
Chapter 4

Further development and analysis of the classical linear regression
model

‘Financial Econometrics’ (DEAMS) Giovanni Millo, 2020 - c© Chris Brooks 2019 1



Generalising the Simple Model to Multiple Linear
Regression

Before, we have used the model

yt = α + βxt + ut t = 1,2,...,T

But what if our dependent (y) variable depends on more than one
independent variable?

For example the number of cars sold might plausibly depend on

1 the price of cars
2 the price of public transport
3 the price of petrol
4 the extent of the public’s concern about global warming

Similarly, stock returns might depend on several factors.

Having just one independent variable is no good in this case - we
want to have more than one x variable. It is very easy to generalise
the simple model to one with k − 1 regressors (independent variables).

‘Financial Econometrics’ (DEAMS) Giovanni Millo, 2020 - c© Chris Brooks 2019 2



Multiple Regression and the Constant Term

Now we write

yt = β1 + β2x2t + β3x3t + ...+ βkxkt + ut , t=1,2,..., T

Where is x1? It is the constant term. In fact the constant term is
usually represented by a column of ones of length T:

x1 =


1
1
·
·
·
1


β1 is the coefficient attached to the constant term (which we called α
before).
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Different Ways of Expressing the Multiple Linear
Regression Model

We could write out a separate equation for every value of t:

y1 = β1 + β2x21 + β3x31 + · · ·+ βkxk1 + u1

y2 = β1 + β2x22 + β3x32 + · · ·+ βkxk2 + u2

. . . . . . . . . . . .

yT = β1 + β2x2T + β3x3T + · · ·+ βkxkT + uT

We can write this in matrix form

y = Xβ + u

where: y is T × 1

X is T × k

β is k × 1

u is T × 1‘Financial Econometrics’ (DEAMS) Giovanni Millo, 2020 - c© Chris Brooks 2019 4



Inside the Matrices of the Multiple Linear
Regression Model

e.g. if k is 2, we have 2 regressors, one of which is a column of ones:


y1
y2
...
yT

 =


1 x21
1 x22
...

...
1 x2T


[
β1
β2

]
+


u1
u2
...
uT


T × 1 T × 2 2× 1 T × 1

Notice that the matrices written in this way are conformable.
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How Do We Calculate the Parameters (the β) in
this Generalised Case?

Previously, we took the residual sum of squares, and minimised it
w.r.t. α and β.
In the matrix notation, we have

û =


û1
û2
...
ûT


The RSS would be given by

û′û = [û1 û2 · · · ûT ]


û1
û2
...
ûT

 = û21 + û22 + · · ·+ û2T =
∑

û2t
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The OLS Estimator for the Multiple Regression
Model

In order to obtain the parameter estimates, β1, β2,..., βk , we would
minimise the RSS with respect to all the βs.

It can be shown that

β̂ =


β̂1
β̂2
...
β̂k

 = (X ′X )−1X ′y
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Calculating the Standard Errors for the Multiple
Regression Model

Check the dimensions: β̂ is k × 1 as required.

But how do we calculate the standard errors of the coefficient
estimates?

Previously, to estimate the variance of the errors, σ2, we used

s2 =
∑

û2

T−2 .

Now using the matrix notation, we use

s2 =
û′û

T − k

where k = number of regressors. It can be proved that the OLS
estimator of the variance of β̂ is given by the diagonal elements of
s2(X ′X )−1, so that the variance of β̂1 is the first element, the
variance of is the second element, and ... , and the variance of β̂k is
the kth diagonal element.
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Calculating Parameter and Standard Error
Estimates for Multiple Regression Models: An
Example

Example: The following model with k=3 is estimated over 15
observations:

y = β1 + β2x2 + β3x3 + u

and the following data have been calculated from the original X’s.

(X ′X )−1 =

 2.0 3.5 −1.0

3.5 1.0 6.5

−1.0 6.5 4.3

 , (X ′y) =

 −3.0

2.2

0.6

 , û′û = 10.96

Calculate the coefficient estimates and their standard errors.
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Calculating Parameter and Standard Error
Estimates for Multiple Regression Models: An
Example (Cont’d)

To calculate the coefficients, just multiply the matrix by the vector to
obtain (X ′X )−1X ′y .

To calculate the standard errors, we need an estimate of σ 2.

s2 =
RSS

T − k
=

10.96

15− 3
= 0.91

The variance-covariance matrix of β̂ is given by

s2(X ′X )−1 = 0.91(X ′X )−1 =

 1.82 3.19 −0.91
3.19 0.91 5.92
−0.91 5.92 3.91


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Calculating Parameter and Standard Error
Estimates for Multiple Regression Models: An
Example (Cont’d)

The variances are on the leading diagonal:

var(β̂1) = 1.82 SE (β̂1) = 1.35

var(β̂2) = 0.91 ⇔ SE (β̂2) = 0.95

var(β̂3) = 3.91 SE (β̂3) = 1.98

We write:

ŷ = 1.10− 4.40x2 + 19.88x3

(1.35) (0.96) (1.98)
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Testing Multiple Hypotheses: The F -test

We used the t-test to test single hypotheses, i.e. hypotheses involving
only one coefficient. But what if we want to test more than one
coefficient simultaneously?

We do this using the F-test. The F-test involves estimating 2
regressions.

The unrestricted regression is the one in which the coefficients are
freely determined by the data, as we have done before.

The restricted regression is the one in which the coefficients are
restricted, i.e. the restrictions are imposed on some βs.
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The F -test: Restricted and Unrestricted
Regressions

Example

The general regression is

yt = β1 + β2x2t + β3x3t + β4x4t + ut

We want to test the restriction that β3 + β4 = 1 (we have some
hypothesis from theory which suggests that this would be an
interesting hypothesis to study). The unrestricted regression is (13)
above, but what is the restricted regression?

yt = β1 + β2x2t + β3x3t + β4x4t + ut s.t. β3 + β4 = 1

We substitute the restriction (β3 + β4 = 1) into the regression so that
it is automatically imposed on the data.

β3 + β4 = 1⇒ β4 = 1− β3
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The F -test: Forming the Restricted Regression

yt = β1 + β2x2t + β3x3t + (1− β3)x4t + ut

yt = β1 + β2x2t + β3x3t + x4t − β3x4t + ut

Gather terms in β’s together and rearrange

(yt − x4t) = β1 + β2x2t + β3(x3t − x4t) + ut

This is the restricted regression. We actually estimate it by creating
two new variables, call them, say, Pt and Qt .

Pt = yt − x4t

Qt = x3t − x4t

So Pt = β1 + β2x2t + β3Qt + ut is the restricted regression we
actually estimate.
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Calculating the F -Test Statistic

The test statistic is given by

test statistic =
RRSS − URSS

URSS
× T − k

m

where URSS = RSS from unrestricted regression

RRSS = RSS from restricted regression

m = number of restrictions

T = number of observations

k = number of regressors in unrestricted regression

including a constant in the unrestricted regression

(or the total number of parameters to be estimated).
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The F -Distribution

The test statistic follows the F-distribution, which has 2 d.f.
parameters.

The value of the degrees of freedom parameters are m and (T-k)
respectively (the order of the d.f. parameters is important).

The appropriate critical value will be in column m, row (T-k).

The F-distribution has only positive values and is not symmetrical.
We therefore only reject the null if the test statistic > critical F-value.

‘Financial Econometrics’ (DEAMS) Giovanni Millo, 2020 - c© Chris Brooks 2019 16



Determining the Number of Restrictions in an
F -test

Examples :

H0 : hypothesis No. of restrictions,m
β1 + β2 = 2 1
β2 = 1 and β3 = −1 2
β2 = 0, β3 = 0 and β4 = 0 3

If the model is yt = β1 + β2x2t + β3x3t + β4tx4t + ut ,

then the null hypothesis

H0 : β2 = 0, and β3 = 0 and β4 = 0 is tested by the regression
F-statistic. It tests the null hypothesis that all of the coefficients
except the intercept coefficient are zero.

Note the form of the alternative hypothesis for all tests when more
than one restriction is involved: H1 : β2 6= 0, or β3 6= 0 or β4 6= 0
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What we Cannot Test with Either an F or a t-test

We cannot test using this framework hypotheses which are not linear
or which are multiplicative, e.g.

H0 : β2β3 = 2 or H0 : β22 = 1

cannot be tested.
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The Relationship between the t and the
F -Distributions

Any hypothesis which could be tested with a t-test could have been
tested using an F-test, but not the other way around.

For example, consider the hypothesis

H0 : β2 = 0.5
H1 : β2 6= 0.5

We could have tested this using the usual t-test: test stat = β̂2−0.5
SE(β̂2)

or it could be tested in the framework above for the F-test.

Note that the two tests always give the same result since the
t-distribution is just a special case of the F-distribution.

For example, if we have some random variable Z, and Z ∼ t(T − k)
then also Z 2 ∼ F (1,T − k)
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F -test Example

Question: Suppose a researcher wants to test whether the returns on
a company stock (y) show unit sensitivity to two factors (factor x2
and factor x3) among three considered. The regression is carried out
on 144 monthly observations. The regression is
yt = β1 + β2x2t + β3x3t + β4x4t + ut

– What are the restricted and unrestricted regressions?

– If the two RSS are 436.1 and 397.2 respectively, perform the test.

Solution:

Unit sensitivity implies H0:β2 = 1 and β3 = 1. The unrestricted
regression is the one in the question. The restricted regression is
(yt − x2t − x3t) = β1 + β4x4t + ut or letting zt = yt − x2t − x3t , the
restricted regression is zt = β1 + β4x4t + ut

In the F-test formula, T=144, k=4, m=2, RRSS=436.1, URSS=397.2
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F -test Example (Cont’d)

F-test statistic = 6.68. Critical value is an F(2,140) = 3.07 (5%) and
4.79 (1%).

Conclusion: Reject H0.
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Data Mining

Data mining is searching many series for statistical relationships
without theoretical justification.

For example, suppose we generate one dependent variable and twenty
explanatory variables completely randomly and independently of each
other.

If we regress the dependent variable separately on each independent
variable, on average one slope coefficient will be significant at 5%.

If data mining occurs, the true significance level will be greater than
the nominal significance level.
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Goodness of Fit Statistics

We would like some measure of how well our regression model
actually fits the data.
We have goodness of fit statistics to test this: i.e. how well the
sample regression function (srf) fits the data.
The most common goodness of fit statistic is known as R2. One way
to define R2 is to say that it is the square of the correlation
coefficient between y and ŷ .
For another explanation, recall that what we are interested in doing is
explaining the variability of y about its mean value, , i.e. the total
sum of squares, TSS:

TSS =
∑
t

(yt − ȳ)2

We can split the TSS into two parts, the part which we have
explained (known as the explained sum of squares, ESS) and the part
which we did not explain using the model (the RSS).
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Defining R2

That is,

TSS = ESS + RSS∑
t

(yt − ȳ)2 =
∑
t

(ŷt − ȳ)2 +
∑
t

û2t

Our goodness of fit statistic is

R2 =
ESS

TSS
But since TSS = ESS + RSS, we can also write

R2 =
ESS

TSS
=

TSS − RSS

TSS
= 1− RSS

TSS

R2 must always lie between zero and one. To understand this,
consider two extremes

RSS = TSS i.e. ESS = 0 so R2 = ESS/TSS = 0

ESS = TSS i.e. RSS = 0 so R2 = ESS/TSS = 1
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The Limit Cases: R2 = 0 and R2 = 1

y–

y
t

x
t

y
t

x
t
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Problems with R2 as a Goodness of Fit Measure

There are a number of them:

1 R2 is defined in terms of variation about the mean of y so that if a
model is reparameterised (rearranged) and the dependent variable
changes, R2 will change.

2 R2 never falls if more regressors are added. to the regression, e.g.
consider:

Regression 1 : yt = β1 + β2x2t + β3x3t + ut

Regression 2 : yt = β1 + β2x2t + β3x3t + β4x4t + ut

R2 will always be at least as high for regression 2 relative to regression
1.

3 R2 quite often takes on values of 0.9 or higher for time series
regressions.
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Adjusted R2

In order to get around these problems, a modification is often made
which takes into account the loss of degrees of freedom associated
with adding extra variables. This is known as R̄2, or adjusted R2:

R̄2 = 1−
[
T − 1

T − k
(1− R2)

]

So if we add an extra regressor, k increases and unless R2 increases
by a more than offsetting amount, R̄2 will actually fall.

There are still problems with the criterion:

1 A “soft” rule
2 No distribution for R̄2 or R2
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A Regression Example: Hedonic House Pricing
Models

Hedonic models are used to value real assets, especially housing, and
view the asset as representing a bundle of characteristics.

Des Rosiers and Thérialt (1996) consider the effect of various
amenities on rental values for buildings and apartments in 5
sub-markets in the Quebec area of Canada.

The rental value in Canadian Dollars per month (the dependent
variable) is a function of 9 to 14 variables (depending on the area
under consideration). The paper employs 1990 data, and for the
Quebec City region, there are 13,378 observations, and the 12
explanatory variables are:
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Hedonic House Pricing Models: Variable
Definitions

LnAGE log of the apparent age of the property
NBROOMS number of bedrooms
AREABYRM area per room (in square metres)
ELEVATOR a dummy variable = 1 if the building has an

elevator; 0 otherwise
BASEMENT a dummy variable = 1 if the unit is located in a

basement; 0 otherwise
OUTPARK number of outdoor parking spaces
INDPARK number of indoor parking spaces
NOLEASE a dummy variable = 1 if the unit has no lease

attached to it; 0 otherwise
LnDISTCBD log of the distance in kilometres to the central

business district (CBD)
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Hedonic House Pricing Models: Variable
Definitions (Cont’d)

SINGLPAR percentage of single parent families in the area
where the building stands

DSHOPCNTR distance in kilometres to the nearest shopping
centre

VACDIFF1 vacancy difference between the building and the
census figure

– The coefficient estimates themselves show the Canadian dollar rental
price per month of each feature of the dwelling.
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Hedonic House Price Results Dependent Variable:
Canadian Dollars per Month

A priori
Variable Coefficient t-ratio sign expected

Intercept 282.21 56.09 +
LnAGE −53.10 −59.71 −
NBROOMS 48.47 104.81 +
AREABYRM 3.97 29.99 +
ELEVATOR 88.51 45.04 +
BASEMENT −15.90 −11.32 −
OUTPARK 7.17 7.07 +
INDPARK 73.76 31.25 +
NOLEASE −16.99 −7.62 −
LnDISTCBD 5.84 4.60 −
SINGLPAR −4.27 −38.88 −
DSHOPCNTR −10.04 −5.97 −
VACDIFF1 0.29 5.98 −

Notes: Adjusted R2 = 0.651; regression F-statistic = 2082.27.
Source: Des Rosiers and Thérialt (1996). Reprinted with permission of American Real
Estate Society.‘Financial Econometrics’ (DEAMS) Giovanni Millo, 2020 - c© Chris Brooks 2019 31



Tests of Non-nested Hypotheses

All of the hypothesis tests concluded thus far have been in the
context of “nested” models.

But what if we wanted to compare between the following models?

Model 1: yt = α1 + α2x2t + ut

Model 2: yt = β1 + β2x3t + vt

We could use R2 or adjusted R2, but what if the number of
explanatory variables were different across the 2 models?

An alternative approach is an encompassing test, based on
examination of the hybrid model:

Model 3: yt = γ1 + γ2x2t + γ3x3t + wt

There are 4 possible outcomes when Model 3 is estimated:
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Tests of Non-nested Hypotheses (Cont’d)

γ2 is significant but γ3 is not

γ3 is significant but γ2 is not

γ2 and γ3 are both statistically significant

Neither γ2 nor γ3 are significant

Problems with encompassing approach

Hybrid model may be meaningless

Possible high correlation between x2 and x3.
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Quantile Regression - Background

Standard regression approaches effectively model the (conditional)
mean of the dependent variable

We could calculate from the fitted regression line the value that y
would take for any values of the explanatory variables

But this would be an extrapolation of the behaviour of the
relationship between y and x at the mean to the remainder of the data

This approach will often be suboptimal

For example, there might be a non-linear (e.g., ∩-shaped) relationship
between x and y

Estimating a standard linear regression model may lead to seriously
misleading estimates of this relationship as it will ’average’ the
positive and negative effects.
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Quantile Regression – Background 2

It would be possible to include non-linear (i.e. polynomial) terms in
the regression model (for example, squared, cubic, . . . terms)

But quantile regressions represent a more natural and flexible way to
capture the complexities by estimating models for the conditional
quantile functions

Quantile regressions can be conducted in both time-series and
cross-sectional contexts

It is usually assumed that the dependent variable, often called the
response variable, is independently distributed and homoscedastic

Quantile regressions are more robust to outliers and non-normality
than OLS regressions
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Quantile Regression – Background 3

Quantile regression is a non-parametric technique since no
distributional assumptions are required to optimally estimate the
parameters

The notation and approaches commonly used in quantile regression
modelling are different to those that we are familiar with in financial
econometrics

Increased interest in modelling the ’tail behaviour’ of series have
spurred applications of quantile regression in finance

A common use of the technique here is to value at risk modelling

This seems natural given that the models are based on estimating the
quantile of a distribution of possible losses.
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Quantiles – A Definition

Quantiles, denoted τ , refer to the position where an observation falls
within an ordered series for y , for example:

– The median is the observation in the very middle
– The (lower) tenth percentile is the value that places 10% of

observations below it (and therefore 90% of observations above)

More precisely, we can define the τ -th quantile, Q(τ), of a random
variable y having cumulative distribution F(y) as

Q(τ) = inf y : F (y) ≥ τ

where inf refers to the infimum, or the ’greatest lower bound’, which
is the smallest value of y satisfying the inequality

By definition, quantiles must lie between zero and one

Quantile regressions effectively model the entire conditional
distribution of y given the explanatory variables.
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Estimation of Quantile Functions

The OLS estimator finds the mean value that minimises the RSS and
minimising the sum of the absolute values of the residuals will yield
the median

The absolute value function is symmetrical so that the median always
has the same number of data points above it as below it

If the absolute residuals are weighted differently depending on
whether they are positive or negative, we can calculate the quantiles
of the distribution

To estimate the τ -th quantile, we would set the weight on positive
observations to τ and that on negative observations to 1-τ

We can select the quantiles of interest and common choices would be
0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95

The fit is not good for values of τ too close to its limits of 0 and 1.
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Estimation of Quantile Functions 2

We could write the minimisation problem for a set of quantile
regression parameters β̂τ , each element of which is a k × 1 vector, as

β̂τ = arg min
β

 ∑
i :yi>βxi

τ |yi − βxi |+
∑

i :yi<βxi

(1− τ)|yi − βxi |


As above, for the median, τ = 0.5 and the weights are symmetric but
for all other quantiles they will be asymmetric

This optimisation problem can be solved using a linear programming
representation via the simplex algorithm or within the generalised
method of moments framework.
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Quantile Regression – How not to do it

As an alternative to quantile regression, it would be tempting to think
of partitioning the data and running separate regressions on each of
them

– For example, dropping the top 90% of the observations on y and the
corresponding data points for the xs, and running a regression on the
remainder

However, this process, tantamount to truncating the dependent
variable, would be wholly inappropriate

– It could lead to potentially severe sample selection biases

In fact, quantile regression does not partition the data

– All observations are used in the estimation of the parameters for every
quantile
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Quantile Regression Example

A study by Bassett and Chen (2001) performs a style attribution
analysis for a mutual fund and, for comparison, the S&P500 index

To examine how a portfolio’s exposure to various styles varies with
performance, they use a quantile regression approach

They conduct a style analysis by regressing the returns of a fund on
the returns of a large growth portfolio, the returns of a large value
portfolio, the returns of a small growth portfolio, and the returns of a
small value portfolio

These style portfolio returns are based on the Russell style indices

The parameter estimates on each of these style-mimicking portfolio
returns will measure the extent to which the fund is exposed to that
style.
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Quantile Regression Example – Discussion of
Results

We can determine the actual investment style of a fund without
knowing anything about its holdings purely based on an analysis of its
returns ex post and their relationships with the returns of style indices

The results are shown from a standard OLS regression and quintile
regressions for τ = 0.1, 0.3, 0.5 (i.e. the median), 0.7, and 0.9

The data are observed over the five years to December 1997 with
standard errors based on a bootstrapping procedure

Notice that the sum of the style parameters for a given regression is
always one (except for rounding errors)

The OLS results (column 2) show that the mean return has by far its
biggest exposure to large value stocks (and this parameter estimate is
also statistically significant).
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Quantile Regression Example – Discussion of
Results 2

Comparing the mean (OLS) results with those for the median,
Q(0.5), the latter show much higher exposure to large value, less to
small growth and none at all to large growth.

We can examine the factor tilts as we move through the quantiles
from left (Q(0.1)) to right (Q(0.9))

– The loading on large growth monotonically falls from 0.31 at Q(0.1) to
0.01 at Q(0.9) while the loadings on large value and small growth
substantially increase

– The loading on small value falls from 0.31 at Q(0.1) to -0.51 at Q(0.9)
– It is obvious that the intercept (coefficient on the constant) estimates

should be monotonically increasing from left to right since the quantile
regression effectively sorts on average performance

– The intercept can be interpreted as the performance expected if the
fund had zero exposure to all of the styles.
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Quantile Regression Example – Table of Results

OLS and quantile regression results for the Magellan fund
OLS Q(0.1) Q(0.3) Q(0.5) Q(0.7) Q(0.9)

Large growth 0.14 0.35 0.19 0.01 0.12 0.01
(0.15) (0.31) (0.22) (0.16) (0.20) (0.22)

Large value 0.69 0.31 0.75 0.83 0.85 0.82
(0.20) (0.38) (0.30) (0.25) (0.30) (0.36)

Small Growth 0.21 −0.01 0.10 0.14 0.27 0.53
(0.11) (0.15) (0.16) (0.17) (0.17) (0.15)

Small Value −0.03 0.31 0.08 0.07 −0.31 −0.51
(0.20) (0.31) (0.27) (0.29) (0.32) (0.35)

Constant −0.05 −1.90 −1.11 −0.30 0.89 2.31
(0.25) (0.39) (0.27) (0.38) (0.40) (0.57)

Notes: Standard errors in parentheses. Source: Bassett and Chen (2001).
Reprinted with the permission of Springer-Verlag.
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Factor Models and Principal Components Analysis

Factor models are employed as dimensionality reduction techniques in
situations where we have a large number of closely related variables

They decompose the structure of a set of series into factors that are
common and a proportion that is specific to each series
(idiosyncratic)

There are two types of such models: economic and mathematical
factor models

The key distinction between the two is that the factors are observable
for the former but are latent (unobservable) for the latter

Observable factor models include the APT model of Ross (1976)
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Factor Models and Principal Components Analysis
(Cont’d)

The most common mathematical model is principal components
analysis

PCA may be useful where explanatory variables are closely related –
for example, in the context of near multicollinearity.
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How PCA Works

If there are k explanatory variables in the regression model, PCA will
transform them into k uncorrelated new variables

Suppose that the original explanatory variables are denoted x1,
x2,...,xk , and denote the principal components by p1, p2,..., pk
These principal components are independent linear combinations of
the original data:

p1 = α11x1 + α12x2 + · · ·+ α1kxk

p2 = α21x1 + α22x2 + · · ·+ α2kxk

. . . . . . . . . . . .

pk = αk1x1 + αk2x2 + · · ·+ αkkxk

where αij are coefficients to be calculated, representing the coefficient
on the j th explanatory variable in the i th principal component.

These coefficients are factor loadings.
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PCA – More Details

The sum of the squares of the coefficients for each component will be
one

Constructing the components is a purely mathematical exercise in
constrained optimisation, and thus no assumption is made concerning
the structure, distribution, or other properties of the variables

The principal components are derived in such a way that they are in
descending order of importance.

Although there are k principal components, if there is some
collinearity between the original explanatory variables, it is likely that
some of the principal components will account for so little of the
variation that they can be discarded.
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Principal Components as Eigenvalues

The principal components can also be understood as the eigenvalues
of (X’X), where X is the matrix of observations on the original
variables

If the ordered eigenvalues are denoted λi (i =1,..., k), the ratio:

φi =
λi
k∑

i=1

λi

gives the proportion of the total variation in the original data
explained by the principal component i

If only the first r(0 < r < k) principal components are useful in
explaining the variation of (X’X) and are retained, the remaining k-r
components would be discarded.
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Principal Components as Eigenvalues

The regression finally estimated, after the principal components have
been formed, would be one of y on the first r principal components:

yt = γ0 + γ1p1t + ...+ γrprt + ut

In this way, the principal components are argued to keep most of the
important information contained in the original explanatory variables,
but are orthogonal

The principal component estimates from this regression will be
biased, although they will be more efficient than the OLS ones since
redundant information has been removed

The principal component coefficient estimates will simply be linear
combinations of the original OLS estimates.
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PCA Example: An Application to Interest Rates

Researchers may wish to include interest rates on a large number of
different assets in order to reflect the variety of investment
opportunities open to investors

However, market interest rates are likely to be highly correlated

One approach would be to use PCA on several related interest rate
series to determine whether they are actually closely related or not

Fase (1973) conducted a study of monthly Dutch market interest
rates from January 1962 until December 1970 (108 months)

The money market instruments investigated were:

– Call money, 3-month Treasury paper, 1-year T-paper, 2-year T-paper,
3-year T-paper, 5-year T-paper, 3-month loans to local authorities,
1-year loans to local authorities, Eurodollar deposits, Netherlands Bank
official discount rate.
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PCA Example: The Principal Components

Prior to analysis, each series was standardised to have zero mean and
unit variance

The three largest of the ten eigenvalues are given in the following
table

The first principal component is sufficient to describe the common
variation in these Dutch interest rates

The 1st component is able to explain over 90% of the variation for all
samples

Monthly data Quarterly data

Jan 62–Dec 70 Jan 62–Jun 66 Jul 66–Dec 70 Jan 62–Dec 70
λ1 9.57 9.31 9.32 9.67
λ2 0.20 0.31 0.40 0.16
λ3 0.09 0.20 0.17 0.07
φ1 95.7% 93.1% 93.2% 96.7%

Source: Fase (1973). Reprinted with the permission of Elsevier.
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PCA Example: The Factor Loadings

The factor loadings (coefficient estimates) for the first two ordered
components are given in the table below

The loadings on each factor making up the first principal component
are all positive

Since each series has been standardised, the coefficients αj1 and αj2

can be interpreted as the correlations between the interest rate j and
the first and second principal components, respectively

The factor loadings for each interest rate series on the first
component are all very close to one

Fase (1973) therefore argues that the first component can be
interpreted simply as an equally weighted combination of all of the
market interest rates.
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PCA Example: The Factor Loadings 2

The second component, which explains much less of the variability of
the rates, shows a factor loading pattern of positive coefficients for
the Treasury paper series and negative or almost zero values for the
other series

Fase (1973) argues that this is owing to the characteristics of the
Dutch Treasury instruments that they rarely change hands and have
low transactions costs, and therefore have less sensitivity to general
interest rate movements

Also, they are not subject to default risks in the same way as, for
example, Eurodollar deposits

Therefore, the second principal component is broadly interpreted as
relating to default risk and transactions costs.
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PCA Example: The Factor Loadings Presented

j Debt instrument αj1 αj2

1 Call money 0.95 −0.22
2 3-month Treasury paper 0.98 0.12
3 1-year Treasury paper 0.99 0.15
4 2-year Treasury paper 0.99 0.13
5 3-year Treasury paper 0.99 0.11
6 5-year Treasury paper 0.99 0.09
7 Loans to local authorities: 3-month 0.99 −0.08
8 Loans to local authorities: 1-year 0.99 −0.04
9 Eurodollar deposits 0.96 −0.26
10 Netherlands Bank official discount rate 0.96 −0.03

Eigenvalue, λi 9.57 0.20
Proportion of variability explained by 95.7 2.00

eigenvalue i , φi (%)

Source: Fase (1973). Reprinted with the permission of Elsevier.
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Limitations of PCA

A change in the units of measurement of x will change the principal
components

It is thus usual to transform all of the variables to have zero mean
and unit variance prior to applying PCA

The principal components usually have no theoretical motivation or
interpretation whatsoever

The r principal components retained from the original k are the ones
that explain most of the variation in x, but these components might
not be the most useful as explanations for y.
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