos[0] < ux*x40+46 &&
mousePos[1] >= uyx40+inventory.image.getHeight()+46 &&
mousePos[1] < uyx40+inventory.image.getHeight()+86) {
checkBlocks = false;
if (mouseClicked) {
mouseNoLongerClicked = true;
moveItemTemp = ic.ids [uy*3+ux];
moveNumTemp = ic.nums [uy*3+ux];
if (moveItem == ic.ids[uy*3+ux]) {
moveNum = (short)inventory.addLocationIC(ic, uy*3+ux, moveItem, moveNum, moveDur);
if (moveNum == @) {
moveltem = 0;

}
}
else {
inventory.removeLocationIC(ic, uy#*3+ux, ic.nums[uy*3+ux]);
if (moveItem != 0) {
inventory.addLocationIC(ic, uy*3+ux, moveItem, moveNum, moveDur);
}
moveItem = moveItemTemp;
moveNum = moveNumTemp;
}

}
if (mousePos[0] >= 4*40+6 && mousePos[0] < 4%40+46 &&
mousePos[1] >= 1x40+inventory.image.getHeight()+46 &&
mousePos[1] < 1x40+inventory.image.getHeight()+86) {
checkBlocks = false;
if (mouseClicked) {
if (moveItem == ic.ids[9] && moveNum + ic.nums[9] <= MAXSTACKS.get(ic.ids[91)) {
moveNum += ic.nums[9];
inventory.useRecipeWorkbench(ic);
}
if (moveItem == 0) {
moveltem = ic.ids[9];
moveNum = ic.nums[9];
if (TOOLDURS.get(moveItem) != null) {
moveDur = TOOLDURS.get(moveItem);
}

inventory.useRecipeWorkbench(ic);

https://github.com/raxod502/TerrariaClone

Rigid

Fragile

Ugly code is

Inseparable

Opaque

We have no time to clean it

Why d 0OES COd e We need to go “faster”
grow ugly? We are afraid of breaking it

Fear prevents us to clean it

The “Faster is Slower” Dynamic

Goal: conform to
original schedule

v

pressure to

actual
variance to

exhortations, original
bribes, and threats SChedU|e

» to developers to

try actions to QF et schedule
conform to
original % use of ‘secret .
hort
schedule shor duration and

toolbox™— term
hackingto __ony,~ Sffortto add

—O> new features

generate bad
code quickly \2
»A \ B\

duration between creating % of clean code # of defects

and fixing a defect with good design \)\

www.craiglarman.com
www.odd-e.com

O

Copyright © 2009]
C.Larman & B. Vodde duration and correctness

All rights reserved. . . .
e in fixing a defect

Test Driven Development (TDD) Cycle

[Refactor

Test Driven Development (TDD) Cycle

Find out which test
to write next

Refactor

Test Driven Development (TDD) Cycle

Find out which test
to write next

The test should fail
for the right reason

Refactor

Test Driven Development (TDD) Cycle

Find out which test
to write next

The test should fail
for the right reason

Make the test pass
quickly!

Refactor

Test Driven Development (TDD) Cycle

Find out which test
to write next

The test should fail
for the right reason

Make the test pass
quickly!

< How can we make
the code better?

Refactor

Test Infrastructure

Things we need to practice TDD Why?

Automated build To run the tests, as fast as possible
Test framework To build the test suite
Assertion library To check test status

Arrange/Act/Assert A way to write tests

Code Kata

A system of coding practice incorporating techniques and
notions that have been cultivated and polished for decades.

Dave Nicolette

= The purpose is to practice and internalize programming technique

= (Some are) Designed to reflect programming problems that have
particular shapes

https://neopragma.com/2020/04/code-katas/

Good tests

Describe

Tests should have names
that describe a business
feature or behavior.

Avoid

Technical names and leaking
iImplementation details.

Communicate

Tests should clearly
express required
functionalities to the
reader.

Ways to move forward

Fakeit Obvious implementation Triangulation

Just return the exact When you are sure of the code Write a new and more

value you need. you need to write, write it, and specific test that forces the
see the test go green! code to be more generic.

Something that works is
better than something
that doesn’t work!

N

Refactor to remove duplication

Types of duplication Wait Rule of Three

Code, data, knowledge. Avoid removing duplication Extract duplication only
too soon, as this may lead you when you see it for the
to extract the wrong third time.

abstractions.

Duplication of knowledge

public class Cylinder {

private final double radius;
private final double height;

public Cylinder (double radius, double height) {
this.radius = radius;
this.height = height;

}

public double volume() {
return Math.PI * Math.pow(radius, 2) * height;

}

public double surface() {
return 2 * Math.PI * Math.pow(radius, 2) + 2 * Math.PI * radius * height;

}

Duplication of knowledge

public class Cylinder {

private final double radius;
private final double height;

public Cylinder (double radius, double height) {
this.radius = radius;
this.height = height;

}

public double volume() {
returniMath.PI * Math.pow(radius, 2) * height;

}

public double surface() {
return 2 *Math.PI * Math.pow(radius, 2) + 2 * Math.PI * radius * height;

}

Duplication of knowledge

Extract method.

public class Cylinder {

private final double radius;
private final double height;

public Cylinder (double radius, double height) {
this.radius = radius;
this.height = height;

}

public double volume() {
return baseSurface() * height;

}

public double surface() {
return 2 * baseSurface() + 2 * Math.PI * radius * height;

}

private double baseSurface() {
return Math.PI * Math.pow(radius, 2);

}

Duplication of knowledge

Extract method.

public class Cylinder {

private final double radius;
private final double height;

public Cylinder (double radius, double height) {
this.radius = radius;
this.height = height;

}

public double volume() {
return baseSurface() * height;

}

public double surface() {
return 2 * baseSurface() + 2 * Math.PI * radius * height;

}

private double baseSurface() {
return Math.PI * Math.pow(radius, 2);

}

Duplication of hard coded data

@Test

public void productNotFound() throws Exception {
Display display = new Display();
Sale sale = new Sale(display);

sale.onBarcode("99999");

assertEquals("Product not found for 99999", display.getText());

public class Sale {
private Display display;

public Sale(Display display) {
this.display = display;
}

public void onBarcode(String barcode) {

display.setText("Product not found for 99999");
}

Duplication of hard coded data

@Test

public void productNotFound() throws Exception {
Display display = new Display();
Sale sale = new Sale(display);

sale.onBarcode ("99999") ;

assertEquals("Product not found for 99999", display.getText());

public class Sale {
private Display display;

public Sale(Display display) {
this.display = display;
}

public void onBarcode(String barcode) {

display.setText("Product not found fori99999");
}

Duplication of hard coded data

Replace literal value with variable.

@Test

public void productNotFound() throws Exception {
Display display = new Display();
Sale sale = new Sale(display);

sale.onBarcode("99999");

assertEquals("Product not found for 99999", display.getText());

public class Sale {
private Display display;

public Sale(Display display) {
this.display = display;
}

public void onBarcode(String barcode) {
display.setText("Product not found for " +
barcode) ;

Duplication of hard coded data

Replace literal value with variable.

@Test

public void productNotFound() throws Exception {
Display display = new Display();
Sale sale = new Sale(display);

sale.onBarcode("99999");

assertEquals("Product not found for 99999", display.getText());

public class Sale {
private Display display;

public Sale(Display display) {
this.display = display;
}

public void onBarcode(String barcode) {
display.setText("Product not found for " +
barcode) ;

Testsin TDD

Should be... Beware of

|Isolated and composable Databases

Fast and automated Network communications

Behavioral and structure-insensitive :
File system

Specific and deterministic ,
Other shared fixtures

Inspiring and predictive
Configurations

Writable and readable

Should you always practice
Test Driven Development?

To get value from a tool, it’s
necessary to:

TDD is a tool

1. Choose the right tool for the job.
2. Use the tool properly.

Dave Nicolette, “Against TDD”, https://neopragma.com/2019/09/against-tdd/ q‘&;/

Test Pyramid

$$%

References

\ Test Driven Development by Example
Kent Beck

Agile Technical Practices Distilled

Pedro Moreira Santos, Marco Consolaro,
Alessandro Di Gioia

Extreme Programming Explained
Kent Beck

