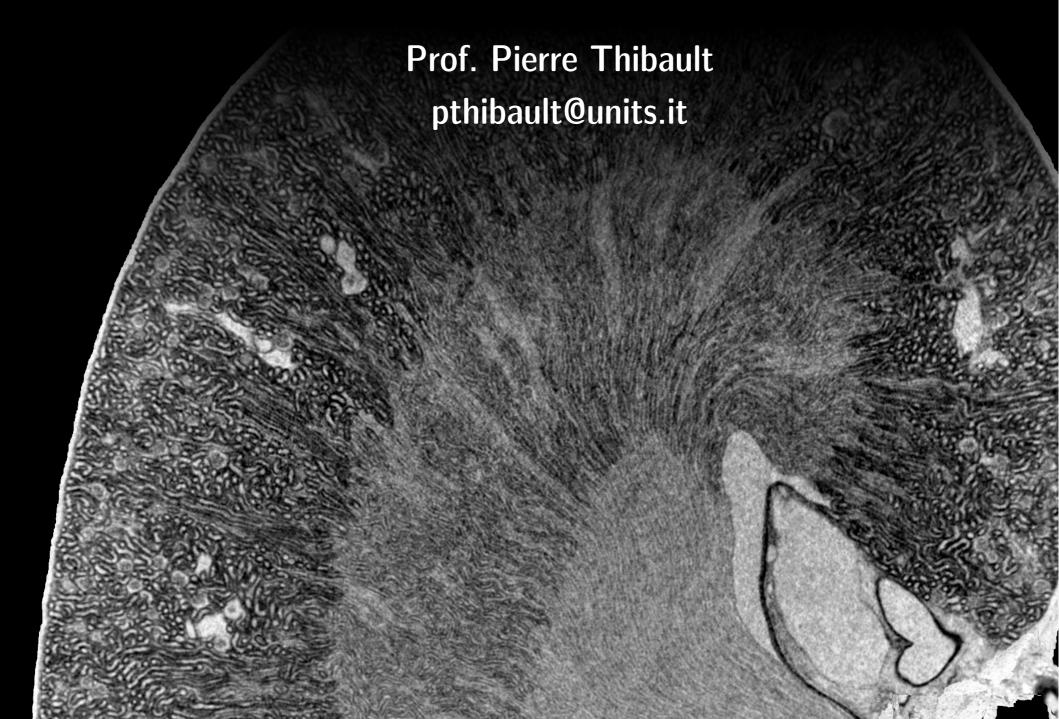
Image Processing for Physicists

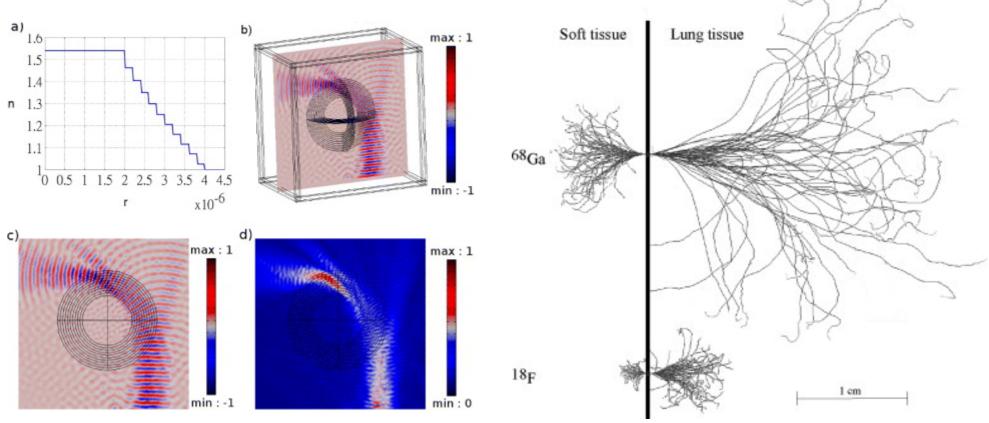


Overview

- Propagation modelization
- Wave propagation:
 - Near-field regime
 - Far-field regime

Motivations:

1. Validation



Finite element simulation of an electromagnetic field in a dielectric

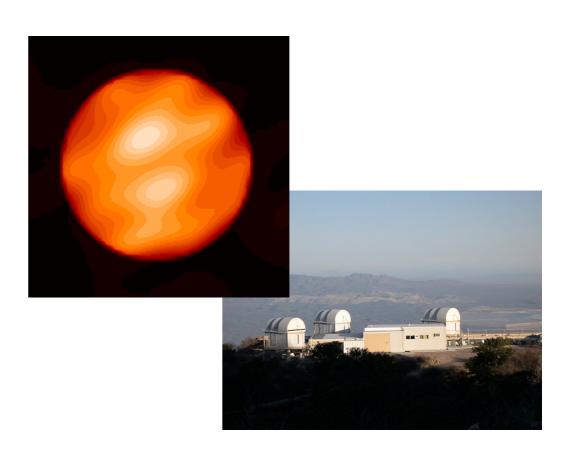
Monte Carlo simulation of positrons trajectories resulting from ⁶⁸Ga and ¹⁸F decay.

sources: T.M. Chang et al. New J. Phys. (2012) A. Sanchez-Crespo, Appl. Rad. Isotopes (2012)

Motivations:

2. Inversion

Image reconstruction from sound wave propagation (ultrasonography)



The surface of Betelgeuse reconstructed from interferometric data (IOTA)

sources: wikipedia Haubois et al. Astronom. & Astrophys. (2009)

Particles

- Model particle tracks (rays) through different media
- Model may include: refraction, force fields, particle decay and interactions
- Not included: diffraction

Wave

- Model the interaction of a field with a medium
- [–] Can be very complicated \rightarrow approximations are needed

Starting point: Helmholtz equation

 for EM field: neglect polarization (scalar wave approximation)

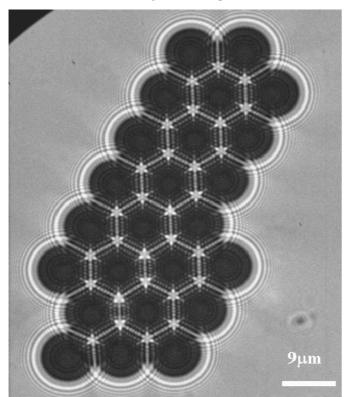
constant
$$n \rightarrow plane$$
 wave solution $\psi = \psi_0 e^{i(\vec{k} \cdot \vec{r} - \omega t)}$

$$k^2 = n^2 \omega_z^2$$

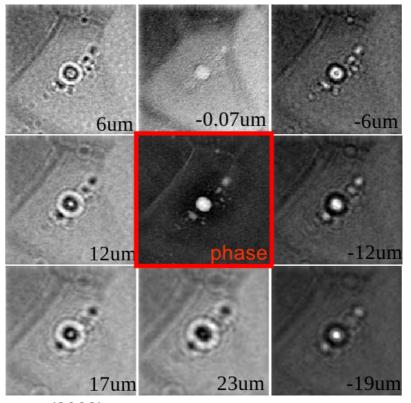
$$k^2 = n^2 \omega_z^2$$

- Useful to:
 - better understand optical systems
 - understand diffraction, holography, phase contrast, interferometry, ...

X-ray hologram



TEM through-focus series



sources: Mayo et al. Opt. Express (2003) http://www.christophtkoch.com/Vorlesung/

The physics of propagation

In free space
$$(n=1)$$
 General solution

$$\psi(\vec{r},t) = \sum_{w} \sum_{k} A_{wk} e$$

$$|\vec{k}| = \frac{2\pi}{\lambda}$$
Commonly: fix w and solve monochromatic case
$$\psi(\vec{r}) = \sum_{k} A_{k} e$$

$$|\vec{k}| = \frac{2\pi}{\lambda}$$

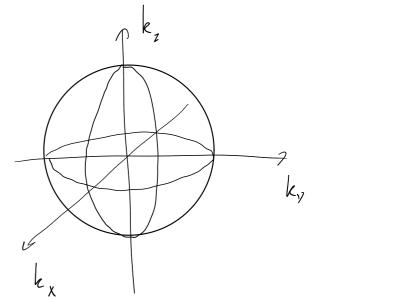
$$|\vec{k}| = \frac{2\pi}{\lambda}$$

$$|\vec{k}| = \frac{2\pi}{\lambda}$$

$$|\vec{k}| = \frac{1}{\lambda}$$

$$|\vec{k$$

$$k_x^2 + k_y^2 + k_z^2 = \frac{\omega^2}{c^2}$$
"Evall" sphere



$$\frac{\omega^{2}}{C^{2}} = k^{2} - k_{x}^{2} + k_{x}^{2} + k_{y}^{2}$$

$$k_{z} = \sqrt{k^{2} - k_{y}^{2} - k_{y}^{2}}$$

$$V(\vec{r}) = \sum_{k_{x} k_{y}} A_{k_{x} k_{y}}^{2} + \sqrt{k^{2} - k_{y}^{2} - k_{y}^{2}}$$

$$V(\vec{r}) = \sum_{k_{x} k_{y}} A_{k_{x} k_{y}}^{2} + \sqrt{k^{2} - k_{y}^{2} - k_{y}^{2}}$$

$$\psi(\vec{r}_{\perp};z) = \sum_{\vec{k}_{\perp}} A_{\vec{k}_{\perp}} \exp(i\vec{k}_{\perp}\cdot\vec{r}_{\perp}) \exp(i\sqrt{k^2-k_{\perp}^2}z)$$

Forward propagation

$$2=0: \psi(\vec{r}_{\perp};z=0) = \sum_{k_{\perp}} A_{k_{\perp}} \exp(ik_{\perp};\vec{r}_{\perp})$$

$$\Rightarrow A_{k_{\perp}} = \int \{\psi(\vec{r}_{\perp};z=0)\}$$
Often: $|\vec{k}_{\perp}| \ll k \pmod{angle diffraction}$

$$|\vec{k}_{\perp}| = k\sqrt{1-\frac{k_{\perp}'}{k_{\perp}'}} = k\left(1-\frac{k_{\perp}'}{2k_{\perp}}\right)$$

$$= k-\frac{k_{\perp}'}{2k}$$

$$= \exp\left(i\sqrt{k_{\perp}'-k_{\perp}'}z\right) \approx \exp\left(ik_{\perp}z\right) \exp\left(-\frac{izk_{\perp}'}{2k}\right)$$

$$= \exp\left(i\sqrt{k_{\perp}'-k_{\perp}'}z\right) \approx \exp\left(ik_{\perp}z\right) \exp\left(-\frac{izk_{\perp}'}{2k}\right)$$

"Fresnel propagator"

Forward propagation

$$V(r_{\perp iz}) = \mathcal{F} = \begin{cases} \begin{cases} \begin{cases} F(r_{\perp iz} = 0) \end{cases} \end{cases} exp(-2\pi i \lambda z \tilde{u}^2) \end{cases}$$
The trick for numerical implementations:

$$F.T. = \begin{cases} X = N \end{cases} \Rightarrow X = N \end{cases} \Rightarrow \begin{cases} X = N \end{cases} \Rightarrow X = N \end{cases} \Rightarrow \begin{cases} X = N \end{cases} \Rightarrow X = N$$

Wave propagation

Forward propagation

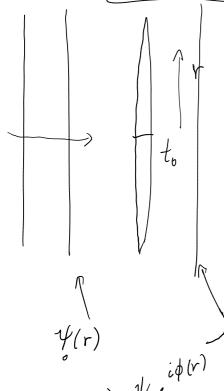
A numerical recipe $\psi(\vec{v}_L; z^{=0})$

Near field, far field

Wear field, far field
$$\psi(r_{+};z) = \int_{-1}^{1} \left\{ \int_{-1}^{1} \left\{ \psi(r_{+};z=0) \right\} \exp\left(-\frac{izk_{\perp}^{2}}{2k_{\perp}}\right) \right\} \chi_{1}$$

$$\psi(r_{1};z) = F^{-1} \left\{ F \left(r_{1};z=0 \right) \right\} \exp \left(-\pi i \lambda z \vec{u}^{2} \right) \left\{ F \left(r_{1};z=0 \right) \right\} \exp \left(-\pi i \lambda z \vec{u}^{2} \right) \left\{ F \left(r_{1};z=0 \right) \right\} \exp \left(-\pi i \lambda z \vec{u}^{2} \right) \right\} \exp \left(-\pi i \lambda z \vec{u}^{2} \right) \left\{ F \left(r_{1};z=0 \right) \right\} \exp \left(-\pi i \lambda z \vec{u}^{2} \right) \left\{ F \left(r_{1};z=0 \right) \right\} \exp \left(-\pi i \lambda z \vec{u}^{2} \right) \right\}$$

Back focal plane of a lens



k tocal plane of a lens

$$t(r) = t_0 - \alpha r^2 \qquad (model for thin lens thick ress profile)$$

$$Passed the lens: profile
$$p(r) = \frac{2\pi r}{\lambda} (n-1) t(r)$$

$$= k(n-1)t_0 - k(n-1) \alpha r^2$$$$

$$\psi(r;z) = \frac{-ik}{z} \int d^2r' \frac{y}{e} e^{-ik(n-1)dr'} e^{-ik(r-r')^2}$$
exit wave

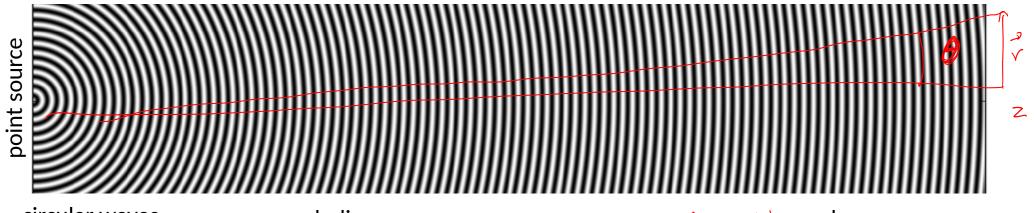
$$=-\frac{ik}{2}\int_{0}^{1}d^{2}r^{2}\psi_{0}\exp\left(ik\left[-\frac{1}{2f}r^{2}+\frac{1}{2z}+\frac{1}{2z}-\frac{1}{2z}\right]\right)$$

$$= -ik e^{ikr^2} \int_{\mathbb{R}^2} f^2 r \cdot f \exp\left(ikr^2 \cdot r^2\right) \exp\left(ikr^2 \cdot r^2\right) \exp\left(ikr^2 \cdot r^2\right)$$

$$\psi(r) = \frac{ik}{z} e^{\frac{ikr^2}{2z}} \int \{\psi_0(r)\} \left(\vec{u} = \frac{k\vec{r}}{z}\right)$$

Plane waves, point sources

12 sin 0 For-field propagation (Fraunhofer regime): $\psi(r;z\rightarrow\infty) = \frac{ik}{z} e^{\frac{ikr^2}{2z}} \int \{\psi_0(r)\} \left(\vec{u} = \frac{kr^2}{z}\right)$



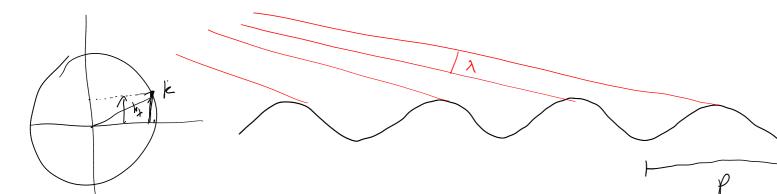
circular waves evanescent waves contact region

parabolic waves near field Fresnel region

carrier wave

plane waves H M far field

Fraunhofer region

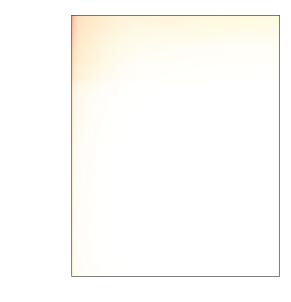


mage

Why optical elements?



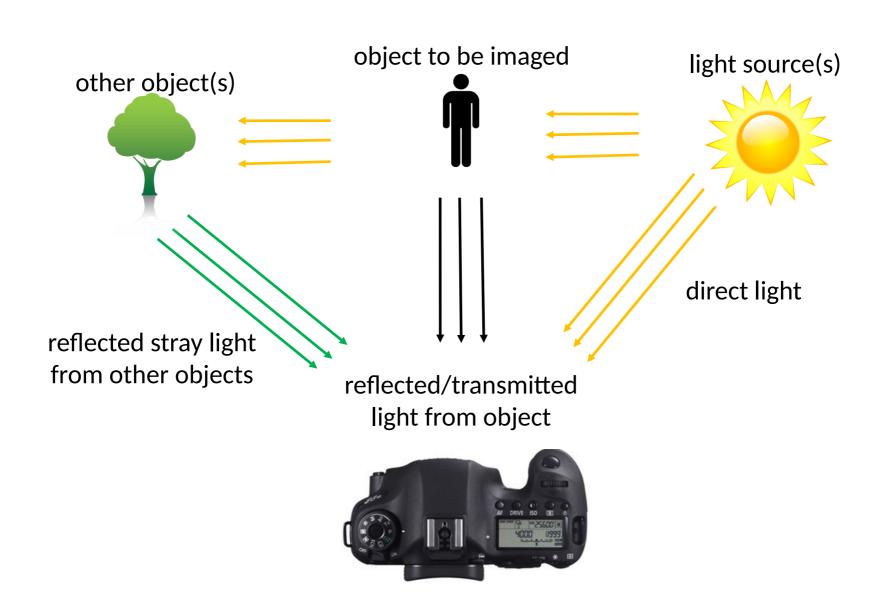
with objective lens



without objective lens

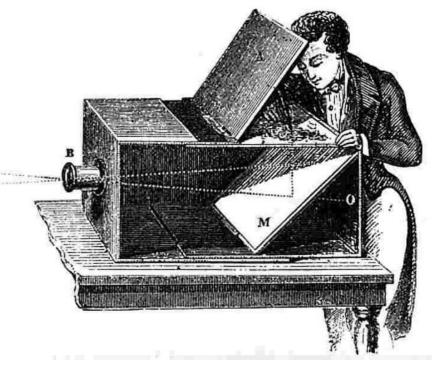
Why optical elements?

- Information from many sources overlaps in detector plane
- Need models to understand image forming systems



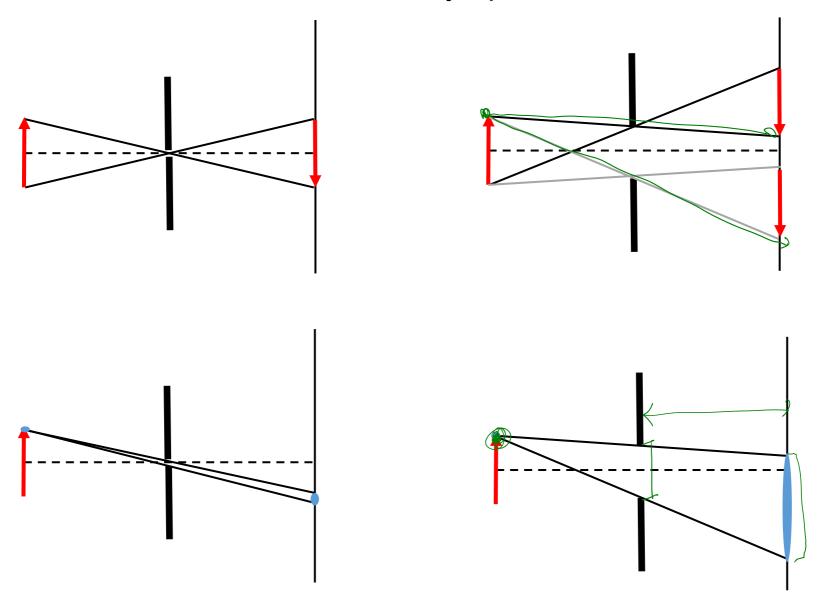
Pinhole camera model

camera obscura

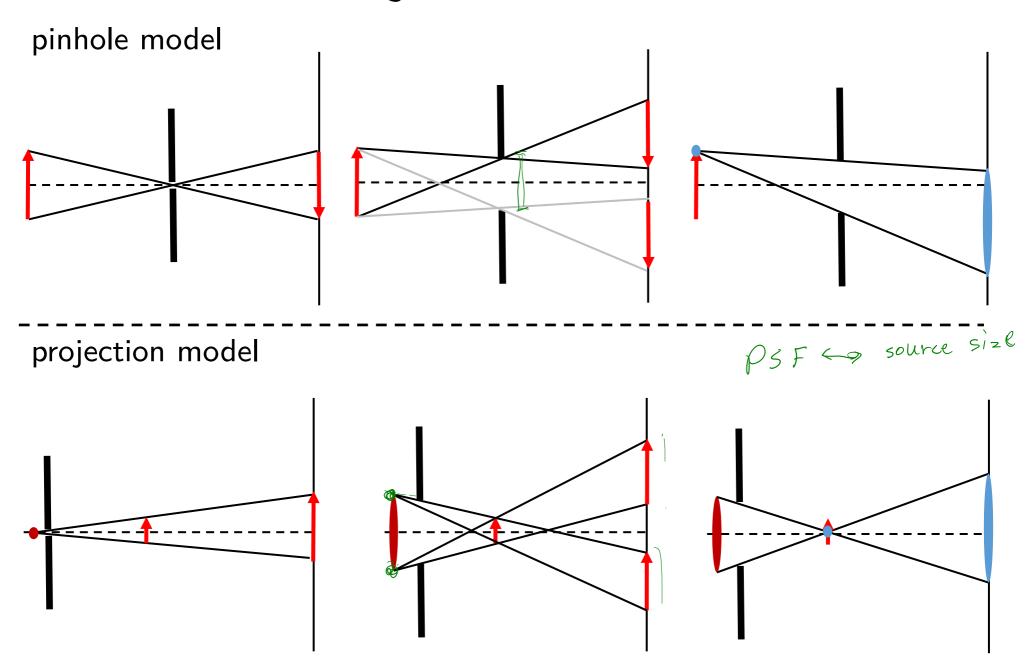


Pinhole camera model

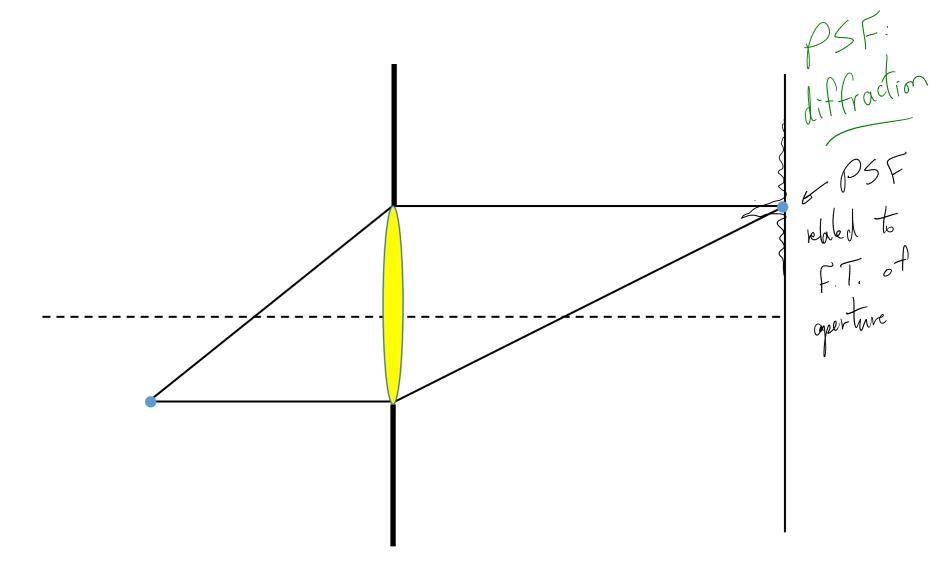
PSF determined by aperture width



Projection model

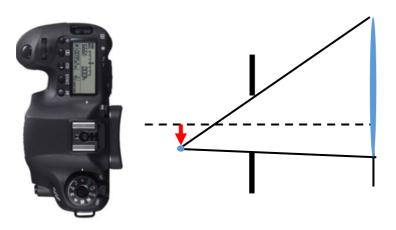


Lens camera model

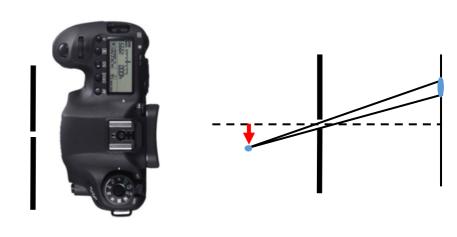


Lens camera model

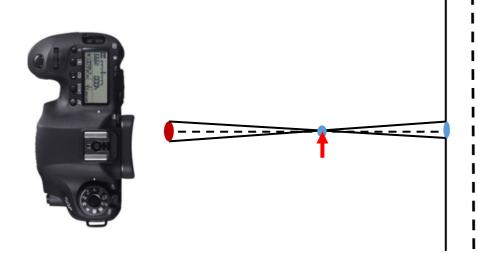
lensless model



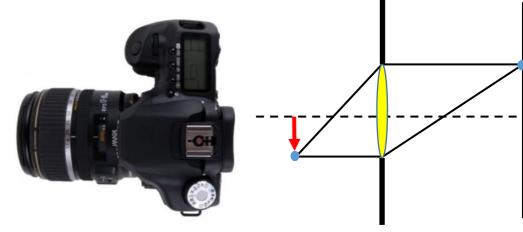
pinhole camera model



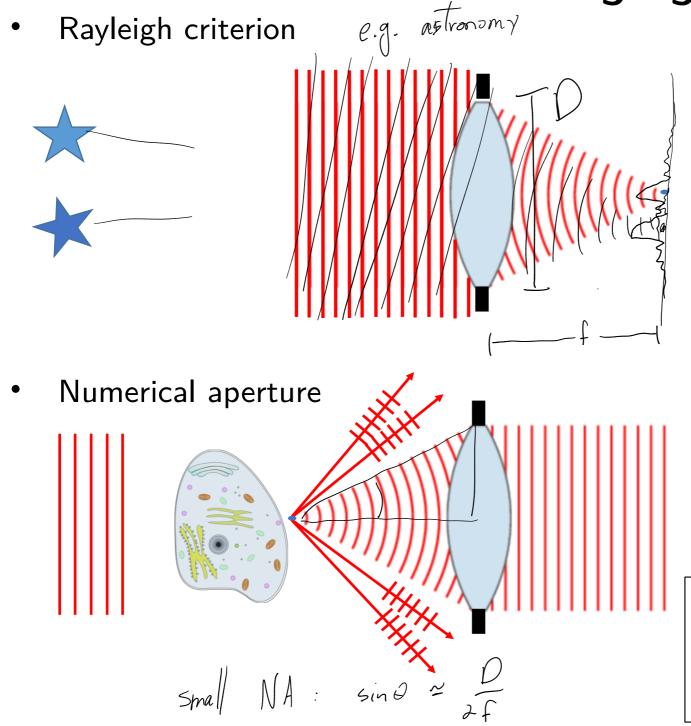
projection model



lens camera model



Diffraction-limited imaging systems



PSF: Airy disc"

Rayleigh criterion:

two points are resolvable

if maximum of #9

aliqued with 1st minimum

of #2

$$d_{min} = \int_{D} \frac{\lambda \cdot 1}{\lambda \cdot 1}$$

NA: numerica laperture

$$NA = n \cdot \sin \theta$$

$$d_{min} = 1.22 \frac{\lambda}{2NA}$$

Scanning systems

Transmission

- Scanning Transmission Electron Microscopy
- Scanning Transmission X-ray Microscopy
- •

Indirect (reflection, scattering, fluorescence, ...)

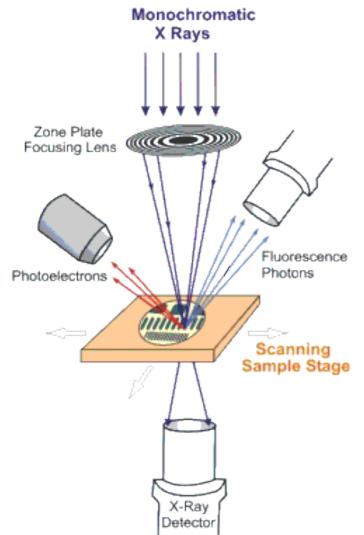
- Laser Scanning Confocal Micropsopy
- Scanning Electron Microscopy
- X-ray Fluorescence Microscopy
- PhotoEmission Electron Microscopy
- •

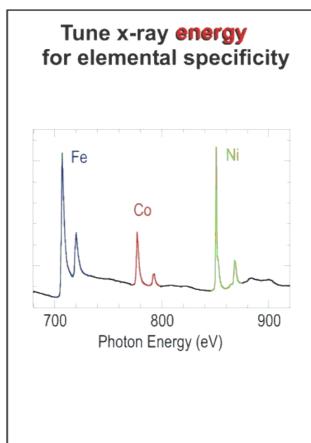
Physical probe

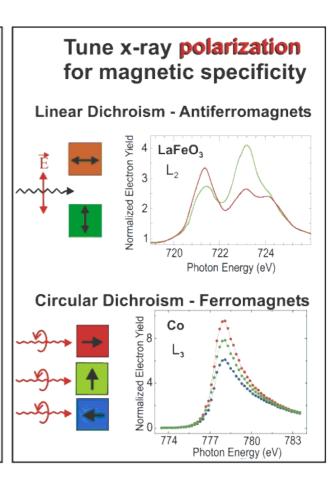
- Atomic Force Microscopy
- Scanning Tunneling Microscopy
- •

Scanning transmission X-ray microscopy

Scanning Transmission X-ray Microscopy STXM

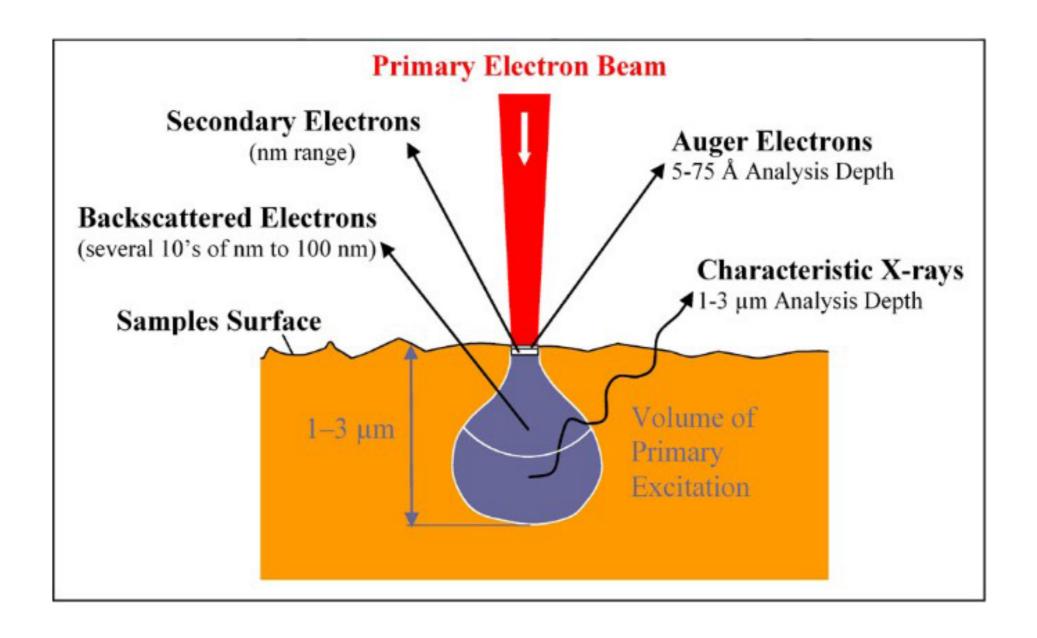




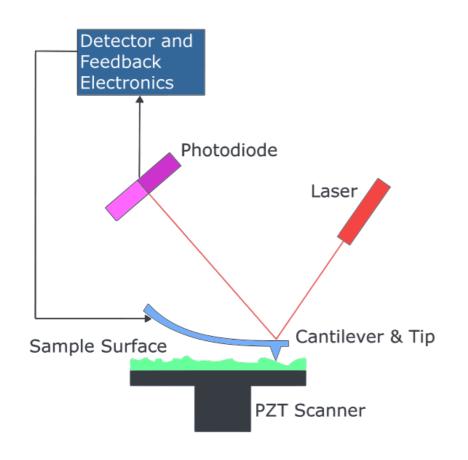


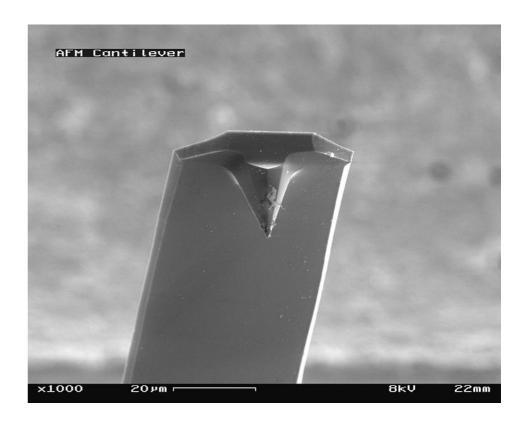
source: http://www-ssrl.slac.stanford.edu

Scanning electron microscopy



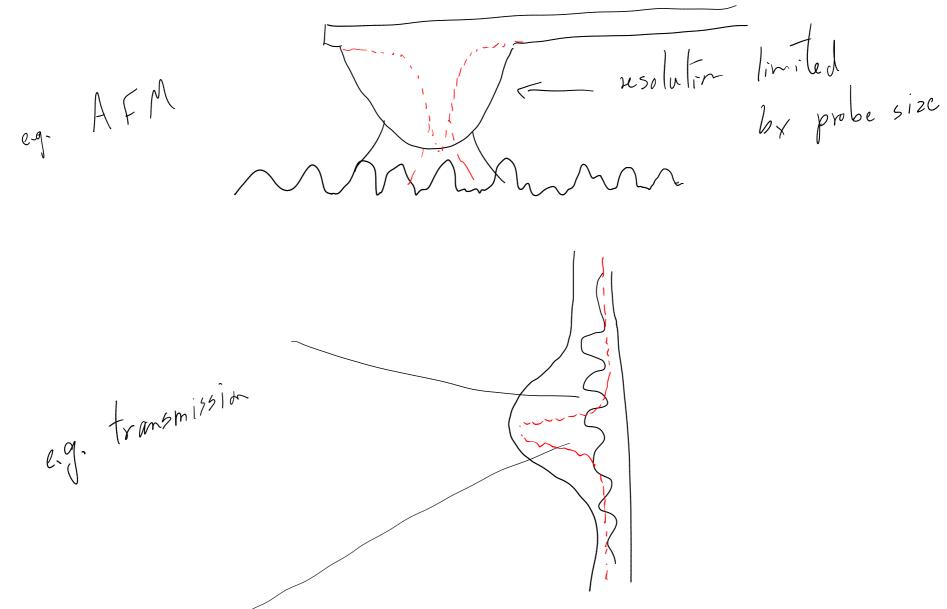
Atomic force microscopy





Resolution in scanning systems

Resolution mainly limited by probe size



Scanning vs. full field systems

Transmission probe: the reciprocity theorem WNV detector

achievable

achievable

resolution

same Sumple Souvee