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Processing of the 5'- and the 3'-end of piIRNA
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p1RNA processing in somatic follicularand germline cells of Drosophila ovary

Follicular cell

() Zucchini dimer
- Zuc cleavage
4" Slicer cleavage

Only Piwi is expressed in follicular
cells. In these cells both ends of mature
piRNAs are formed exclusively
through Zuc-mediated processing.

In germline nurse cells the 5'-end of piRNAs is
determined by the Slicer activity of Aub/Ago3
(ping-pong cycle) while Zuc and Nbr exonuclease are
2’| 1nvolvedin the 3'-end formation.

In the end, piRNA 3’ends are 2’-O- methylated by an
S- adenosylmethionine (SAM)-dependent
methyltransferase (Hen1 in flies).



PIWI- interacting RNAs (piRNAs) silence transposons

transcriptionally and post- transcriptionally.

Transcriptional silencing

Transposon nascent
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methylation
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Transcriptional silencing of transposons in the nucleus.

histone modification chromatin remodeling

The piRNA pathway provides features of both innate
and adaptive immunity against transposons

Hybrid Dysgenesis: a transposon carrying male mated to a naive female produces sterile offspring



Other functions in Drosophila

Protein-coding gene repression by piIRNAs

Maternal piRNAs specify the use of piIRNA clusters in adult ovaries




p1RNA clusters

piRNA clusters are
the primary origin of
piRNA in Drosophila

Located in
centromeric and
pericentromeric
region

Transcribed by RNA
pol Il

Two subgroups



Unistrand piRNA cluster
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Dual strand piRNA cluster

b Dual-strand germline clusters &

.0. Cytoplasmic nuage

Nuclear export Nucleus

PIRNA
precursor
transcript

]
Nucleus Nuclear export .: .
L]

Cytoplasmic nuage ]

Unique in Drosophila germ cells
Do not possess their own promoter
Rhino binds to H3K9me3

Cutoff blocks splicing

Moonshiner promotes initiation of
transcription
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All piRNA biogenesis factors are detected in
cytoplasm

Nuclear export is needed

Rhino/Ded interact with Boot that recruits Nxf3/Nxt1
and UAPS56 to piRNA precursors

Export through Crm1 to peri-nuclear nuage



Nuages

- Nuages are piRNA processing site.

- Membraneless structures they are polymer
condensate where piRNA precursors and proteins
for their processing are highly enriched

- Inperinuclear region




Transport route of Rhino dependent piRNA precursors in ovaries

Where? Nurse cells

Why? Nurse cells dump their cytoplasm
containing RNAs and proteins into the oocyte

sites of processing
(nuage)

- RNA FISH against piRNA cluster 42AB

Conclusion - Cluster enriched in nuclear foci and in
cytoplasmic loci

(piRNA clusters)

sites of transcription




Nxtl for mRNA and piRNA export

Heterodimeric nuclear receptor Nxt1/Nxfl is essential for mRNA export

Is Nxt1/Nxf1 important also for piRNA export pathway?

Only Nxt1-LAP was enriched at nuclear Rhino foci, while Nxf1-LAP was
dispersed in the nucleus but located in the nuclearenvelope.

Conclusion - Nxtl1 is involved in Rhino-dependent piRNA clusters
export




Nxf3 Localizes to piIRNA Transcription and Processing site

- Affinity purification
Nxf3 highly enriched in Nxt1-LAP eluates

- Expression of Nxf3-LAP specially occurs in the
nucleus co-localize with Rhino as well as in
cytoplasmic foci (Vasa factor positive foci)

H Rhino / Nxf3-LAP /

Rhino

6 5 4 3 21 0-165 4 3 2 1 0 -1
distance to nuclear envelope [gm] n = 1129 foci

Rhino

Nxf3-LAP

mCherry-Vasa

nuclear m and © cytoplasmic (nuage) fraction of total protein signal

Of all known proteins localizing to Rhino-dependent piRNA
precursor, Nxf3 is the only one with duallocalization

Conclusion - Nxf3 is essential to transport piRNA
precursors from nucleus to cytoplasmic processing site




nxf3 mutant cells show 1n de-repression of transposons

B piRNA levels (1kb windows)
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Flies carrying nxf3 null-alleles show a 10 fold reduced levels of piIRNA
originating from Rhino-dependent piRNA source loci

Rhino-independent piRNA source was unaffected
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Rhino localization was unaffected in Nxf3 null-alleles

G .
Rhino’s genome wide enrichment at piRNA source g wid type ' | ‘ l | l ' i
loci was unchanged in nxf3 null cells S ' et ea B, dish
a
Conclusion - piRNA loss is due to defects & | 3 “u ll I { II‘ " i
downstream pathway of piRNA cluster .2 o R p
specification and transcription T

rhino «/-




p1RNA Precursor Export Requires Nx{3
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Subcellular localization of c/uster424B with the
Rhino-independent cluster20A serving as a control

In Rhino mutants nuclear and cytoplasmic foci of
cluster42 AB was lost but nuclear localization was
unaffected in nxf3 null cells

Conclusion - Nxf3 has a directrole in
stabilization and nuclear export of Rhino-
dependent piRNA cluster
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Investigating Nx{3 interaction with piIRNA precursors

Using CRISPR-Cas9 to generate Nxf3-LAP and observing with RNA FISH:
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Investigating Nx{3 interaction with piIRNA precursors

Sequencing of the libraries derived from RIP
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The top strand and the bottom strand precursors
are asymmetrically distributed following a model
where high Rhino levels in the cluster drive
bidirectional transcription initiation



Molecular mechanism of Nx{3

Immuno-purification of Nxf3-LAP to identified co-eluting proteins
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/ wild type)

log2(rhino /-

CG13741

Using CRISPR-Cas9 to generate CG13741-LAP and observing with RNA FISH

Generationof CG13741 frameshift-null alleles
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Determination of the dependency between CG13741 and the other proteins of the

export machanism

To study the interaction of CG13741 and the other proteins we used different knock-out models

[ ControlKD | | Cuto#f KD |/ Deadiock KD | Rhino KD
| 4= | |
o [El | | | |
2 | i Rhino, Dedlook, Cutoff
Rhino/Deadlook + 4
Cutoff induce a 0 T 1
recruitment of £ '
Nxf3/Nxtl and e« CG13741 + Nxf3-Nxtl

UAP56 to piRNA
precursors in an
unknown way

CG13741 Deadlock
4
.




Determination of the dependency between CG13741 and the other protein of the

export machanism

To study the interaction of CG13741 and the other proteins we used different knock-out models

Control KD Nxt3 KD |[ CG13741 KD
o | = | |
Z [ Rhino, Dedlook, cutoff
[ = | [ e 1
2|0 e : CG13741
fé LR 1
g 2 Nxf3-Nxtl
3 |55 | |l
x| g
S CG13741 is named Bootlegger




What is the connection of Bootlegger to Rhino-Deadlock-Cutoff complex?

log.(mean ratio of IP/control)

Immuno-purification of Bootlegger-LAP Yeast two-hybrid screen with Deadlock as bait
It act as adaptor of Rhino to recruit Cutoffin the
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No results

C-terminal Deadlook interacted with
the C-terminal of Bootlegger



There 1s a contribution of Nx{3 or of Bootlegger to recruit UAP56?
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Recruitment Hierarchy
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Nxf1 role and characteristics

mRNA export
(cytoplasm)

Cytoplasmic
mRNP factors mANP remodeling

m mANP guaity control
[ T
factors

elongation, splicing
3’ cleavage, pelyadeénylation

» LU lrasscription
o

enhancer + promater |
INA

protein-coding loci (nucleus)

1. Nxf1-Nxtl hetero-dimer

2. mRNA exportreceptor

Nxfl/Tap and its binding partner Nxt1/p15 are the
most prominent mRNAs export receptor in cells

Nxf1-Nxtl hetero-dimer exports mature mRNAs and
unistrand piRNA

Few piRNAs precursors in Drosophila are spliced and
polyadenilated and thus require the mRNA export
receptor Nxf1-Nxtl

|f‘> Most of them lack these processing marks so
there must be another export pathway



Nxf3 and Nxf1: differences 1. RNA cargo specificity

and analogies 2. RNA cargo fate after NPC passage

Nxf1-LAP immuno-gold labelling of nurse cells G Nxf3-LAP (GFP-FLAG)

Fig. S6A: Trasmission electron microscopy images of . o . .
nurse cells expressing Nxf1-LAP at different Fig. S1G: Trasmission electron microscopy images of nurse
magnifications. cells at different magnifications.

How is nuclear export attained?

- Nxfl1 - Nxf3

»TWO nucleoporin binding sites . » No nucleoporin binding sites
1. Nfx1 ubiquitin-associated domain (UBA)

2. NTF2-like domain



Investigation of the role of Nxtl

B Nxt3 R [ i A G ) ) ) ..
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Consequences of D434R engineered locus

1. Reduced levels of Nxf3 in vivo

4. Nxf3 localized in the nuage in a reduced matter
2. Cannot bind Nxt1 above background

5. Nxf3 co-localized with Rhino at piRNA clusters

3. Interaction with UAP56 and Bootlegger present in the nucleus
B .
colP mass-spec from ovaries

=107 Nxt3_WT Fig. S6F: Localization of
g . indicted
Q. Ju , Nxf3-LAP proteins.
- [L047}
5’
@ 10’
W 10 . 4
g not nc’.o__;‘ba
< 100 T

Nxf3  Nxt1  Boot- UAPSE

. . , e Fig. S6E: Showing
Fig. 6B: Absolute peptide peak intensities for Nx{3 co-localization of

interactors from co-IP of Nxf3-LAP (WT) and Nxf3-LAP [D434R]
D434R. and Rhino.




Consequences of D434R engineered

locus

6. Subfertile Nxf3 mutants

7. Transposon de-silencing

8. Reduced presence of cluster42AB
transcripts

9. Reduced presence of piRNA from
Rhino-dependent source loci transcripts

TE expression
100. nxt3 /- nxt3 [D434R]

Fig. S6G: Changes
in RNA levels of
indicated
transposons.

Human NXF3

1. Orphan variant
2. Generated through duplication
3. NPC translocation using a NES,

recognized by Crml

D Nxf3-GFP localization in Schneider cells
LMB (0h) LMB (0.5h)

Fig. 6D: Sub-cellular localization
of Nxf3-GFP in untreated (left) or
LMB-treated (right) S2 cells.



nxf3/M553P] mutants
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Fig. S6B: Protein
sequence alignment
displaying the
nucleoporin interacting
motif in Nxf1 as well as
the position of the PKI-
type NES in Nxf3.

Fig. 6G: Localization of
Nxf3-LAP (left) or Nxf3-
LAP [M553P] (right) in
nurse cells.
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Nxf3-Bootleggerpathway

nxf3/M553P] mutants
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Figure 7: Nxf3-Bootlegger pathway in
comparison to mRNA export and pre-miRNA
export.
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Nx{3-Bootlegger pathway - Conclusions




Possible

future
developments

Investigate NXF role in mammal
and possibly in human infertility,
examining whether there are
transposons modification and de-
regulation with a resulting major
incidence of pathologies (ex.
hemophilia, cancer...)
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