# INFORMATION RETRIEVAL

Luca Manzoni Imanzoni@units.it

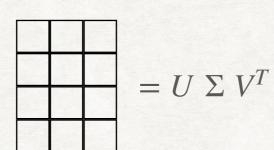
Lecture 12

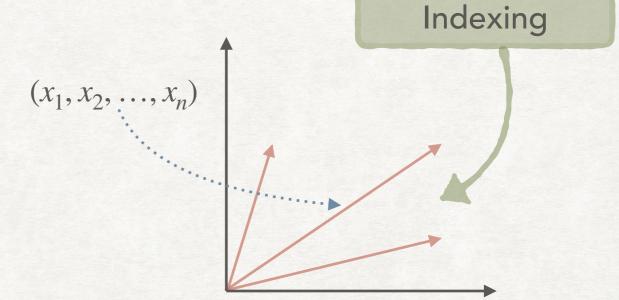
# LECTURE OUTLINE

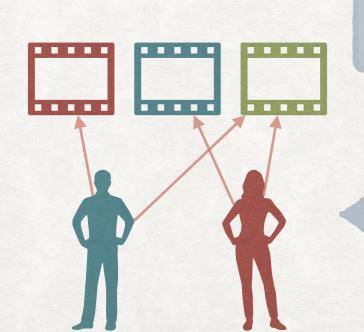
TODAY WITH MATRICES

Latent Semantic

Matrix Decomposition







Recommender Systems



Matrix Factorisation

# MATRIX DECOMPOSITION

# A BRIEF RECAP ASSUMING KNOWLEDGE OF EIGENVALUES

- We want to write a matrix as a product of other matrices...
- ...usually with some "interesting" properties.
- We will recall two matrix decompositions:
  - Symmetric diagonal decomposition
  - Singular value decomposition (SVD)
- We recall how SVD can be used to provide an approximation of the original matrix.

# SYMMETRIC DIAGONAL DECOMPOSITION

Let S be a square  $M \times M$  matrix which is:

- Real-valued
- Symmetric
- $\bullet$  With M linearly independent eigenvectors

Then there exists a symmetric diagonal decomposition:

$$S = Q \Lambda Q^T$$

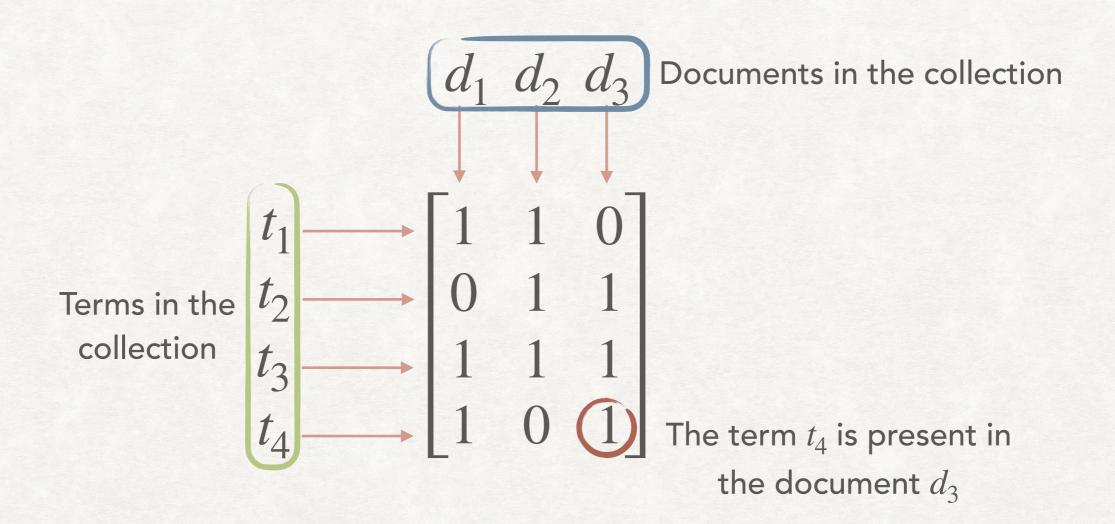
# SYMMETRIC DIAGONAL DECOMPOSITION

$$S = Q \Lambda Q^T$$

#### Where:

- The columns of Q are orthogonal eigenvectors of S
- ullet All columns of Q are of vectors of unit length
- ullet All entries of Q are real-valued
- $\Lambda$  is the diagonal matrix containing the eigenvalues of Q in the diagonal (by convention in non-increasing order)

# THE TERM-DOCUMENT MATRIX



Actually, the value in row i and column j can be any "weighting". For example the tf-idf for term  $t_i$  in the document  $d_j$ .

## THE TERM-DOCUMENT MATRIX

Some issues with the term-document matrix:

$$C = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \cdot Nc$$

- Not square
- Not symmetric

We will need another method to perform a matrix decomposition of C, since the symmetrical diagonal decomposition is not applicable

# SINGULAR VALUE DECOMPOSITION

Given a real-valued matrix C with M rows and N columns of rank  $r \leq \min\{M, N\}$ , and let:

- U be the  $M \times r$  matrix with the orthonormal eigenvectors of  $CC^T$  as columns.
- V be the  $r \times N$  matrix with the orthonormal eigenvectors of  $C^TC$  as columns.

Then C can be written as:

$$C = U\Sigma V^T$$

# SINGULAR VALUE DECOMPOSITION

$$C = U\Sigma V^T$$

where:

- The eigenvalues  $\lambda_1, \lambda_2, ..., \lambda_r$  are the same for  $CC^T$  and  $C^TC$ .
- $\lambda_1, \lambda_2, ..., \lambda_r$  are in non-increasing order.
- The matrix  $\Sigma$  is a square  $r \times r$  matrix containing in the diagonal all  $\sqrt{\lambda_i}$ , called the singular values of C.

# SVD FOR THE TERM-DOCUMENT MATRIX

$$U = \begin{bmatrix} -0.436 \\ -0.436 \\ -0.655 \\ -0.436 \end{bmatrix} \begin{bmatrix} 0.707 \\ 0 \\ 0 \\ -0.707 \end{bmatrix} \begin{bmatrix} 0.408 \\ -0.816 \\ 0 \\ 0.408 \end{bmatrix}$$
 Left singular vectors

$$\Sigma = \begin{bmatrix} 2.646 & 0 & 0 \\ 0 & 0.999 & 0 \\ 0 & 0 & 0.999 \end{bmatrix}$$

The values

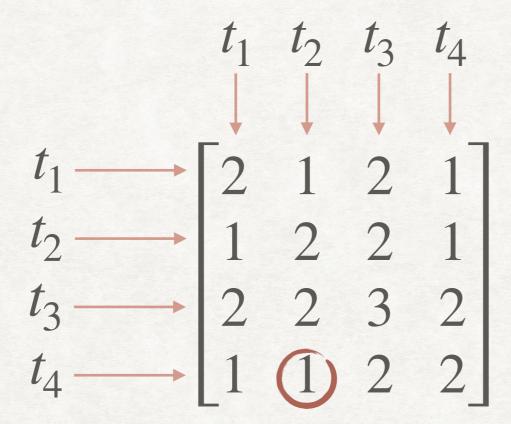
[2.646 0.999 0.999]

Are called the singular values of C

$$V^{T} = \begin{bmatrix} -0.577 & -0.577 & -0.577 \\ 0 & 0.707 & -0.707 \\ 0.816 & -0.408 & -0.408 \end{bmatrix}$$
 Right singular vectors

### THE TERM-DOCUMENT MATRIX

We can consider the matrix  $CC^T$ :

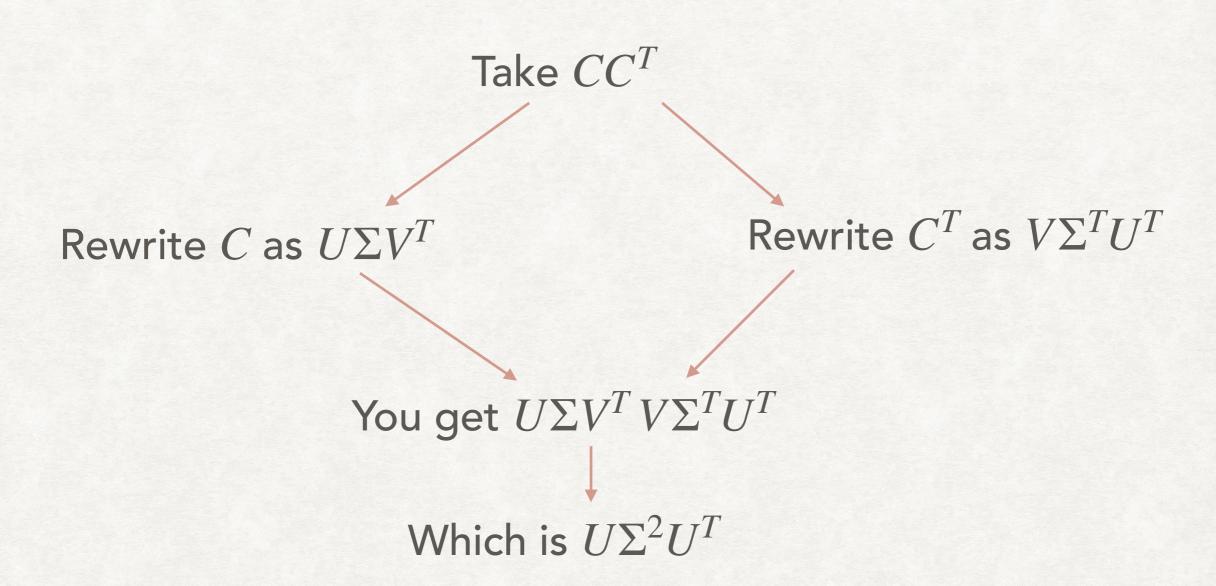


Number of documents where  $t_4$  and  $t_2$  co-occur

Actually, the value in row i and column j is, depending on how C is constructed, some "measure" of co-occurrence of the terms  $t_i$  and  $t_j$ 

# SOME "STUFF" TO NOTICE

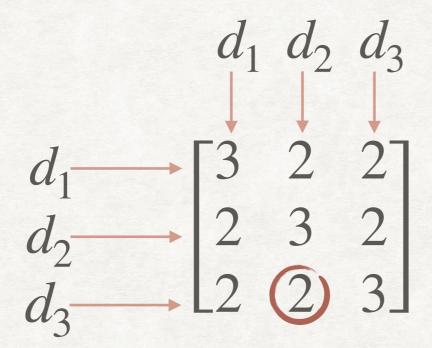
LINKING SVD WITH SYMMETRIC DIAGONAL DECOMPOSITION



In some sense we can view looking at co-occurrence of terms can be interpreted as "working" in the space of terms (which we reach using U)

# THE TERM-DOCUMENT MATRIX

We can also consider the matrix  $C^TC$ :



Number of terms in common between document  $d_3$  and  $d_2$ 

Actually, the value in row i and column j is, depending on how C is constructed, some "measure" of "overlap" between  $d_i$  and  $d_j$ 

## LOW-RANK APPROXIMATION

### BASICS

- The main idea is that we can reduce the "space occupied" by a matrix by reducing its rank...
- ...however we want to minimise the error introduced by the approximation.
- SVD provides a way to efficiently perform this approximation.
- At least with respect to the Frobenius norm:

$$||X||_F = \sum_{i=1}^M \sum_{j=1}^N X_{i,j}^2$$

# LOW RANK APPROXIMATIONS WITH SVD

### ZEROING OUT SINGULAR VALUES

Given a real-valued matrix C, compute its SVD decomposition  $U\Sigma V^T$ 

Let  $\sqrt{\lambda_1},...,\sqrt{\lambda_r}$  be the r singular values of C

Fix  $k \in \mathbb{N}$  as the rank of the approximation  $C_k$  that we want to compute.

Build  $\Sigma_k$  starting from  $\Sigma$  by zeroing out the smallest r-k singular values (i.e., only  $\sqrt{\lambda_1},...,\sqrt{\lambda_k}$  remains).

Let the approximation  $C_k$  be  $U\Sigma_k V^T$ .

# LOW RANK APPROXIMATIONS WITH SVD

### ZEROING OUT SINGULAR VALUES

$$\Sigma = \begin{bmatrix} 2.646 & 0 & 0 \\ 0 & 0.999 & 0 \\ 0 & 0 & 0.999 \end{bmatrix}$$
 Compute SVD 
$$C = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Keep only two singular values

$$\Sigma_2 = \begin{bmatrix} 2.646 & 0 & 0 \\ 0 & 0.999 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

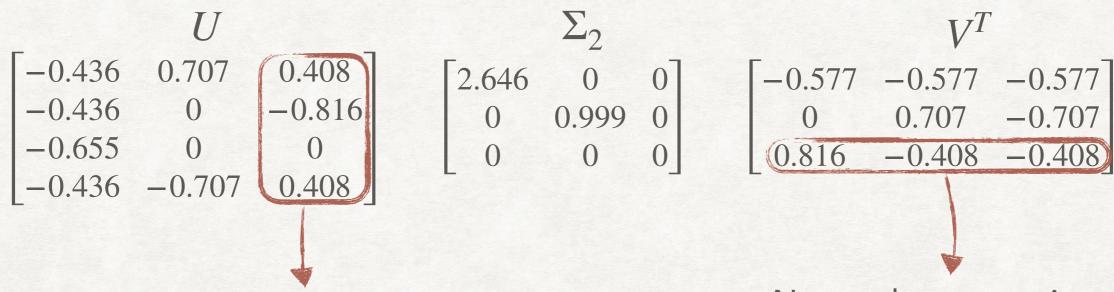
$$\Sigma_2 = \begin{bmatrix} 2.646 & 0 & 0 \\ 0 & 0.999 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad U\Sigma_2 V^T \qquad \triangleright C_2 = \begin{bmatrix} 0.667 & 1.667 & 0.667 \\ 0.667 & 0.667 & 0.667 \\ 1 & 1 & 1 \\ 0.667 & 0.167 & 1.167 \end{bmatrix}$$

Is this a good approximation?

Across all matrices of rank two,  $C_2$  minimises  $\|C - C_2\|_F$ 

# LOW RANK APPROXIMATION

### WHAT WE NEED TO MEMORISE



No need to memorise this column

No need to memorise this row

We can rewrite everything as a "truncated" SVD  $U_k'\Sigma_k'V_k'^T$ :

$$\begin{bmatrix} -0.436 & 0.707 \\ -0.436 & 0 \\ -0.655 & 0 \\ 0.426 & 0.707 \end{bmatrix} \begin{bmatrix} 2.646 & 0 \\ 0 & 0.999 \end{bmatrix} \begin{bmatrix} -0.577 & -0.577 & -0.577 \\ 0 & 0.707 \end{bmatrix}$$

# LATENT SEMANTIC INDEXING

## LATENT SEMANTIC INDEXING

### MAIN IDEAS

- Recall that the vector space representation does not address two issues:
  - Synonymy. E.g., when searching for "laptop" we do not find the documents that use "notebook"
  - Polysemy. When the same word is used with multiple meanings.
- We can potentially use a large thesaurus for the first problem...
- ...or we can use the co-occurrence of terms to try to solve the problems automatically.

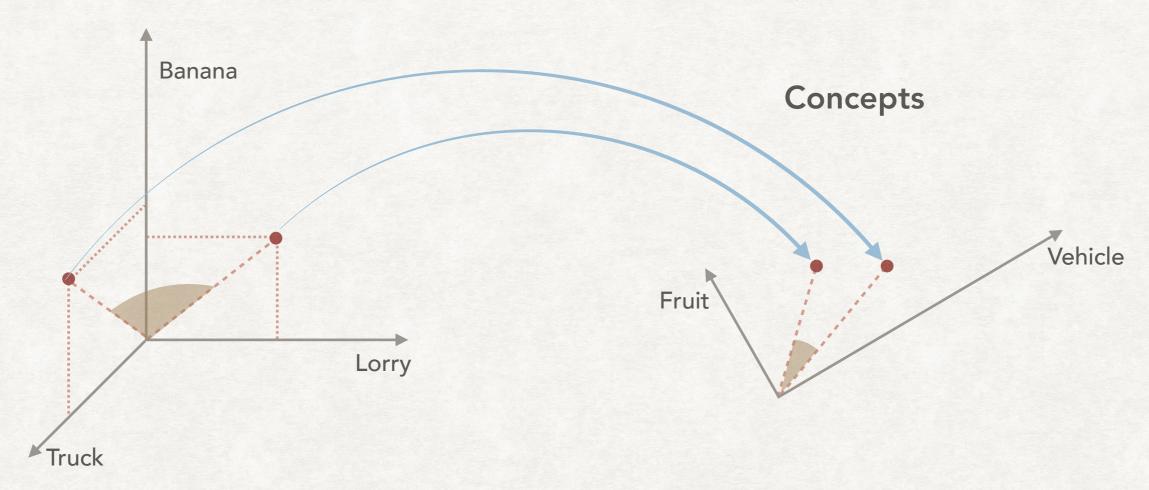
# HOW TO USE THE SVD

### TERMS, DOCUMENTS, AND CONCEPTS

- We use the SVD as a way to represent documents in a reduced space.
- Instead of using terms as the basis of out vector space, we will employ "pseudo-terms".
- Dimensionality reduction is used to provide a compact representation of the the documents and queries.
- The main idea is that we map terms to concepts (i.e., how much each term represents a certain concept)...
- ...and then concepts to documents (i.e., how much each document contains a certain concept).

# MAIN IDEA (GRAPHICALLY)

#### **Terms**



Two documents use different terms for the same concept. If we remap everything in a space where the axes represent concepts the two documents will have a higher similarity.

# LET'S GO BACK TO THE SVD

$$U = \begin{bmatrix} -0.436 & 0.707 & 0.408 \\ -0.436 & 0 & -0.816 \\ -0.655 & 0 & 0 \\ -0.436 & -0.707 & 0.408 \end{bmatrix}$$

U is the term-concept matrix Each column represents how much each term is represented by a certain concept

$$\Sigma = \begin{bmatrix} 2.646 & 0 & 0 \\ 0 & 0.999 & 0 \\ 0 & 0 & 0.999 \end{bmatrix}$$

 $\Sigma$  is the concept matrix Each value represents the "weight" of a concept

$$V^{T} = \begin{bmatrix} -0.577 & -0.577 & -0.577 \\ 0 & 0.707 & -0.707 \\ 0.816 & -0.408 & -0.408 \end{bmatrix}$$

V is the document-concept matrix Each row (column in  $V^T$ ) represents how much a document contains a certain concept.

# LET'S GO BACK TO THE SVD

$$U = \begin{bmatrix} -0.436 & 0.707 & 0.408 \\ -0.436 & 0 & -0.816 \\ -0.655 & 0 & 0 \\ -0.436 & -0.707 & 0.408 \end{bmatrix}$$

The left singular vectors are pseudo-terms

$$\Sigma = \begin{bmatrix} 2.646 & 0 & 0 \\ 0 & 0.999 & 0 \\ 0 & 0 & 0.999 \end{bmatrix}$$

$$V^{T} = \begin{bmatrix} -0.577 & -0.577 & -0.577 \\ 0 & 0.707 & -0.707 \\ 0.816 & -0.408 & -0.408 \end{bmatrix}$$

The columns of  $V^T$  are a representation of the documents using the pseudo-terms

# **PSEUDOTERMS**

AN EXAMPLE

$$\begin{array}{c} d_1 \ d_2 \ d_3 \\ \text{CAT} \longrightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \\ \text{BANANA} \longrightarrow \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Second pseudo-term

$$U = \begin{bmatrix} -0.436 & 0.707 & 0.408 \\ -0.436 & 0 & -0.816 \\ -0.655 & 0 & 0 \\ -0.436 & -0.707 & 0.408 \end{bmatrix}$$

It represents the concept

 $0.707 \times CAT - 0.707 \times BANANA$ 

While we might hope to obtain things like  $0.75 \times \text{truck} + 0.25 \times \text{car}$  to represent concepts like "vehicle", the construction of the pseudo-terms totally depends on the term-document matrix, i.e., on the collection.

# LATENT SEMANTIC INDEXING

### REMAPPING DOCUMENTS

- A remapped document  $\hat{d}_i$  is a column of the matrix  $V^T$ .
- To obtain the original document we perform  $d_i = U \Sigma \hat{d}_i$ .
- Which means that if we want to remap a document in its reduce form we have to compute:
  - $(U\Sigma)^{-1}d_i = (U\Sigma)^{-1}U\Sigma\,\hat{d}_i$  (multiply by the inverse of  $U\Sigma$ )
  - $\Sigma^{-1}U^{-1}d_i = \hat{d}_i$  (recall that  $(AB)^{-1} = B^{-1}A^{-1}$ )
  - $\hat{d}_i = \Sigma^{-1} U^T d_i$  (since the inverse of U is  $U^T$ )

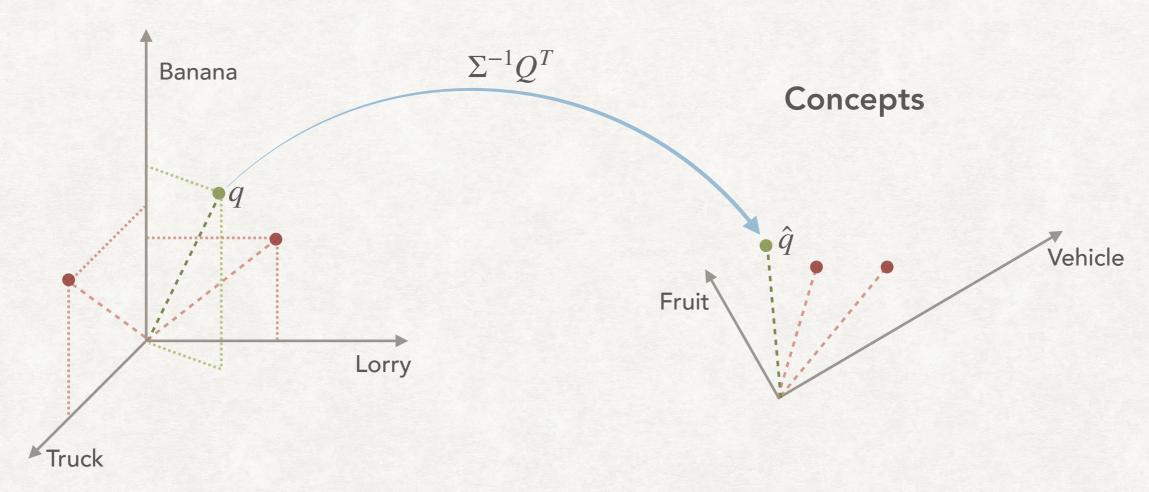
# LATENT SEMANTIC INDEXING

### REMAPPING DOCUMENTS

- We can now remap documents by multiplying them by  $\Sigma^{-1}U^T$ .
- We can reduce the dimensionality of the "concepts space" by selecting  $k\in\mathbb{N}$  and using  $\Sigma_k'$  and  $U_k'$
- k represents the number of "important concepts" to keep. Usually a few hundreds.
- How about queries? Like in the vector space model they are like documents.
- Given a query q, the remapped query is  $\hat{q} = \Sigma^{-1} U^T q$ .

# QUERIES (GRAPHICALLY)

#### **Terms**



We remap the query and compute the similarity in the reduced space (for example with cosine similarity)

### ADDING DOCUMENTS

#### NOT AS EASY

- ullet To add a document d in the standard vector space model is easy.
- To store it in this remapped/reduced representation we must remap it first:  $\hat{d} = \Sigma^{-1} Q^T d$ .
- However, the space of concept has been generated starting from the initial collection.
- While we add documents the concepts can change, thus we might see a degradation of the quality of the retrieval as more documents are added.
- In that case we might need to create a new mapping.

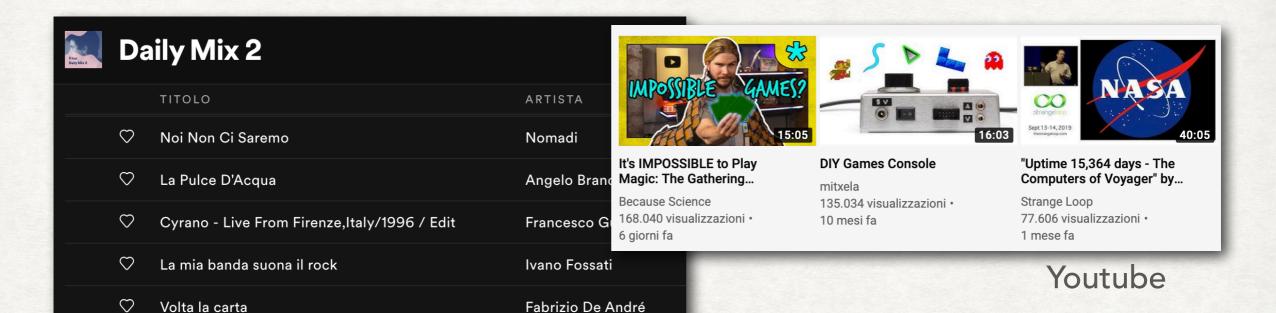
# THE GOOD, THE BAD, AND THE UGLY

- Using the latent semantic indexing we can address the problems of synonymity and polysemy.
- By using "concepts" instead of terms we can improve the quality of the retrieval.
- However, computing the SVD is expensive and re-computing it when sufficiently new documents arrive is necessary.
- We can use the same mapping for other tasks: finding synonyms, clustering documents according to topics (e.g., with k-means), expand a query by adding similar terms, etc.

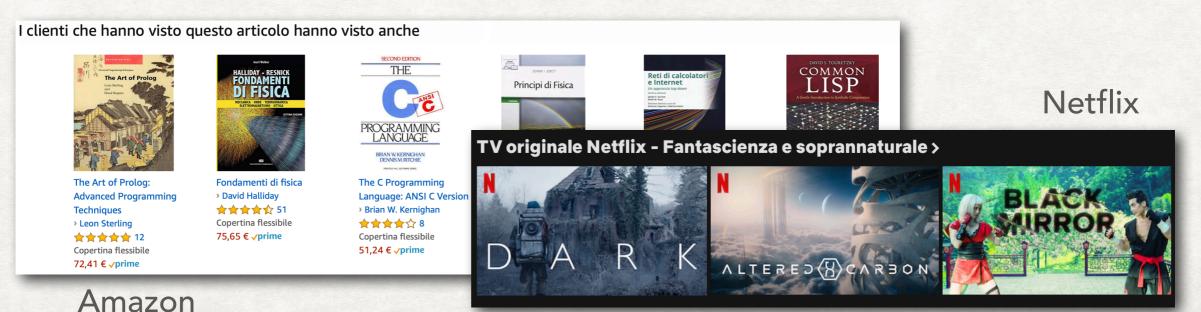
# RECOMMENDER SYSTEMS

### EXAMPLE OF USES OF RECOMMENDER SYSTEMS

### YOU PROBABLY KNOW THEM



### Spotify



# BASIC CHARACTERISTICS

### WHAT PROBLEMS NEED SOLVING

- We do not have a "normal" query, only the previous choices of the user and of similar users.
- We have to provide the user with a collection of suggested items/ documents that he/she might like.
- This is an important feature: according to Google "60% of watch time on YouTube comes from recommendations."
- Recommendation systems are a kind of **information filtering systems**: we already have all the information, but we need to filter the *relevant* information.

## BASIC CHARACTERISTICS

#### WHAT IS A QUERY

- A "query" for a recommender system is also called a context.
- It is a combination of information about the user, like:
  - · An identifier of the user.
  - The history of interaction by the user
     (e.g. liked video, music listened, watched items).
  - Some additional information, like the time of the day.

# TYPES OF RECOMMENDER SYSTEMS

CONTENT-BASED AND COLLABORATIVE

Content-based filtering

Based on the similarity between items

The user likes cat videos...
...we will suggest more cat video

**Collaborative filtering** 

Based on the similarity between queries and items simultaneously

User A is similar to user B...
...user B likes the video
"cute cat #37"...
...we will propose it to user A

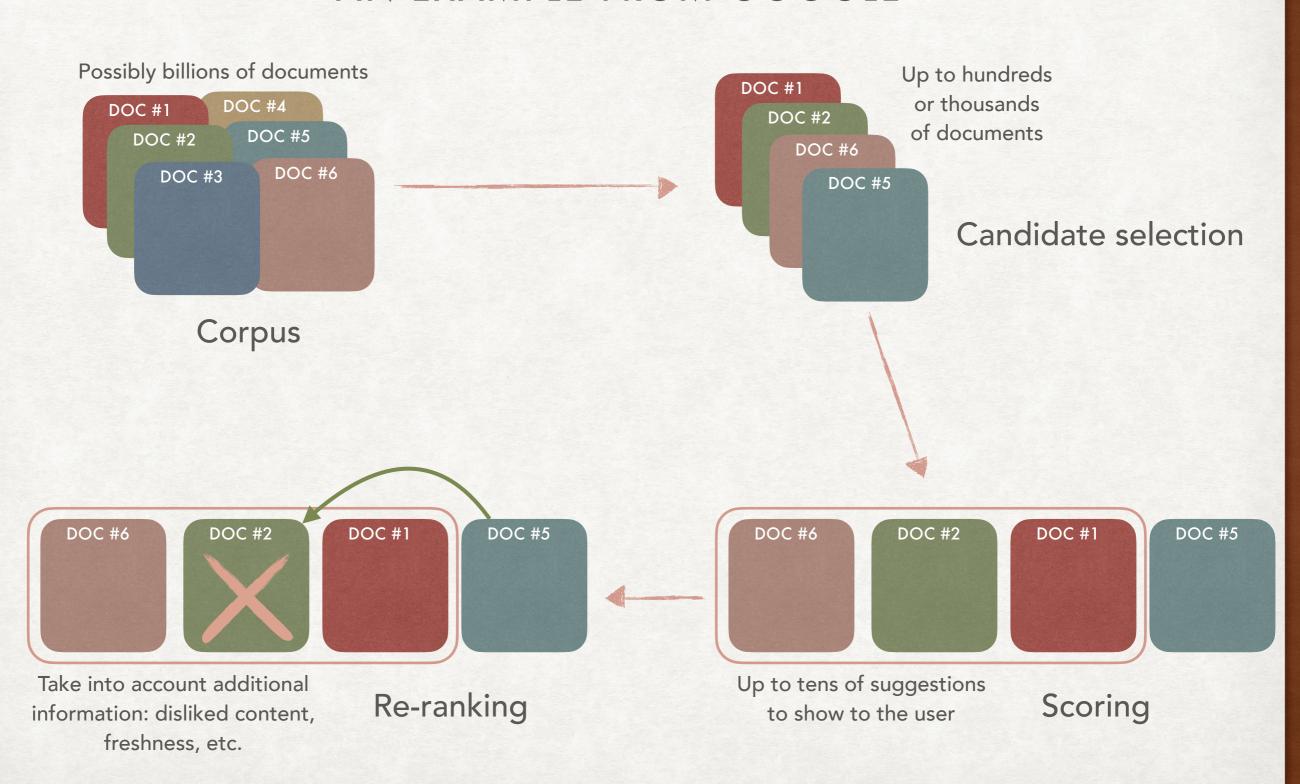
Many real-world systems

# PROBLEMS FOR RECOMMENDER SYSTEMS

- There are multiple issues that a recommender system must address:
  - Cold start. New documents have no ratings/watching/etc., and new users haven't rated/watched/listened anything.
  - Sparsity. Most users rate/watch/listen only a small subset of the entire collection.
  - Scalability. The collection can be very large, and the time available to make a recommendation quite small.

## STRUCTURE OF A RECOMMENDER SYSTEM

#### AN EXAMPLE FROM GOOGLE



### CANDIDATE SELECTION

#### WHY A SEPARATE STEP

- · We need to provide a subset of the corpus for the next step
- The corpus can be enormous, thus the retrieval must be fast
- There can be multiple candidate selection methods:
  - Based on similar items and queries
  - Based on popularity
  - Based on specific user preferences, etc.
- We can run all of them, it will be the scoring function the one performing the actual choice.

# SCORING RANKING THE CANDIDATES

- The same method used for candidate selection can be used for scoring...
- ...but we might have multiple candidate selection methods...
- ...and a separate scoring function can also take additional features into account, since it operates on fewer documents.
- For the scoring we can take into account the user history, the time of the day, the feature of the document, etc.

# RE-RANKING DOING RANKING A SECOND TIME

- Sometimes it is useful to "arrange" the ranking to ensure additional properties, like:
  - Freshness. Take into account new documents, maybe adding the "age" of a document as a feature.
  - Diversity. If a user likes "cute cat video #37", maybe showing only "cute cat video #n" for all n is not the best choice.

## MATRIX FACTORISATION

## WHAT IS MATRIX FACTORISATION

#### IN RECOMMENDATION SYSTEMS

- This is a particular technique to map users and documents to a space of features where similarity can be computed.
- This might seem familiar...and it is.
- There are however some important differences.
- First of all, we only have partial information:
  - We know which documents the user likes/dislikes but this is only a small fraction of the documents

## **USERS AND DOCUMENTS**

#### A REPRESENTATION

We have a matrix C (feedback matrix) of users (rows) and of documents (columns). The position  $C_{i,j}$  contains if a user liked a document or not.

|              | $d_1$ | $d_2$ | $d_3$ | $d_4$ |
|--------------|-------|-------|-------|-------|
| $\int_{u_1}$ | ?     |       | ?     |       |
| $u_2$        |       | ?     | ?     | ?     |
| $u_3$        | ?     | ?     | ?     |       |

## WHAT ABOUT UNKNOWN VALUES?

#### "YOU KNOW NOTHING JON SNOW"

- We can have information about the documents the the user has liked, rated, etc.
- Sometimes we can even obtain information indirectly: e.g., watching an entire video maybe it is an implicit way of "liking" it.
- But for most document we know nothing: the user never accessed them. For example: videos on Youtube.
- Depending on the assumptions that we make about the missing values we can end un with different results.

### WHAT WE WANT TO DO

#### MATRIX FACTORISATION

Given a  $M \times N$  feedback matrix C, we want to find two matrices U and V such that:

- U has M rows and k columns.
- V has N rows and k columns.
- $UV^T$  is an approximation of C according to some criteria.

Where the criteria depends on how we treat missing/not observed entries, and k is the number of *latent factors*.

## LATENT FACTORS

#### WHAT THEY ARE

User embedding

$$U = \begin{bmatrix} 0.37 & 0 \\ 0 & 1 \\ 0.85 & 0 \end{bmatrix}$$

This is the representation for the first user as a vector of two latent factors

Item embedding

$$V = \begin{bmatrix} 0 & 1 \\ 0.53 & 0 \\ 0 & 0 \\ 0.85 & 0 \end{bmatrix}$$

This is the representation for the second item as a vector of two latent factors

The value k (number of latent factors) represents the size of the space in which we are mapping users and items.

## DIFFERENT OBJECTIVE FUNCTIONS

#### AND ASSUMPTIONS ON UNOBSERVED VALUES

Let  $C_k$  be the approximation of C built using k latent factors. Let Obs be the set of observed positions and Nobs be the set of unobserved ones

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

All unobserved values are 0

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

All unobserved values are 0, but we weight them with  $w_0$ 

$$\begin{bmatrix} ? & 1 & ? & ? \\ 1 & ? & ? & ? \\ ? & ? & ? & 1 \end{bmatrix}$$

We do not count unobserved values

We want to minimise  $\|C - C'\|_F$ 

This actually means that we are performing SVD.

Usually not a good choice since we do not want to force to zero the unknown values!

## DIFFERENT OBJECTIVE FUNCTIONS

#### AND ASSUMPTIONS ON UNOBSERVED VALUES

Let  $C_k$  be the approximation of C built using k latent factors. Let Obs be the set of observed positions and Nobs be the set of unobserved ones

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

All unobserved values are 0

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

All unobserved values are 0, but we weight them with  $w_0$ 

$$\begin{bmatrix}
? & 1 & ? & ? \\
1 & ? & ? & ? \\
? & ? & ? & 1
\end{bmatrix}$$

We do not count unobserved values

We want to minimise 
$$\sum_{i,j \in \mathrm{Obs}} (C_{i,j} - C'_{i,j})^2$$

This is called Observed-only Matrix Factorisation

## DIFFERENT OBJECTIVE FUNCTIONS

#### AND ASSUMPTIONS ON UNOBSERVED VALUES

Let C' be the approximation of C built using k latent factors. Let Obs be the set of observed positions and Nobs be the set of unobserved ones

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

All unobserved values are 0

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

All unobserved values are 0, but we weight them with  $w_0$ 

$$\begin{bmatrix} ? & 1 & ? & ? \\ 1 & ? & ? & ? \\ ? & ? & ? & 1 \end{bmatrix}$$

We do not count unobserved values

We want to minimise 
$$\sum_{i,j \in \text{Obs}} (C_{i,j} - C'_{i,j})^2 + w_0 \sum_{i,j \in \text{Nobs}} (C_{i,j} - C'_{i,j})^2$$

The factor  $w_0$  decides how important it is to set the unknown weights to 0

This is called Weighted Matrix Factorisation (weighted MF)

## WEIGHTED MF SOME OBSERVATIONS

- We will focus on the Weighted MF, since by changing the parameter  $w_0$  it also includes the other two cases.
- The choice of the parameter  $w_0$  is important, but in practice you might also want to weight the *observed* values:
- We optimise the function:

$$\sum_{i,j \in \text{Obs}} w_{i,j} (C_{i,j} - C'_{i,j})^2 + w_0 \sum_{i,j \in \text{Nobs}} (C_{i,j} - C'_{i,j})^2$$

## WEIGHTED MF SOME OBSERVATIONS

- How can we perform the optimisation?
- Start with two matrices U and V and iteratively change them. How?
  - Stochastic Gradient Descend (SGD)
  - Weighted Alternating Least Squares (WALS)
- The last one is specific to this task.

## WEIGHTED ALTERNATING LEAST SQUARES

#### GENERAL IDEA

The main idea of the algorithm is the following:

- ullet Start with U and V randomly generated.
- Fix U and find, by solving a linear system, the best V.
- Fix V and find, by solving a linear system, the best U.
- Repeat as needed.

The algorithm is guaranteed to converge and can be parallelised.