Image Processing for Physicists

Prof. Pierre Thibault pthibault@units.it

Overview

- Definition of resolution
- Imaging systems:
 - Linear transfer model
 - Noise

Resolution

"the smallest detail that can be distinguished"

- No unique definition
 - Numerical aperture microscopy, photography
 - [–] Pixel size
 - Other criteria (PSF, MTF) eg. astronomy
- What is "detail"?
- What is "distinguish"?

Resolution

1280 x 1280

640 x 640

- **not** simply given by pixel size (i.e. sampling rate)
- light quality, optics quality, detector quality, algorithm quality, noise, ...

Linear translation-invariant systems

• Point spread function ("impulse response")

• LTI system: convolution with PSF

NCT

Point spread function

Measurement of the PSF

• Direct measurement from impulse

PSF and translation invariance

- Not translation invariant \rightarrow PSF depends on position \rightarrow not a convolution
- Useful to model system imperfections, lens aberrations, ...

Optical transfer function

Response of a system to an oscillating signal with well-defined frequency

Modulation transfer function

Amplitude change of an oscillating signal for a given frequency

Inpul MJF 1001 \int U

Eye MTF

resolution \rightarrow

Detection

Campbell-Robson curve

(1969

Fig. 2. Contrast sensitivity for sine-wave gratings. Subject F.W.C., luminance 500 cd/m². Viewing distance 285 cm and aperture $2^{\circ} \times 2^{\circ}$, \triangle ; viewing distance 57 cm, aperture $10^{\circ} \times 10^{\circ}$, \Box ; viewing distance 57 cm, aperture $2^{\circ} \times 2^{\circ}$, \bigcirc .

Measurement of MTF

Phase transfer function

describes how an oscillating signal changes in phase due to system

Phase transfer function

describes how an oscillating signal changes in phase due to system

Pixel MTF

Modulation transfer function of a single detector pixel

Imaging as a linear filter

$$output(u) = hput(u) \cdot MTF_{optic} \cdot MTF_{obstic} \cdot MTF_{algorithm} \cdot \dots$$

 $imaging = linear filter$

PSF examples

• isolated stars are essentially PSFs

source: www.apod.nasa.gov

PSF examples

Hubble flawed mirror deconvolution (correction for spherical aberration)

Signal and contrast

Signal

Contrast and noise

- Intensity operation: higher contrast, higher noise
- Contrast-to-noise remains constant

contrast resolution

Decreasing noise

Random variables

random variable, sample space •

$$\begin{array}{ccc} \chi & \mathcal{SL} \\ p(x) \geqslant 1 & x \in \mathcal{SL} \\ p(\mathcal{SL}) = 1 \\ pability density function \longrightarrow PDF \end{array}$$

probability density function •

$$P(a(x < b)) = \int_{a}^{b} p(x) dx \qquad \int_{JZ} p(x) dx = 1$$

expectation value ۲

$$E[f(x)] = \int_{\mathcal{T}} f(x) g(x) dx$$

$$E[x] = \int_{\mathcal{T}} x g(x) dx = M$$

variance \mathcal{R}

$$Var(x), V[x] = E[(x - E[x])^{t}]$$

 $\langle (x \cdot \langle x \rangle)^{*} \rangle$

Uniform distribution

• variance

$$V(x) = (b-a)^{2}$$

Gaussian distribution

• probability density function $-(\kappa - \psi)^{2}$

$$p(x) = \sigma \int \pi c$$

• expectation value mean

• variance $\sqrt{(x)} = \sigma^2$

(central limit theorem)

• occurrence

- z very common

Gaussian distribution

Poisson distribution

• variance

Poisson distribution

Poisson distribution

Many other distributions

Detector noise (CCD)

- Various sources:
- → shot noise (photon statistics, Poisson)
 - dark current (thermal electronic fluctuations in semiconductor, Poisson)
 - readout noise (fluctuations during amplification and digitization, Gauss)
 - many other imperfections ...
- dark frame measures detector noise, hot pixels, dead pixels
- bright frame measures gain differences and imperfections (dust, etc)

Detection systems

source: H. Raab, Johannes-Kepler-Observatory, Linz

Correlation & Convolution

Convation:
$$f \ast g = \int_{-\infty}^{\infty} f(x') g(x-x') dx'$$

Corrobution theorem:

$$\int_{-}^{-} \{f * q \} = F \cdot G$$

Noise power spectrum

• power spectrum of pure noise image $\mathcal{N}(x, y) \xrightarrow{\mathcal{F}} \mathcal{N}(u, v)$ $\mathcal{N}PS = \mathcal{E}[|\mathcal{N}(u, v)|^{2}]$

• connection to auto-correlation

$$|N(u,v)|^{2} = N(u,v) \cdot N(u,v)$$

$$\Rightarrow \int \frac{1}{2} NPS = n(x,y) \otimes n(x,y)$$
Wiener Chimchin Huorem: autocorrelation
Noise power spectrum

Noise power spectrum

source: http://scien.stanford.edu/pages/labsite/2008/psych221/projects/08/AdamWang/project_report.htm

White noise

- white noise in spatial domain equals white noise in frequency domain
- white noise is perfectly uncorrelated
- all other types of noise are correlated to some degree
- white noise is an idealization

- Noise power exceeds signal power for high frequencies
- Small scale image details are lost in noise first •

Noise reduction by averaging

• Average multiple images

• requirement: additive noise, zero mean

Denoising by linear filtering

- use spatial convolution or frequency filtering to reduce noise
- noise reduction
 possible, but at cost
 of sharpness
- trade-off between noise reduction and resolution
- need fancier methods

original

frequency filter

convolution kernel

Resulting image

Median filtering

~ mean

Median filtering

2x Gauss

5x Gauss

 $1 \times$ Median

2x Median

5x Median

Common abbreviations

	Abbreviation	Name	Definition
	IRF	Impulse response function	Linear operator map of delta function
	PSF	Point spread function	Image of point object (optical IRF)
٩	OTF	Optical transfer function	Fourier transform of PSF
	PTF	Phase transfer function	Phase part of OTF
7	MTF	Modulation transfer function	Amplitude of OTF
	CTF	Contrast transfer function	MTF for non-sinusoidal objects
	PDF	Probability density function	Probability distribution for a given random variable
	SPS	Signal power spectrum	Amplitude squared of signal F.T.
4	NPS	Noise power spectrum	Amplitude squared of noise F.T.
9	SNR	Signal to noise ratio	Mean signal / mean noise
>	CNR	Contrast to noise ratio	Mean contrast / mean noise