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Abstract Long intergenic non-coding RNAs (lincRNAs) are
defined as RNA transcripts that are longer than 200 nucleo-
tides. By definition, these RNAs must not have open reading
frames that encode proteins. Many of these transcripts are
encoded by RNA polymerase II, are spliced, and are poly-
adenylated. This final fact indicates that there is a trove of
information about lincRNAs in databases such as the Gene
Expression Omnibus (GEO), which is a repository for
RNAseq and microarray data. Recent experiments indicate
that there are upwards of 15,000 lincRNAs encoded by the
human genome. The term Bintergenic^ refers to the identifica-
tion of these transcripts from regions of the genome that do not
contain protein-encoding genes. These regions coincide with
what was once labeled as the Bjunk DNA^ portions of our
genomes, which, upon careful examination by whole genome
RNA sequencing experiments, clearly encode RNA tran-
scripts. LincRNAs also contain promoter- or enhancer-
associated RNAs that are gene proximal and can be either in
the sense or antisense orientation, relative to the protein-
coding gene with which they are associated. In this review,
we describe the functions of lincRNAs playing roles in bio-
logical processes such as gene expression control, scaffold
formation, and epigenetic control.
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Introduction

Recent developments in next generation sequencing technol-
ogies have led to extensive transcriptomic and bioinformatic
analysis of many cell lines and tissues at an unprecedented
scale. These analyses show that although more than 75 % of
the human genome is selectively transcribed, only a small
portion of the transcripts are translated into final protein prod-
ucts (Djebali et al. 2012). The rest of the transcripts that do not
possess any protein-coding capacity are annotated as non-
coding RNA (ncRNA). These ncRNAs are subdivided into
two main categories, depending on their length. Small
ncRNAs (sncRNA) are shorter than 200 nucleotides and
largely consist of microRNAs (miRNA) and small nucleolar
RNAs (snRNA). Long intergenic ncRNAs (lincRNA) are lon-
ger than 200 nucleotides (this differentiates them from
miRNAs, which tend to be short transcripts encoding small
hairpin structures).

As more and more of these noncoding transcripts with dif-
ferent functions are discovered, their nomenclature has
evolved. While some sources label these transcripts as
lincRNAs, others omit the definition Bintergenic^ and label
them simply as lncRNAs (St. Laurent et al. 2015). Both
sncRNAs and lincRNAs have some common properties such
as establishing specific RNA-RNA and RNA-DNA interac-
tions (Guttman and Rinn 2012). However, the longer lengths
of lincRNAs give them a second layer of functionality, by
which they can fold upon themselves, forming complex struc-
tures. As a result, they are able to mediate target recognition
not only by base-pairing, but also through tertiary structure-
defined surface interactions (Rinn and Chang 2012). Also,
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even though by definition, lincRNAs must not have open
reading frames that encode proteins, recent evidence indicates
that short polypeptides may be encoded by these transcripts
(Ruiz-Orera et al. 2014).

LincRNA genes are less evolutionarily conserved than
protein-coding genes; specifically, their exons are generally
more divergent compared to their promoters and some short
stretches of their sequences (Derrien et al. 2012; Guttman and
Rinn 2012). However, this lack of conservation in the primary
sequence does not necessarily indicate an absence of function
because the overall secondary and higher order of structures of
lincRNAs can mediate specific activities (Fatica and Bozzoni
2014; Pang et al. 2006). Moreover; weaker constraints on
lincRNA evolution could allow these sequences to evolve
rapidly and gain new levels of complexity, while preserving
functional stretches of primary sequence (Ng et al. 2012;
Pollard et al. 2006). LincRNAs are generally expressed at
low levels compared to protein-coding genes and are more
tissue or cell-type specific (Cabili et al. 2011; Derrien et al.
2012). LincRNAswere found to participate in a vast variety of
biological processes such as cell proliferation, morphogenesis,
pluripotency, development, neuronal processes, and gameto-
genesis (Guttman et al. 2009). These functions make
lincRNAs vital for cellular health; conversely, their dysregu-
lation has been shown to participate in tumorigenesis and in
genetically inherited diseases (Batista and Chang 2013; Yan
et al. 2015).

The primary characteristics of lincRNAs

Evolution of lincRNAs

Evolutionary conservation of genomic sequences is commonly
used as evidence for functionality of the particular locus. The
link between evolutionary conservation and function may not
necessarily apply for lincRNAs, as structure, rather than se-
quence, may be more important for their function. LincRNA
exons are more conserved than neutrally evolving repeat se-
quences, on which no known selection pressure applies; how-
ever, the extent of lincRNA conservation is less than that for
protein-coding genes (Derrien et al. 2012). When different
regions of lincRNA genes are analyzed for conservation, pro-
moters are found to be the most conserved parts of the gene,
compared to exons and introns. In fact, lincRNA promoters are
as conserved as the promoters of protein-coding genes. The
lack of conservation in the body of a lincRNAmay be because
current bioinformatic tools are not trained to detect short con-
served sequences that form RNA stem loop structures with
large loops. If the functional (e.g., protein binding) part of a
lincRNA is the stem structure, the large loops that separate the
two strands of the stem may not necessarily be conserved.
There is also evidence that lincRNA sequences emerge and

decline rapidly within particular evolutionary lineages (Ponting
et al. 2009). In this fashion, lincRNAs may evolve differently
from protein-coding genes, which generally arise from duplica-
tions and subsequent sequence divergence.

LincRNAs can be found in the nucleus or in the cytoplasm

While some studies demonstrate the function of cytoplasmic
lincRNAs, they are specifically concentrated in the nucleus,
and particularly in the chromatin fraction (Derrien et al. 2012).
LincRNAs have been shown to recruit chromatin-modifying
enzymes to specific genomic loci to activate or to repress gene
expression (Fatica and Bozzoni 2014). Nuclear lincRNAs
may also function as decoys in order to sequester transcription
factors from their genomic targets, as scaffolds to enable the
formation of large multi-protein complexes and as the media-
tors of the formation of nuclear domains that establish spatial
control (Batista and Chang 2013). LincRNAs also have many
functions in the cytoplasm; they can modulate mRNA stability,
sequester miRNAs by functioning as decoys (miRNA sponges),
or they can regulate the translation of target mRNAs (Batista and
Chang 2013). For instance, a lincRNA named TUG1 was re-
cently found to serve as a cytoplasmicmiRNA sponge of PTEN,
which is a master tumor suppressor in prostate cancer (Du et al.
2016). Therefore, loss of TUG1 expression in prostate cancer
has been linked to its role in cancer advancement. This impor-
tant finding shows that lincRNAs can have oncogenic or tumor-
suppressive functions and that lincRNAs might be exploited for
cancer therapy. LincRNAs can also localize to other subcellular
compartments. In fact, global analysis of their localization shows
that ribosomes are default destinations for many cytoplasmic
lincRNAs, a finding whose biological significance is yet to be
discovered (Carlevaro-Fita et al. 2016). Mitochondria are anoth-
er destination for some nuclear-DNA-encoded lincRNAs.
RMRP, which is a lincRNA encoded in the nucleus and
transported to the mitochondria by RNA binding proteins, has
recently been shown to play a crucial role in mitochondrial
DNA replication and RNA processing (Noh et al. 2016).
Recently, a thorough investigation by in situ hybridization of
the subcellular localization of Drosophila lincRNAs showed
that most lincRNAs have specific localizations during develop-
ment (Wilk et al. 2016).

LincRNAs control gene expression

LincRNAs have the capacity to interact with various chromatin-
modifying complexes to modulate the chromatin state
(Rutenberg-schoenberg et al. 2016). This ability of lincRNAs
to bind and recruit these complexes to chromatin can change the
epigenetic landscape and thus control gene expression. The
chromatin-modifying enzymes that interact with lincRNAs can
be repressive, activating or in some cases have bivalent domains
with both functions (Wang et al. 2011). The involvement of

136 Funct Integr Genomics (2017) 17:135–143



lincRNAs in gene expression was revealed by RNA immuno-
precipitation followed by RNA sequencing (RIP-Seq) experi-
ments (Cloonan et al. 2008). The EZH2 component of PRC2,
which deposits repressive H3K27me marks on chromatin, was
shown to bind a number of lincRNAs, and this interaction was
shown to be important for targeting PRC2 to specific gene loci
for repression (Zhao et al. 2010). LincRNAs can also directly or
indirectly interact with transcription factors to target RNA-
bound chromatin-modifying enzymes to specific genomic sites.
A good example of this mechanism was revealed by studies on
the steroid receptor RNA activator (SRA) lincRNA that interacts
with either activating TrxG or repressive PRC2 complexes as it
controls various genes (Wongtrakoongate et al. 2015). SRA also
interacts with NANOG, a master regulator transcription factor
for pluripotent stem cells, to control the bivalent state of expres-
sion in various gene loci.

LincRNAs can act in Cis or in Trans

The mode of action of lincRNAs on gene expression can be
either cis- or trans-acting. Cis-acting lincRNAs affect the ex-
pression of genes located near their site of transcription on the
same chromosome (see the function of lincRNA-p21 in Fig. 1
as an example). On the other hand, trans-acting lincRNAs can
control gene expression at independent loci on other chromo-
somes. The HOX genes are distributed among four clusters
(A-D) on different chromosomes. The HOX transcript anti-
sense intergenic RNA (HOTAIR) transcript is a lincRNA
expressed from the HOXC gene locus located on human chro-
mosome 12. Even though HOTAIR is embedded within
HOXC, its loss does not affect HOXC expression. RNAi si-
lencing of the HOTAIR RNA and the targeted deletion of the
HOTAIR gene locus result in the de-repression of the HOXD
locus, which is located in chromosome 2 (Li et al. 2013; Rinn
et al. 2007). HOTAIR interacts with the polycomb repressive
complex 2 (PRC2) and lysine demethylase 1A (Lsd1) com-
plexes to mark hundreds of target genes with inhibitory his-
tone tags, such as methylation of histone H3 on lysine 27
(H3K27me) and demethylation of histone H3 on lysine 4
(H3K4). These results show that HOTAIR acts in trans.

HOTTIP (HOXA transcript at the distal tip) is another
lincRNA transcribed from the HOXA gene locus located on
human chromosome 7. Unlike the results observed for
HOTAIR, siRNA knockdown of HOTTIP interferes with the
expression of neighboring HOXA genes (Wang et al. 2011).
HOTTIP interacts with the trithorax group (Trx/MLL) com-
plex to mark HOXA genes with the activating histone modi-
fication, H3K4me3 (Wang et al. 2011). Thus, HOTTIP acts in
cis.

Another lincRNA that acts in trans is lnc-IL7R, a lincRNA
that overlaps with the 3′UTR of the interleukin-7 receptor
gene (Cui et al. 2014). So far, few examples of lincRNAs in
inflammation and immunity exist (Heward and Lindsay

2014). This lincRNA was identified as an LPS-induced
RNA, which acts to recruit chromatin silencing complexes.
As IL7R signaling is critical for the survival of T lympho-
cytes, this new complexity in the regulation of the IL7R gene
locus is very exciting. Recently, we identified that a suppres-
sor transcription factor, Gfi1, regulated IL7R gene expression
in CD8 positive but not in CD4 positive T lymphocytes
(Ligons et al. 2012). The presence of lincRNA-dependent
regulation may yield clues to the complex and cell type-
specific regulation of this gene.

The functions of lincRNAs

LincRNAs in stem cells and pluripotency

The lincRNAs that are associated with pluripotency are
either expressed in embryonic stem cells (ESCs) or upreg-
ulated in induced pluripotent stem cells (iPSCs) after they
are reprogrammed from somatic cells (Guttman et al.
2011). RNAseq and ChIPSeq analysis revealed that thou-
sands of lincRNA genes harbor binding sites for at least
one of the major pluripotency transcription factors
(including Oct4, Sox2, Klf4, and c-Myc, among others)
in their promoter regions. Moreover, many of these
lincRNAs are expressed coordinately with these core com-
ponents of the transcriptional network that controls
pluripotency (Dinger et al. 2008; Yang et al. 2013).
Transciptome data revealed that over 1000 lincRNAs are
differentially expressed in a stage-specific manner during
reprogramming (Hussein et al. 2014). Of these lincRNAs,
many were found to be suppressors of lineage-specific
markers. Furthermore, ChIP and RIP experiments showed
that some lincRNAs were chromatin bound during the
induction of pluripotency.

There is growing evidence for RNA-based control of
pluripotency (Wright and Ciosk 2013). LincRNA-RoR
(Regulator of Reprogramming) is one of the important
lincRNAs in both the iPSC and p53 pathways. It was the first
lincRNA implicated in reprogramming and discovered to be
upregulated in iPSC compared to ESCs by a microarray ex-
periment (Loewer et al. 2010). The gene locus encoding
LincRNA-RoRwas shown to be occupied by the pluripotency
transcription factors—OCT4, SOX2, and NANOG—indicat-
ing that lincRNA-RoR plays a role in iPSC generation.
Indeed, in the same study, the knockdown of lincRNA-RoR
was found to result in a significant decrease of iPSC forma-
tion. Conversely, the overexpression of lincRNA-RoR was
found to result in an increase in the number of iPSC colonies.
LincRNA-RoR may be inhibiting iPSC generation by sup-
pressing the p53 pathway, through which it likely promotes
cell survival during dedifferentiation (Loewer et al. 2010).
Besides the p53 pathway, lincRNA-RoR also increases the
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efficiency of pluripotency by titrating down the levels of miR-
145, which is a knownmicro-RNA that targets the pluripotency
regulators OCT4, SOX2, and KLF4 (Wang et al. 2013; Xu
et al. 2009).

The ability of lincRNAs to regulate the amount of available
miRNAs is called decoy activity, in which they act as
Bsponges^ for the miRNAs that normally target mRNAs
(Rigoutsos and Furnari 2010; Zhang et al. 2014). So,
lincRNA-RoR and its partners could be fine-tuning the activity
of miRNAs. Thus, lincRNAs likely set important thresholds for
cell lineage identity and fate through their interactions with
miRNAs and transcription factors.

LincRNAs in development

LincRNAs have been implicated in differentiation and in de-
velopmental processes due to their interaction with chromatin-
modifying complexes. In particular, the central nervous

system, with a vast range of neuronal cell types, has the most
complex and large number of noncoding RNAs (Fatica and
Bozzoni 2014). The number of lincRNAs expressed in the
brain has been linked to evolutionary complexity.
Comparative transcriptome analysis of primate brains indi-
cates that there are many human-specific lincRNAs (Xu
et al. 2010). Apart from the nervous system, well-defined roles
have been documented for Braveheart (Bvht) and fetal-lethal
noncoding developmental regulatory RNA (Fendrr)
lincRNAs in the development of cardiomyocytes, the heart,
and the body wall (Grote et al. 2013; Klattenhoff et al. 2013).

The Kcnq1ot1 (Kcnq1 overlapping transcript 1) lincRNA
is a paternally expressed, imprinted RNA (Mancini-DiNardo
et al. 2003). This lincRNA gene is very closely situated to the
Kcnq1 gene which encodes a potassium transporter which
when mutated can result in cardiac arthymias of the long QT
type that can cause sudden cardiac arrest (Kapplinger et al.
2009). Kcnq1ot1 silences surrounding genes by recruiting

Fig. 1 The four functions of lincRNA-p21. LincRNAs perform a wide
variety of functions in cellular processes, and lincRNA-p21 is an impor-
tant example to these. a One of the first nuclear genes that get transcrip-
tionally activated upon the induction of p53 after cellular stress is the gene
that encodes the cell cycle inhibitor p21 (black arrow facing right). The
p21 locus contains a recently identified lincRNA gene on the opposite
strand of the p21 gene. This lincRNA gene promoter was also shown to

be controlled by p53 and byHIF1α. HnRNP-K binds to the p21 lincRNA
and the complex activates the p21 promoter. b In addition to this cis
regulation, lincRNAs can act in trans. c LincRNAs can inhibit the trans-
lation of specific genes by competing with the translation machinery. d
Alternatively, lincRNAs have also been shown to modify protein stability
by interfering with the recruitment of cytoplasmic ubiquitinating enzymes
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repressive methylation marks. The link between polymor-
phisms in the Kcnq1ot1 gene and long QT syndrome has not
been studied but may yield interesting paternally inherited
phenotypes that may impact the diagnosis and treatment of
this serious disease.

Probably, the best-known lincRNA is the X-inactive-
specific transcript (Xist) RNA encoded bymammalian X chro-
mosomes. This RNA does not encode any known proteins;
yet, it functions to silence one of the two chromosomes of
female cells for dosage compensation between XX females
and XY males. Xist RNA functions by competing with Tsix
RNA, recruits histone modifiers, and results in the methyla-
tion and inactivation of the X chromosome (Gendrel and
Heard 2014). The Xist RNA, encoded by 8 exons, is 17 kb
long and plays a nuclear rather than a cytoplasmic function.
Polycomb group proteins bind to this transcript and exclusively
coat the inactive X chromosome (Yildirim et al. 2013). At the
onset of X chromosome inactivation, in the early embryo, Tsix
RNA, another lincRNAs, encoded by the opposite DNA strand
of the Xist locus is also expressed and inhibits the Xist RNA on
the active X chromosome. Interestingly, Tsix RNA has been
found in mice but not in humans. The formation of inactive
(Xi) and active (Xa) chromosomes during embryonic develop-
ment is a process controlled by these (and potentially other)
lincRNAs.

LincRNAs in cancer

There are large numbers of lincRNAs annotated in the human
genome that participate in cancer-related biological processes.
Therefore, it is not surprising that their mutations, dysregula-
tion, or aberrant expression cause disease. Genome-wide asso-
ciation studies show that a large number of single-nucleotide
polymorphisms (SNPs) in the human genome reside within
intergenic or intronic regions, indicating that they may effect
lincRNA function (Hindorff et al. 2009). One well-studied
lincRNA that has been associated with cancer is HOTAIR.
As mentioned above, it recruits the PRC2 complex to deposit
inhibitory H3K27me marks. The dysregulation of HOTAIR in
breast cancer cells results in the genome-wide retargeting of
PRC2, creating a new pattern of gene expression more similar
to that of embryonic fibroblasts (Gupta et al. 2010). This redi-
rection influences breast cancer progression by increasing can-
cer invasiveness and metastasis.

Constitutive activation of the Notch signaling pathway by
dominant mutations in the Notch-1 gene is the most common
genetic defect in T-acute lymphoblastic leukemia (T-ALL)
(Weng et al. 2004). A Notch-regulated lincRNA, LUNAR,
was shown to mediate T-ALL growth (Trimarchi et al.
2014). There are a growing number of studies that implicate
the presence of SNPs in lincRNA genes to a person’s suscep-
tibility to cancer (Ling et al. 2015). Another significant
lincRNA linked to cancer is metastasis-associated lung

adenocarcinoma transcript 1 (MALAT1), which is indicated
in many cancer types ( lung, breas t , co lon, and
hepatocarcinoma) (Zhang et al. 2014). Normally, MALAT1
interacts with mRNA splicing factors in nuclear speckles and
participates in alternative splicing (Gutschner et al. 2013).
Some breast cancers have mutations in the splicing factor-
binding sites of MALAT1 which results in an alteration of
the splicing pattern (Ellis et al. 2012). Like protein-coding
genes, lincRNAs may also function as oncogenes and tumor
suppressor genes that impact tumorigenesis. There is a great
need for large-scale gain-of-function (GOF) and loss-of-
function (LOF) studies followed by in vivo characterization.
These studies will reveal the functions and demonstrate the
importance of lincRNAs in development, disease, and other
cellular processes. Therefore, like protein-coding genes and
miRNAs, lincRNAs may also be used as cancer biomarkers
and will soon be targets of chemotherapeutic drug develop-
ment efforts (Huarte 2015; Ling et al. 2013; Yarmishyn and
Kurochkin 2015). Thus, the tissue and cell type specific ex-
pression patterns of lincRNAs makes them ideal candidates
for targeted therapy (Schmitz et al. 2016).

LincRNAs in DNA damage

DNA damage, induced by treating mouse embryonic fibro-
blasts (MEFs) with the genotoxic drug doxorubicin (DOX),
significantly upregulated the expression of 39 lincRNAs in a
p53-dependent manner (Guttman et al. 2009). The promoters
of these lincRNAs contained p53 cis-regulatory binding ele-
ments, suggesting that at least some of these targets are con-
trolled by p53 in the presence of DNA damage. Another study
identified 49 lincRNAs, upregulated after DNA damage in
MEFs that are dependent on the presence of p53 (Huarte
et al. 2010). A more recent study combining RNASeq expres-
sion analysis and ChIPSeq binding site analysis on MEFs and
human fibroblast found similar numbers of lincRNA genes
regulated by DOX treatment (21 upregulated and 4 downreg-
ulated lincRNA upon DOX treatment in MEF and 22 upreg-
ulated and 1 downregulated in human fibroblasts) (Younger
et al. 2015). These experiments show that lincRNAs are reg-
ulated during the DNA damage response and at least some of
these are maintained by p53. It is important to note that the
two studies were performed using microarrays assessing a
limited lincRNA repertoire and that more recent RNASeq
experiments will likely yield larger lists of damage-induced
lincRNAs.

MEG3, a maternally expressed and imprinted gene, was
recently shown to activate the p53 tumor suppressor (Zhou
et al. 2007, 2012). The MEG3 lincRNA is expressed ubiqui-
tously, and its expression is lost in many human tumors and
cell lines. Another lincRNA that plays a role in the DNA
damage response is lncRNA-JADE, which is induced after
DNA damage, mediates histone H4 acetylation, and is
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implicated in breast cancer progression (Wan et al. 2013).
LncRNA NEAT1 was recently discovered to be a com-
ponent of p53-dependent paraspeckles in the nucleus
(Adriaens et al. 2016). While the biological significance
of paraspeckle formation is not clear, NEAT1 silencing sensi-
tizes cells to DNA damage-induced death and impaired skin
tumorigenesis.

LincRNA-p21 (also known as Trp53cor1) was first identi-
fied as a DNA damage-induced and p53-regulated gene
(Huarte et al. 2010). It resides 15 kb upstream of the Cdkn1a
gene, which encodes the critical cell cycle regulator p21 pro-
tein. LincRNA-p21 is situated in the opposite orientation from
theCdkn1a gene and has its own distinct promoter. LincRNAs
in general perform a wide variety of functions in cellular pro-
cesses and carry out these roles by themselves or along with
other regulatory factors. Because lincRNA-p21 has been doc-
umented as a prime example to this diversity of function, we
included a schematic representation of its several different
functions in a cell (Fig. 1). LincRNA-p21 gene expression is
controlled by p53, and in an apparent feedback loop,
lincRNA-p21 suppresses many targets of the p53 pathway to
regulate p53 responses, specifically the induction of apoptosis
(Fig. 1a). The mechanism behind the transcriptional repres-
sion activity of lincRNA-p21 on the p53 response is depen-
dent on the physical interaction of the lincRNA-p21 with
hnRNP-K, a known member of a repressor complex regulat-
ing the p53 pathway (Fig. 1b) (Huarte et al. 2010; Kim et al.
2008). A recent study demonstrated that lincRNA-p21 actually
acts in cis only on the p21 gene locus to activate p21 expression
rather than acting in trans on multiple genes across the genome
(Dimitrova et al. 2014). Indeed, hnRNP-K is also reported to be
a coactivator for p53-mediated expression of p21 (Moumen
et al. 2005). These studies implicate lincRNA-p21 in cell
proliferation. Consistent with this function, lincRNA-p21
negatively affects reprogramming efficiency, likely
through p21-dependent inhibition of cell proliferation
(Dimitrova et al. 2014).

In addition to the cis and trans activities of lincRNA-p21
on gene expression control, it was also found to be a posttran-
scriptional inhibitor of translation, where it interacts with sev-
eral target mRNAs through base-pair interactions causing ri-
bosome drop-off and reduction in polysome sizes (Fig. 1c)
(Yoon et al. 2012). Finally, lincRNA-p21 was also identified
to be a stabilizer of proteins. As such, it can interrupt the
association between HIF-1a and a ubiquitin E3 ligase and
interfering with the ubiquitination of this protein (Fig. 1d)
(Yang et al. 2014). It is noteworthy to mention that the expres-
sion of lincRNA-p21 is controlled by HIF-1a, establishing a
positive feedback loop. In summary, lincRNA-p21 has been
documented in a number of studies to have pleitropic roles
during multiple steps of gene expression control. These vari-
ous functions of lincRNA-21 highlight the very complex and
versatile functions of lincRNAs in cellular processes.

Plant lincRNAs

Just like the mammals, plants also have many different
kinds of lincRNAs regulating their genes, creating an addi-
tional layer of complexity in the regulation of their ge-
nomes. While only 4 years ago, there were roughly 6000
identified lincRNAs in Arabidopsis thaliana transcriptomes,
a more systematic study increased this number to around
37,000 (Liu et al. 2012; Wang et al. 2014). COLDAIR and
COOLAIR lincRNAs were identified to take part in the
process of vernalization, the period of cold necessary for
the induction of flowering (Heo and Sung 2011;
Swiezewski et al. 2009). These lincRNAs function by
recruiting PCR2 to deposit the repressive H3K27me3
marks on the flowering locus C (FLC) to induce stable
silencing during the vernalization period. The knockdown
of COLDAIR leads to improper flowering—due to a defi-
ciency in the PRC2-mediated repression of FLC.

In the plant world, identified and characterized lincRNAs
are not restricted only to the model organism A. thaliana.
LincRNAs have been documented inmany other plant species
including but not limited to maize, rice, cotton, canola, toma-
to, sunflower, Medicago truncatula, Populus tomentosa, and
Populus trichocarpa (Chen et al. 2016; Flórez-Zapata et al.
2016; Joshi et al. 2016; Lu et al. 2016). Recently, a number of
genome-wide identification studies were conducted under var-
ious conditions, which resulted in the annotation of numerous
plant lincRNAs that function in a wide variety of cellular
processes associated with metabolism. Drought stress in cot-
ton (Gossypium hirsutum L.) was found to deregulate the ex-
pression of more than 10,000 lincRNA genes, which may be
involved in controlling plant hormone pathways (Lu et al.
2016). Canola plants (Brassica napus) changed the expression
pattern of about 1000 lincRNAs when infected with
Sclerotinia sclerotiorum, a fungus which causes Sclerotinia
stem rot, a disease affecting canola production worldwide
(Joshi et al. 2016). In Populus tomentosa, a common model
tree for woody plants, nitrogen deficiency resulted in an alter-
ation of the expression of more than 100 lincRNA genes,
while gibberellin hormone treatment led to changes in the
expression of about 400 lincRNA genes (Chen et al. 2016;
Tian et al. 2016). These and other results suggest that many
lincRNAs have important functions in plant responses to bi-
otic and abiotic stresses. Genome-wide identification studies
revealed a vast number of different lincRNAs from unrelated
plants under various conditions, and these exploratory studies
are a valuable resource for accumulating databases of novel
transcripts. However, in order to better understand the mech-
anism behind all these gene expression changes and map their
roles in plant responses, functional characterization studies
must be performed for at least selected lincRNAs.

Given that lincRNAs are emerging as master regulators of
many biological functions both in animals and in plants, it is
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also essential to adapt newly developed cutting-edge tech-
niques in molecular biology to fully characterize lincRNAs.
These include the recently very popular genome editing tech-
nologies such as CRISPR-Cas9. CRISPR-Cas9 has been used
in recent studies for studying the functions of noncoding
RNAs in human cells. For instance, Ho et al. (2015) edited
the genomic loci of three different lincRNAs and successfully
knocked down the expression of these genes. Similar studies
in plant molecular biology are still in the planning stages
(Basak and Nithin 2015). This creates a great opportunity to
adapt CRISPR-Cas9 genome editing tools for plant lincRNA
genes to characterize the novel and vital roles of these enig-
matic RNAs.

Resources

A number of databases are dedicated for lincRNAs. One of the
most comprehensive lincRNA databases is NONCODE. This
list contains more than 485,000 lincRNA transcripts from 16
different species, all retrieved from the literature and other
public databases (Xie et al. 2014). Other specialized databases
include the Human Body Map (Broad Institute) and
LNCipedia. GENECODE lists about 16,000 human long non-
coding RNAs (Harrow et al. 2012). Two early datasets that
documented the functions and classes of lincRNAs were as-
sembled after RNASeq experiments (Cabili et al. 2011; Fritah
et al. 2014). An excellent resource for all things related to
lincRNAs is the Web site http://www.lncrnablog.com. Here,
one can find links to recent papers related to lincRNAs and
links to sequence databases. Finally, an excellent recent
review summarized the available Web servers and database
resources for lincRNA predictions (Ching et al. 2015).

Conclusion

Even though the RNAworld hypothesis is widely accepted as
a critical step in the evolution of life on earth, our protein-
centric viewpoint on molecular biology has long relegated
the role of RNAs to be simple messengers between genetic
material and protein function. The recent revolution in non-
coding RNA identification indicates that there may be as
many lincRNA coding genes in our genome as there are pro-
tein coding genes. These discoveries have opened up new
vistas for RNA function, ranging from the control of gene
expression, epigenetic mechanisms, and scaffold formation
for signal transduction. Not surprisingly, viruses use
lincRNAs for many modes of biological regulation (Tycowski
et al. 2015). Can most of epigenetics be explained by the func-
tion of lincRNAs? The Bjunk DNA^ that we all learned from
our high school teachers was not junk after all! Perhaps, here

lies an RNAworld hidden from our very eyes since the begin-
ning of life itself.
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