qé&/ Refactoring

Dario Campagna

Why refactoring?

— P M

fi Clean code No ugly code) Sustain pace
We want code that’s easy We want to keep the code from We want to protect us against
to understand, to evolve, becoming rigid, fragile, the long-term erosion of our
to maintain. inseparable, opaque. capacity to deliver features.

S

Refactoring

Safely Improve the design of existing code.

Safely

Take baby steps, keep test
bar green.

Improve the design

Does not add new
functionalities.

Existing code

It is not rewriting from
scratch.

What to look for when
refactoring?

N\

X

(=

Readability

Small improvements in code readability can drastically improve code understandability

Ways to improve readability

Atomic refactors

Rename

Rename bad names,
variables, arguments,
instance variables,
methods, classes.

Make abbreviations explicit.

Extract

Constants from magic numbers and
strings.

Conditionals.
Extract a class (or methods or

variables...), creating a new
abstraction.

Inline

The inverse of extract -
inline a method (or
variable), deconstructing
an abstraction.

N

Ways to improve readability

Atomic refactors

Move

Move a class (or methods
or variables...) to some
other place in the
codebase.

Safe delete

Delete code and its usages in the
code base.

Delete unnecessary comments.

Delete dead code.

Format

Format consistently and
don't force the reader to
waste time due to

Inconsistent formatting.

Rename

The method name is accurate-but-vague.

private void displayPrice(String barcode) {
& String priceAsText = pricesByBarcode.get(barcode);
display.setText(priceAsText) ; g

Find Display

Rename

Now we have a precise name. Can we further improve readability?

private void findPriceAndDisplayAsText(String barcode) {
String priceAsText = pricesByBarcode.get (barcode);
display.setText (priceAsText);

Extract

Two methods. Each with an intention-revealing name.

private String findPrice(String barcode) {
return pricesByBarcode.get (barcode);

}

private void displayPrice(String priceAsText) {
display.setText (priceAsText);

}

Tennis Refactoring Kata

Clean-up the code to a point where someone can read it and
understand it with ease.

https://github.com/emilybache/Tennis-Refactoring-Kata

= Work on the class “TennisGame1”

= The test suite provided is fairly comprehensive, and fast to run.
= You should not need to change the tests, only run them often as
you refactor.

https://github.com/emilybache/Tennis-Refactoring-Kata

=

b

Code Smells

Symptoms of a problem

~ 7

Code Smells

A code smell is a surface indication that usually corresponds to
a deeper problem in the system.

= Quick to spot
= Provide feedback on our decisions
= Don’t always indicate a problem worth solving

Categories of code smells

Bloaters Object-orientation abusers

e | ong Method e Switch Statements

e | arge Class e Temporary Fields

e Primitive Obsession e Refused Bequest

e | ong Parameter List e Alternative Classes with Different Interfaces

e Data Clumps

Couplers Change preventers Dispensables

e Feature Envy e Divergent Change e | azy Class

e Inappropriate Intimacy e Shotgun Surgery e Data Class

e Message Chains e Parallel Inheritance Hierarchies e Duplicated Code
e Middle Man e Dead Code

e Speculative Generality
e Comments

. P N
Have a look at sourcemaking.com

J

https://sourcemaking.com/refactoring/smells

Primitive Obsession

Use of primitive types instead of small package it. esteco. pos;
objects for simple tasks. inport java. util.HashMap;

import java.util.Map;
public class Sale {

private Display display;
private final Map<String, String> pricesByBarcode;

public Sale(Display display, HashMap<String, String> pricesByBarcode) {
this.display = display;
this.pricesByBarcode = pricesByBarcode;

}
u er ace data Value With Object pubL%c void onBarcode(String barcode) {
if ("".equals(barcode)) {
M display.setText("Scanning error: empty barcode!");
= Replace type code with class S ’ i
. o if (pricesByBarcode.containsKey(barcode)) {
u er ace array Wlth ObJeCt display.setText(pricesByBarcode.get(barcode));
} else {
" ... display.setText("Product not found for " +
barcode);
}
}
}

Feature Envy

A method accesses the data of another object
more than its own data.

public class Coordinate

{
publiec int X {get; set}
public int Y {get; set}

1

2

3

4

5 1}
6

7 public class PositionUpdater
8

9

{
- Move method |{Jub11c Coordinate MoveUp(Coordinate coordinate)
10
m EXtraCt method 11 return new Coordinate{X = coordinate.X, Y = coordinate.Y + 1};
12 }
13}

J

Message Chains

A message chain occurs when a client
requests another object, that object requests

yvet another one, and so on.

master.getModelisable()
.getDockablePanel ()
.getCustomizer()
.getSaveltem()
.setEnabled(Boolean.FALSE .booleanValue());

» Hide delegate
= Extract method

= Move method master.allowSavingOfCustomizations();

Smelly Tic Tac Toe

A TicTacToe implementation with quite a few code smells.

https://github.com/dario-campagna/CodeSmells

= Start by identifying the smells.
» Thenslowly refactor the code.

https://github.com/dario-campagna/CodeSmells

Exercise

L et’s find some code smells.

https://github.com/nicoleorzan/berlin_clock/blob/master/src/
main/java/berlinclock

https://github.com/nicoleorzan/berlin_clock/blob/master/src/main/java/berlinclock
https://github.com/nicoleorzan/berlin_clock/blob/master/src/main/java/berlinclock

Coupling and Cohesion

Metrics that (roughly) describe how easy it will be to change the behavior of
some code.

Coupling

Measures the degree of interdependence between software
components.

» Elements are coupled if a change in one forces a change in the

other.
= We want to make changes in a component without impacting

other components.
= We want coupling to be as low as possible, but not lower.

Cohesion

Measures how strongly related and focused the
responsibilities of a software module are.

» Indicates a component’s functional strength and how much it
focuses on a single point.

= Low cohesion results in behavior being scattered instead of
existing in a single component.

= We want high cohesion.

Have you seen the unbelievable

THOR Automagic Washer

everyone is talking about?

T Glory bel Hare's the CLOTHES WASHIR of your dreams!

for a misute that 3t can be changed into a
dishwarber (we below)—just consider the clarivi
snbvivg features of the Thor Automagic, asd you'll wane

one tomorraw. By agitator action, it wavhes &

Cohesion, coupling and code smells

e Divergent Change e Data Class

e Feature Envy e Lazy Class

e |[nappropriate Intimacy e Middle Man

e Message Chains e Primitive Obsession
e Middle Man e Shotgun Surgery

e Shotgun Surgery

High coupling Low cohesion

Indicators of possible high coupling. Indicators of possible low cohesion.

F

\¥" \
Y/

5
\J

S.O.L.I.D. Principles

Principle of class design

~ 7

S.O.L.I.D. Principles

Principle of class design that focus very tightly on dependency
management.

DESIGN PRINCIPLES

= Single Responsibility Principle

= Open-closed Principle SRR Lsp. DIP
= Liskov Substitution Principle sesporsbity | gison Sp Prnpe

» Interface Segregation Principle Ime Open: gg

» Dependency Inversion Principle e

J

https://stackify.com/solid-design-principles/
https://stackify.com/solid-design-open-closed-principle/
https://stackify.com/solid-design-liskov-substitution-principle/
https://stackify.com/interface-segregation-principle/
https://stackify.com/dependency-inversion-principle/

Single Responsibility Principle

Every object should have a single
responsibility, and that responsibility should
be entirely encapsulated by the class. public class Rectangle {

private double width;
private double height;
private Graphics graphics;

/o
public double area() {

. return width * height;
= We want classes to be cohesive }

= Only onereason to change public void draw() {

° h . . h h .
= Can be applied to methods too , // Do something with Graphics

Single Responsibility Principle

Move responsibilities to other (new) classes.

public class GeometricRectangle {

private double width;
private double height;

public double area() {
return width * height;

}
}

public class Rectangle {

o COmpOSitiOn over inheritance private GeometricRectangle geometricRectangle;

. private Graphics graphics;
= Move related behaviors close to each other
/) ...

public void draw() {
// Draw geometricRectangle using Graphics

}

Open-Closed Principle

Software entities should be open for
extension, but closed for modification.

= Minimize changes to existing code when
adding new behavior

= Take advantage of object composition and
polymorphism

public class Shape {
/...

}

public class Rectangle extends Shape {
/e
}

public class Circle extends Shape {
/).
}

public class GraphicEditor {

public void drawShape(Shape s) {
if (s instanceof Rectangle) {
drawRectangle((Rectangle) s);
} else if (s instanceof Circle) {
drawCircle((Circle) s);

}
}

public void drawRectangle(Rectangle rectangle) {
/).
}

public void drawCircle(Circle c) {
/...
}

Open-Closed Principle

public abstract class Shape {

Introduce abstraction.)

public abstract void draw();

}

public class Rectangle extends Shape {
/) e
@Override

public void draw() {
// Draw the rectangle

}
}
= LaW Of Demeter public class Circle extends Shape {
= Move responsibilities /7 e
@Override
public void draw() {
// Draw the circle
}
}

public class GraphicEditor {

public void drawShape(Shape s) {
s.draw();

}

Dependency Inversion Principle

public class Human {

High level classes should not depend on low o
public void work() {

level classes. } // ...working

}

public class Manager {
private Human worker;

public void setWorker (Human worker) {
this.worker = worker;

}
= We want aflexible design

public void manage() {

. ker. k();
= We want to easily replace low level classes , orrermertl)
)

= We want low coupling
public class Robot {

public void work() {
// ...working longer

}

Dependency Inversion Principle

public interface Worker {

Introduce an abstraction that decouples the void work();
high-level and low-level classes from each)
()tt1€3r: public class Human implements Worker {

public void work() {
// ...working

}
}

public class Robot implements Worker {

public void work() {
// ...working much more

= High level classes depends on abstractions }

= Low level classes are created based on
abstractions

}

public class Manager {

private Worker worker;

public void setWorker (Worker worker) {
this.worker = worker;

}

public void manage() {
worker.work();

}

J

Exercises

Let’s put S.O.L.1.D. principles into practice.

DESIGN PRINCIPLES

= Find principle violations in this project https://github.com/
bebosudo/it.units.muli.poker

= Work on the Cribbage Score Calculator assignment, use
S.O.L.I.D. principles (and all the other concepts) when
refactoring.

https://github.com/bebosudo/it.units.muli.poker
https://github.com/bebosudo/it.units.muli.poker
https://github.com/dario-campagna/Cribbage-assignment

=

\¥" \
Y/

5
\J

SIm
A 203

nle Design

/euide when refactoring

~ 7

Simple Design

According to Kent Beck, a design is “simple” if it follows this
guidelines:

1. Passes the tests

2. Minimizes duplication

3. Reveals its intents

4. Has fewer classes/modules/packages...

The Simple Desigh Dynamo

Removing duplication and revealing intent/
increasing clarity quickly form a rapid, tight

feedback cycle.
>,7,‘

P yalt

Putting An Age-Old Battle To Rest, J.B. Rainsberger Sj(%%%(ef @%@ / 7yl
(¢ wva @ an() o W/y
lcahion
= When we remove duplication, we create / i vl absteachip
1 an—\eve
buckets. @KWK) e Gmorge

= When we improve names, we create more

cohesive, more easily-abstracted buckets.

© Joraiws 2015

https://blog.thecodewhisperer.com/permalink/putting-an-age-old-battle-to-rest
https://blog.thecodewhisperer.com/permalink/putting-an-age-old-battle-to-rest

References
\ Agile Technical Practices Distilled

Pedro Moreira Santos, Marco Consolaro,
Alessandro Di Gioia

Refactoring
Martin Fowler

q&/ Go refactor!
o

esteco.com l’i g ﬂ!ﬂ G m

