INFORMATION

RETRIEVAL

mailto:lmanzoni@units.it

LECTURE OUTLINE

TODAY WITH MATRICES

Latent Semantic
Indexing

Matrix
Decomposition

Recommender

E E E Systems

Matrix
Factorisation

MATRIX DECOMPOSITION

A BRIEF RECAP
ASSUMING KNOWLEDGE OF EIGENVALUES

We want to write a matrix as a product of other matrices...
...usually with some "interesting” properties.

We will recall two matrix decompositions:

* Symmetric diagonal decomposition

 Singular value decomposition (SVD)

We recall how SVD can be used to provide an approximation of
the original matrix.

SYMMETRIC DIAGONAL DECOMPOSITION

Let S be a square M X M matrix which is:

* Real-valued

* Symmetric

» With M linearly independent eigenvectors

Then there exists a symmetric diagonal decomposition:

S=0-N0O

SYMMETRIC DIAGONAL DECOMPOSITION

S=0A0"!

Where:

* The columns of Q are orthogonal eigenvectors of §
e All columns of Q are of vectors of unit length

« All entries of QO are real-valued

« A is the diagonal matrix containing the eigenvalues of Q in the
diagonal (by convention in non-increasing order)

THE TERM-DOCUMENT MATRIX

ﬂ/dl d2 d3 ' Documents in the collection

[

Terms in the t2
collection f
5

t4 (1) The term £, is present in

the document d,

Actually, the value in row i and column j can be any “weighting”.

For example the tf-idf for term ¢ in the document d.

THE TERM-DOCUMENT MATRIX

Some issues with the term-document matrix:

 Not square

* Not symmetric

1
0
1
1

We will need another method to perform a matrix decomposition
of C, since the symmetrical diagonal decomposition is not applicable

SINGULAR VALUE DECOMPOSITION

Given a real-valued matrix C with M rows and N columns
of rank r < min{M, N}, and let:

U be the M X r matrix with the orthonormal eigenvectors of CC!
as columns.

» V be the r X N matrix with the orthonormal eigenvectors of C/C
as columns.

Then C can be written as:

SINGULAR VALUE DECOMPOSITION

G=U2W:
where:
e The eigenvalues 4, 4,, ..., 4, are the same for Ccland C €.
* Ay, 4y, ..., A, are in non-increasing order.

e The matrix X is a square r X r matrix containing in the diagonal all
\/Z-, called the singular values of C.

SVD FOR THE TERM-DOCUMENT MATRIX

Left singular vectors

The values

[2.646 0.999 0.999]

Are called the singular values of C

=0.577 =03577 =0.571

- 0 0.707 _—0.707) Right singular vectors
0.816 —-0.408 —0.408

THE TERM-DOCUMENT MATRIX

We can consider the matrix CC*:

G

Number of documents where t, and t, co-occur

Actually, the value in row i and column j is, depending on how C

is constructed, some “measure” of co-occurrence of the terms #; and

SOME “STUFF” TO NOTICE
LINKING SVD WITH SYMMETRIC DIAGONAL DECOMPOSITION

Take CCT

Rewrite C as U V! Rewrite C! as VXIU!

You get U2V V2Ll

Which is UX2U?

In some sense we can view looking at co-occurrence of terms can be

interpreted as “working” in the space of terms (which we reach using U)

THE TERM-DOCUMENT MATRIX

We can also consider the matrix CLC:

dy dy dy

S
25D

2 @) 3

Number of terms in common between

document d; and d,

Actually, the value in row i and column j is, depending on how C

is constructed, some “measure” of “overlap” between d; and d;

LOW-RANK APPROXIMATION
BASICS

The main idea is that we can reduce the “space occupied” by a
matrix by reducing its rank...

...however we want to minimise the error introduced by the
approximation.

SVD provides a way to efficiently perform this approximation.

At least with respect to the Frobenius norm:

N
RIFEDIDIN &

i=1 j=1

LOW RANK APPROXIMATIONS WITH SVD

ZEROING OUT SINGULAR VALUES

Given a real-valued matrix C, compute its SVD decomposition UXV’

Let \//1_, ,\//1_,, be the r singular values of C

Fix kK € N as the rank of the approximation C, that we want to
compute.

Build 2, starting from X by zeroing out the smallest r — k singular

values (i.e., only 1/4;, ,\//l_k remains).

Let the approximation C, be UZ, V.

LOW RANK APPROXIMATIONS WITH SVD

ZEROING OUT SINGULAR VALUES

J6de 0 0 Compute SVD
e 0999 - -) i

0- <0 poog

Keep only two
singular values

s this a good approximation?
0.667 1.667 0.667
0.667 0.667 0.667

1 1 1
0.667 0.167 1.167]

Across all matrices of rank two, C, minimises ||C — G, ||z

LOW RANK APPROXIMATION
WHAT WE NEED TO MEMORISE

. _ e s e
0408) 2646 -0 O -0.577 —0.577 —0.577
—0.816 0 0999 0 0 0.707 —0.707

0> | 0 g .0 (0316 0408 0408

No need to memorise No need to memorise

this column this row

We can rewrite everything as a “truncated” SVD U;Z/ V'

—0.436 0 0.999 O 0708 = 0707
—0.655
|—0.436

0436 0107 [2.646 0] [—0.577 =057 05

LATENT SEMANTIC INDEXING

LATENT SEMANTIC INDEXING

MAIN IDEAS

* Recall that the vector space representation does not address two
Issues:

* Synonymy. E.g., when searching for “laptop” we do not find
the documents that use “notebook”

* Polysemy. When the same word is used with multiple meanings.

* We can potentially use a large thesaurus for the first problem...

e ...or we can use the co-occurrence of terms to try to solve the
problems automatically.

HOW TO USE THE SVD
TERMS, DOCUMENTS, AND CONCEPTS

We use the SVD as a way to represent documents in a reduced space.

Instead of using terms as the basis of out vector space, we will
employ “pseudo-terms”.

Dimensionality reduction is used to provide a compact representation
of the the documents and queries.

The main idea is that we map terms to concepts (i.e., how much each
term represents a certain concept)...

...and then concepts to documents (i.e., how much each document
contains a certain concept).

MAIN IDEA

(GRAPHICALLY)

Concepts

Vehicle

Two documents use different terms for the same concept.
If we remap everything in a space where the axes represent
concepts the two documents will have a higher similarity.

—0.436
—0.436
—0.655

| —0.436

2.646
0
0

0577
0
| 0.816

LET’'S GO BACK TO THE SVD

0707 0408]
O = —0%l6
0 0

0,707 0408 |

0 0
0.999 0
0 0.999

S ST 05T
D707 0707

—0.408 —0.408

U is the term-concept matrix

Each column represents how much each term
is represented by a certain concept

2 is the concept matrix

Each value represents the “weight”
of a concept

V is the document-concept matrix

Each row (column in V') represents how
much a document contains a certain concept.

—0.436
—0.436
—0.655

| —0.436

2.646
0
0

0577
0
| 0.816

LET’'S GO BACK TO THE SVD

0707 0408]
O = —0%l6
0 0

0,707 0408 |

0 0
0.999 0
0 0.999

S ST 05T
D707 0707

—0.408 —0.408

The left singular vectors
are pseudo-terms

The columns of V! are
a representation
of the documents
using the pseudo-terms

PSEUDOTERMS
AN EXAMPLE

Second pseudo-term
d, dy dy : s _
—0.436| 0.707 | 0.408

CAT

TRUCK

—
i

BANANA

1
DOG 0
1
1

|
1 |
(1) —0.436 | -0.707] 0.408 _

It represents the concept
0.707 x CAT — 0.707 x BANANA

While we might hope to obtain things like 0.75 X truck 4+ 0.25 X car to
represent concepts like “vehicle”, the construction of the pseudo-terms
totally depends on the term-document matrix, i.e., on the collection.

LATENT SEMANTIC INDEXING

REMAPPING DOCUMENTS

* A remapped document a?l- is a column of the matrix V',

» To obtain the original document we perform d; = UX c?l-.

* Which means that if we want to remap a document in its reduce
form we have to compute:

g (UZ)_ldl- = (UY)"'UZ c?l- (multiply by the inverse of UX)

s S — c?l- (recall that (AB)=! = B 1A 1)

Vo

» d.=3X"'U"d. (since the inverse of U is U”)

l

LATENT SEMANTIC INDEXING

REMAPPING DOCUMENTS

We can now remap documents by multiplying them by =~ 1U".

We can reduce the dimensionality of the “concepts space” by
selecting k € N and using 2, and U,

k represents the number of “important concepts” to keep.
Usually a few hundreds.

How about queries? Like in the vector space model they are like
documents.

Given a query ¢, the remapped query is ¢ = X~ 'U!y.

QUERIES
(GRAPHICALLY)

Concepts

Vehicle

We remap the query and compute the similarity in the
reduced space (for example with cosine similarity)

ADDING DOCUMENTS

NOT AS EASY

To add a document d in the standard vector space model is easy.

To store it in this remapped/reduced representation we must
remap.ithficst. d— > 04

However, the space of concept has been generated starting from
the initial collection.

While we add documents the concepts can change, thus we might
see a degradation of the quality of the retrieval as more

documents are added.

In that case we might need to create a new mapping.

THE GOOD, THE BAD, AND THE UGLY

Using the latent semantic indexing we can address the problems
of synonymity and polysemy.

By using “concepts” instead of terms we can improve the quality
of the retrieval.

However, computing the SVD is expensive and re-computing it
when sufficiently new documents arrive is necessary.

We can use the same mapping for other tasks: finding synonyms,
clustering documents according to topics (e.g., with k-means),
expand a query by adding similar terms, etc.

RECOMMENDER SYSTEMS

EXAMPLE OF USES OF RECOMMENDER SYSTEMS
YOU PROBABLY KNOW THEM

:k Daily Mix 2

TITOLO ARTISTA

Noi Non Ci Saremo Nomadi
It's IMPOSSIBLE to Play DIY Games Console "Uptime 15,364 days - The
La Pulce D'Acqua PN REIEL Magic: The Gathering... mitxela Computers of Voyager" by...
Because Science 135.034 visualizzazioni * Strange Loop

Cyrano - Live From Firenze,ltaly/1996 / Edit P Re] | 68.040 visualizzazioni - 10 mesi fa 77.606 visualizzazioni *
6 giorni fa 1 mese fa

La mia banda suona il rock Ivano Fossati

Volta la carta Fabrizio De André
Spotity

I clienti che hanno visto questo articolo hanno visto anche

SECOND EDITION
—) DAVID S. TOURETZKY

HALLIDA;:;ESNI(K _THE = 1 db = COMMON
DAMENTI

Reti di calcolatori==

2 Principi di Fisica i""v"”‘"e‘ : . L I S P °

PROGRAMMING
LANGUAGE

TV originale Netflix - Fantascienza e soprannaturale »

The Art of Prolog: Fondamenti di fisica The C Programming s xS B
Advanced Programming » David Halliday Language: ANSI C Version W “ 1
Techniques AR AR TY 51 » Brian W. Kernighan 3 & o

Leon Sterling Copertina flessibile AR 8
WA R R W 12 75,65 € vprime Copertina flessibile

Copertina flessibile 51,24 € yprime B
72,41 € vprime

Amazon

BRIAN W KERNIGHAN

BASIC CHARACTERISTICS

WHAT PROBLEMS NEED SOLVING

|Il

We do not have a “normal” query, only the previous choices of the

user and of similar users.

We have to provide the user with a collection of suggested items/
documents that he/she might like.

This is an important feature: according to Google
“60% of watch time on YouTube comes from recommendations.”

Recommendation systems are a kind of information filtering
systems: we already have all the information, but we need to filter
the relevant information.

BASIC CHARACTERISTICS

WHAT IS A QUERY

« A "query” for a recommender system is also called a context.
e |t is a combination of information about the user, like:
 An identifier of the user.

» The history of interaction by the user
(e.g. liked video, music listened, watched items).

¢ Some additional information, like the time of the day.

TYPES OF RECOMMENDER SYSTEMS

CONTENT-BASED AND COLLABORATIVE

Content-based Collaborative
filtering filtering

Based on the similarity Based on the similarity
between items between queries and items
simultaneously

The user likes cat videos... i
User A is similar to user B...

...user B likes the video
“cute cat #37"...
...we will propose it to user A

...we will suggest more cat video

O
—
2
SR o
T
= 0
ém
S
>

PROBLEMS FOR RECOMMENDER SYSTEMS

* There are multiple issues that a recommender system must
address:

* Cold start. New documents have no ratings/watching/etc., and
new users haven't rated/watched/listened anything.

» Sparsity. Most users rate/watch/listen only a small subset of the
entire collection.

» Scalability. The collection can be very large, and the time
available to make a recommendation quite small.

STRUCTURE OF A RECOMMENDER SYSTEM

AN EXAMPLE FROM GOOGLE

Possibly billions of documents Up to hundreds

or thousands
of documents

Candidate selection

s & Sy >

Take into account additional : Up to tens of suggestions :
information: disliked content, Re-l‘anklng to show to the user Scorlng
freshness, etc.

CANDIDATE SELECTION

WHY A SEPARATE STEP

We need to provide a subset of the corpus for the next step

The corpus can be enormous, thus the retrieval must be fast
There can be multiple candidate selection methods:

- Based on similar items and queries

» Based on popularity

» Based on specific user preferences, etc.

We can run all of them, it will be the scoring function the one
performing the actual choice.

SCORING

RANKING THE CANDIDATES

The same method used for candidate selection can be used for
scoring...

...but we might have multiple candidate selection methods...

...and a separate scoring function can also take additional
features into account, since it operates on fewer documents.

For the scoring we can take into account the user history, the time
of the day, the feature of the document, etc.

RE-RANKING
DOING RANKING A SECOND TIME

« Sometimes it is useful to “arrange” the ranking to ensure
additional properties, like:

* Freshness. Take into account new documents, maybe adding
the "age” of a document as a feature.

» Diversity. If a user likes “cute cat video #37", maybe showing
only “cute cat video #n" for all n is not the best choice.

MATRIX FACTORISATION

WHAT IS MATRIX FACTORISATION
IN RECOMMENDATION SYSTEMS

This is a particular technique to map users and documents to a
space of features where similarity can be computed.

This might seem familiar...and it is.
There are however some important differences.
First of all, we only have partial information:

e We know which documents the user likes/dislikes but this is
only a small fraction of the documents

USERS AND DOCUMENTS

A REPRESENTATION

We have a matrix C (feedback matrix) of users (rows) and of documents (columns).

The position C; ; contains if a user liked a document or not.

WHAT ABOUT UNKNOWN VALUES?

“YOU KNOW NOTHING JON SNOW”*

We can have information about the documents the the user has
liked, rated, etc.

Sometimes we can even obtain information indirectly: e.g.,
watching an entire video maybe it is an implicit way of “liking” it.

But for most document we know nothing: the user never accessed
them. For example: videos on Youtube.

Depending on the assumptions that we make about the missing
values we can end un with different results.

WHAT WE WANT TO DO

MATRIX FACTORISATION

Given a M X N feedback matrix C,
we want to find two matrices U and V such that:

e U has M rows and k columns.

e Vhas N rows and k columns.

« UV!'is an approximation of C according to some criteria.

Where the criteria depends on how we treat missing/not observed
entries, and k is the number of latent factors.

These U and V are, in general, not the same we used for SVD

LATENT FACTORS

WHAT THEY ARE

User embedding ltem embedding

a0 [o 1J
O | 0.53 0}
0.85 0 0" 0

0.85 0

This is the representation This is the representation

for the first user for the second item

as a vector of two latent factors as a vector of two latent factors

The value k (number of latent factors) represents the size
of the space in which we are mapping users and items.

DIFFERENT OBJECTIVE FUNCTIONS
AND ASSUMPTIONS ON UNOBSERVED VALUES

Let C, be the approximation of C built using & latent factors.
Let Obs be the set of observed positions and Nobs be the set of unobserved ones

0] 0 - 1ol b))
0 ko0 10

01
=)
S0

1
2
?

E U (ol e

1
All unobserved values are 0 All unobserved values are 0, We do not count

o - but we weight them with w, unobserved values

We want to minimise ||C = C/”F

This actually means that we are performing SVD.

Usually not a good choice since we do not want to force to zero the unknown values!

DIFFERENT OBJECTIVE FUNCTIONS
AND ASSUMPTIONS ON UNOBSERVED VALUES

Let C, be the approximation of C built using k latent factors.

Let Obs be the set of observed positions and Nobs be the set of unobserved ones

0] 0 - 1ol b))
0 ko0 10

01
=)
S0

E U (ol

1
All unobserved values are (All unobserved values are 0,
but we weight them with wj

We want to minimise 2 (C,-,J- = C,-/’j)z
i,j€Obs

This is called Observed-only Matrix Factorisation

1
2
?

We do not count

umobserved values

DIFFERENT OBJECTIVE FUNCTIONS
AND ASSUMPTIONS ON UNOBSERVED VALUES

Let C’ be the approximation of C built using k latent factors.
Let Obs be the set of observed positions and Nobs be the set of unobserved ones

07 0 L O
0 1.0 00

01
=)
S0

1
2
?

E U (ol

1
All unobserved values are 0 All unobserved values are 0, We do not count

Qut we weight them with w, unobserved values

We want to minimise Z (£ = C,-',j)z + Wy Z C Ci/,j)2
i,jeObs i,JENobs

The factor w, decides how important it is to set the unknown weights to 0

This is called Weighted Matrix Factorisation (weighted MF)

WEIGHTED MF
SOME OBSERVATIONS

We will focus on the Weighted MF, since by changing the
parameter w, it also includes the other two cases.

The choice of the parameter w is important, but in practice you
might also want to weight the observed values:

We optimise the function:

D) wC,—Cll+wy), (C;—Ci)

1,j€0bs i,j€Nobs

WEIGHTED MF
SOME OBSERVATIONS

* How can we perform the optimisation?

« Start with two matrices U and V and iteratively change them.
How?

» Stochastic Gradient Descend (SGD)

* Weighted Alternating Least Squares (WALS)

* The last one is specific to this task.

WEIGHTED ALTERNATING LEAST SQUARES

GENERAL IDEA

The main idea of the algorithm is the following:
« Start with U and V randomly generated.
« Fix U and find, by solving a linear system, the best V.

« Fix V and find, by solving a linear system, the best U.

* Repeat as needed.

The algorithm is guaranteed to converge and can be parallelised.

