
Chapter 3

A brief overview of the
classical linear regression model
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Regression

Regression is probably the single most important tool at the
econometrician’s disposal.

But what is regression analysis?

It is concerned with describing and evaluating the relationship between
a given variable (usually called the dependent variable) and one or
more other variables (usually known as the independent variable(s)).
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Some Notation

Denote the dependent variable by y and the independent variable(s)
by x1, x2, ..., xk where there are k independent variables.

Some alternative names for the y and x variables:

y x
dependent variable independent variables
regressand regressors
effect variable causal variables
explained variable explanatory variables

Note that there can be many x variables but we will limit ourselves to
the case where there is only one x variable to start with. In our
set-up, there is only one y variable.
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Regression is different from Correlation

If we say y and x are correlated, it means that we are treating y and x
in a completely symmetrical way.

In regression, we treat the dependent variable (y) and the
independent variable(s) (x’s) very differently. The y variable is
assumed to be random or “stochastic” in some way, i.e. to have a
probability distribution. The x variables are, however, assumed to
have fixed (“non-stochastic”) values in repeated samples.
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Simple Regression

For simplicity, say k=1. This is the situation where y depends on only
one x variable.

Examples of the kind of relationship that may be of interest include:

– How asset returns vary with their level of market risk

– Measuring the long-term relationship between stock prices and
dividends.

– Constructing an optimal hedge ratio
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Simple Regression: An Example

Suppose that we have the following data on the excess returns on a
fund manager’s portfolio (“fund XXX”) together with the excess
returns on a market index:

Year, t Excess return Excess return on market index
= rXXX ,t − rft = rmt − rft

1 17.8 13.7
2 39.0 23.2
3 12.8 6.9
4 24.2 16.8
5 17.2 12.3

We have some intuition that the beta on this fund is positive, and we
therefore want to find whether there appears to be a relationship
between x and y given the data that we have. The first stage would
be to form a scatter plot of the two variables.
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Graph (Scatter Diagram)
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Finding a Line of Best Fit

We can use the general equation for a straight line,

y = a + bx

to get the line that best “fits” the data.

However, this equation (y= a+ bx) is completely deterministic.

Is this realistic? No. So what we do is to add a random disturbance
term, u into the equation.

yt = α + βxt + ut

where t= 1,2,3,4,5
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Why do we include a Disturbance term?

The disturbance term can capture a number of features:

– We always leave out some determinants of yt

– There may be errors in the measurement of yt that cannot be
modelled.

– Random outside influences on yt which we cannot model
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Determining the Regression Coefficients

So how do we determine what α and β are?

Choose α and β so that the (vertical) distances from the data points
to the fitted lines are minimised (so that the line fits the data as
closely as possible):

x

y
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Ordinary Least Squares

The most common method used to fit a line to the data is known as
OLS (ordinary least squares).

What we actually do is take each distance and square it (i.e. take the
area of each of the squares in the diagram) and minimise the total
sum of the squares (hence least squares).

Tightening up the notation, let

yt denote the actual data point t

ŷt denote the fitted value from the regression line

ût denote the residual, yt − ŷt

‘Financial Econometrics’ (DEAMS) Giovanni Millo, 2020 - c© Chris Brooks 2019 11



Actual and Fitted Value

x

y

ût

yt

xt

yt
ˆ

‘Financial Econometrics’ (DEAMS) Giovanni Millo, 2020 - c© Chris Brooks 2019 12



How OLS Works

So min. û1
2 + û2

2 + û3
2 + û4

2 + û5
2, or minimise

∑5
t=1 ût

2 . This is
known as the residual sum of squares.

But what was ût? It was the difference between the actual point and
the line, yt − ŷt .

So minimising
∑

(yt − ŷt)
2 is equivalent to minimising

∑
ût

2 with
respect to α̂ and β̂.
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Deriving the OLS Estimator

But ŷt = α̂ + β̂xt , so let

L =
T∑
t=1

(yt − ŷt)
2 =

T∑
t=1

(yt − α̂− β̂xt)2.

Want to minimise L with respect to (w.r.t.) α̂ and β̂ , so differentiate
L w.r.t. α̂ and β̂

∂L

∂α̂
= −2

∑
t

(yt − α̂− β̂xt) = 0 (1)

∂L

∂β̂
= −2

∑
t

xt(yt − α̂− β̂xt) = 0 (2)
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Deriving the OLS Estimator (Cont’d)

From (1),∑
t

(yt − α̂− β̂xt) = 0 ⇔
∑

yt − Tα̂− β̂
∑

xt = 0

But
∑

yt = Tȳ and
∑

xt = Tx̄ . So we can write

Tȳ − Tα̂− Tβ̂x̄ = 0 or ȳ − α̂− β̂x̄ = 0 (3)

From (2), ∑
t

xt(yt − α̂− β̂xt) = 0 (4)

From (3),

α̂ = ȳ − β̂x̄ (5)
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Deriving the OLS Estimator (Cont’d)

Substitute into (4) for α̂ from (5),∑
t

xt(yt − ȳ + β̂x̄ − β̂xt) = 0

∑
t

xtyt − ȳ
∑

xt + β̂x̄
∑

xt − β̂
∑

x2t = 0

∑
t

xtyt − Tx̄ȳ + β̂Tx̄2 − β̂
∑

x2t = 0

Rearranging for β̂,

β̂
(
Tx̄2 −

∑
x2t

)
= Txy −

∑
xtyt
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Deriving the OLS Estimator (Cont’d)

So overall we have

β̂ =

∑
xtyt − Txy∑
x2t − Tx̄2

and α̂ = ȳ − β̂x̄

This method of finding the optimum is known as ordinary least
squares.
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What do We Use α̂ and β̂ For?

In the CAPM example used above, plugging the 5 observations in to
make up the formulae given above would lead to the estimates

α̂ = −1.74 and β̂ = 1.64. We would write the fitted line as:

ŷt = −1.74 + 1.64xt

Question: If an analyst tells you that she expects the market to yield
a return 20% higher than the risk-free rate next year, what would you
expect the return on fund XXX to be?

Solution: We can say that the expected value of y = ‘−1.74 + 1.64
× value of x ’, so plug x = 20 into the equation to get the expected
value for y:

ŷt = −1.74 + 1.64 × 20 = 31.06
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Accuracy of Intercept Estimate

Care needs to be exercised when considering the intercept estimate,
particularly if there are no or few observations close to the y-axis:

x

y
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The Population and the Sample

The population is the total collection of all objects or people to be
studied, for example,

Interested in Population of interest

predicting outcome the entire electorate
of an election

A sample is a selection of just some items from the population.

A random sample is a sample in which each individual item in the
population is equally likely to be drawn.
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The DGP and the PRF

The population regression function (PRF) is a description of the
model that is thought to be generating the actual data and the true
relationship between the variables (i.e. the true values of α and β).

The PRF is yt = α + βxt + ut

The SRF is ŷt = α̂ + β̂xt

and we also know that ût = yt − ŷt .

We use the SRF to infer likely values of the PRF.

We also want to know how “good” our estimates of α and β are.
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Linearity

In order to use OLS, we need a model which is linear in the
parameters (α and β). It does not necessarily have to be linear in the
variables (y and x).

Linear in the parameters means that the parameters are not
multiplied together, divided, squared or cubed etc.

Some models can be transformed to linear ones by a suitable
substitution or manipulation, e.g. the exponential regression model

yt = eαX β
t e

ut ⇔ lnYt = α + β lnXt + ut

Then let yt = lnYt and xt = lnXt

yt = α + βxt + ut
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Linear and Non-linear Models

This is known as the exponential regression model. Here, the
coefficients can be interpreted as elasticities.

Similarly, if theory suggests that y and x should be inversely related:

yt = α + β
xt

+ ut

then the regression can be estimated using OLS by substituting

zt = 1
xt

But some models are intrinsically non-linear, e.g.

yt = α + xβt + ut
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Estimator or Estimate?

Estimators are the formulae used to calculate the coefficients.

Estimates are the actual numerical values for the coefficients.
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Desirable properties of estimators

Consistent

An estimator is consistent if the estimate will converge to its true
value as the sample size increases to infinity:

lim
T→∞

Pr [|β̂ − β| > δ] = 0 ∀ δ > 0

Unbiased

An estimator β̂ is unbiased if

E (β̂) = β

Thus on average the estimated value will be equal to the true values.
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Desirable properties of estimators (Cont’d)

Efficient

An estimator β̂ of parameter β is said to be efficient if it is unbiased
and no other unbiased estimator has a smaller variance. If the
estimator is efficient, we are minimising the probability that it is a
long way off from the true value of β.
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The Assumptions Underlying the CLRM

The model which we have used is known as the classical linear
regression model.

We observe data for xt , but since yt also depends on ut , we must be
specific about how the ut are generated.

We usually make the following set of assumptions about the ut ’s (the
unobservable error terms):

Technical notation Interpretation

(1) E(ut) = 0 ∀t The errors have zero mean
(2) var(ut) = σ2 ∀t The variance of the errors is constant and

finite over all values of xt
(3) cov(ut , us) = 0 ∀t 6= s The errors are “independent” of

one another
(4) cov(ut , xt) = 0 There is no relationship between the error

and corresponding x variate
‘Financial Econometrics’ (DEAMS) Giovanni Millo, 2020 - c© Chris Brooks 2019 27



The Assumptions Underlying the CLRM (Cont’d)

An alternative assumption to (4), which is slightly stronger, is that
the xt ’s are non-stochastic or fixed in repeated samples.

A fifth assumption is required if we want to make inferences about
the population parameters (the actual α and β) from the sample
parameters (α̂ and β̂)

Additional assumption

(5) ut is normally distributed
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Properties of OLS and requirements

Consistent

The least squares estimators α̂OLS and β̂OLS are consistent – that is,
the estimates will converge to their true values as the sample size
increases to infinity – under the assumptions E (u) = 0, E (xtut) = 0
and Var(ut) =<∞ ∀t.

Unbiased

The least squares estimates of α̂ and β̂ are unbiased – that is
E (α̂) = α and E (β̂) = β so that on average the estimated value will
be equal to the true values – under the assumption that E (ut) = 0.

Efficient

The least squares estimates of α̂ and β̂ are efficient if assumptions (2)
and (3) hold.
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The OLS Estimator as BLUE

If assumptions (1) through (4) hold, then the estimators and
determined by OLS are known as Best Linear Unbiased Estimators
(BLUE).

What does the acronym stand for?

‘Estimator’ – α̂ and β̂ are estimators of the true value of α and β

‘Linear’ – α̂ and β̂ are linear estimators

‘Unbiased’ – on average, the actual values of α̂ and β̂ will be equal to
their true values

‘Best’ – means that the OLS estimator β̂ has minimum variance
among the class of linear unbiased estimators; the Gauss–Markov
theorem proves that the OLS estimator is best.
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Precision and Standard Errors

Any set of regression estimates of α and β are specific to the sample
used in their estimation.

Recall that the estimators of α and β from the sample parameters (α̂
and β̂) are given by

β̂ =

∑
xtyt − Txy∑
x2t − Tx̄2

and α̂ = ȳ − β̂x̄
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Precision and Standard Errors (Cont’d)

What we need is some measure of the reliability or precision of the
estimators (α̂ and β̂). The precision of the estimate is given by its
standard error. Given assumptions (1)–(4) above, then the standard
errors can be shown to be given by

SE (α̂) = s

√√√√√ ∑
x2t

T
∑

(xt − x̄)2
= s

√√√√√
∑

x2t

T
((∑

x2t

)
− Tx̄2

)
SE(β̂) = s

√√√√ 1∑
(xt − x̄)2

= s

√√√√ 1∑
x2t − Tx̄2

where s is the estimated standard deviation of the errors.
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Estimating the Variance of the Disturbance Term

The variance of the random variable u t is given by

Var(ut) = E[(ut)-E(ut)]2

which reduces to

Var(ut) = E(u2t )

We could estimate this using the average of u2t :

σ2 = 1
T

∑
u2t

Unfortunately this is not workable since ut is not observable. We can
use the sample counterpart to ut , which is ût :

s2 = 1
T

∑
û2t

But this estimator is a biased estimator of σ2.
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Estimating the Variance of the Disturbance Term
(cont’d)

An unbiased estimator of σ is given by

s =
√∑

û2t
T−2

where
∑

û2t is the residual sum of squares and T is the sample size.

Some Comments on the Standard Error Estimators

1 Both SE(α̂) and SE(β̂) depend on s2 (or s). The greater the
variances2, then the more dispersed the errors are about their mean
value and therefore the more dispersed y will be about its mean value.

2 The sum of the squares of x about their mean appears in both formulae.
The larger the sum of squares, the smaller the coefficient variances.
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Some Comments on the Standard Error Estimators

Consider what happens if
∑

(xt − x̄)2 is small or large:
y

x

_
y

x
_

0

y

x0

_
y

x
_
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Some Comments on the Standard Error Estimators
(Cont’d)

1 The larger the sample size, T, the smaller will be the coefficient
variances. T appears explicitly in SE(α̂) and implicitly in SE(β̂).

T appears implicitly since the sum
∑

(xt − x̄)2 is from t = 1 to T .

2 The term
∑

x2t appears in the SE(α̂).

The reason is that
∑

x2t measures how far the points are away from
the y-axis.
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Example: How to Calculate the Parameters and
Standard Errors

Assume we have the following data calculated from a regression of y
on a single variable x and a constant over 22 observations.

Data: ∑
xtyt = 830102, T = 22, x̄ = 416.5, ȳ = 86.65,∑
x2t = 3919654, RSS = 130.6

Calculations

β̂ =
830102− (22× 416.5× 86.65)

3919654− 22× (416.5)2
= 0.35

α̂ = 86.65− 0.35× 416.5 = −59.12
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Example: How to Calculate the Parameters and
Standard Errors (Cont’d)

We write ŷt = α̂ + β̂xt
ŷt = −59.12 + 0.35xt

SE (regression), s =
√∑

û2t
T−2 =

√
130.6
20 = 2.55

SE (α̂) = 2.55×

√
3919654

22× (3919654− 22× 416.52)
= 3.35

SE (β̂) = 2.55×
√

1

3919654− 22× 416.52
= 0.0079

We now write the results as

ŷt = −59.12 + 0.35xt
(3.35) (0.0079)
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An Introduction to Statistical Inference

We want to make inferences about the likely population values from
the regression parameters.

Example: Suppose we have the following regression results:

ŷt = 20.3 + 0.5091xt

(14.38) (0.2561)

β̂ = 0.5091 is a single (point) estimate of the unknown population
parameter, β. How “reliable” is this estimate?

The reliability of the point estimate is measured by the coefficient’s
standard error.
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Hypothesis Testing : Some Concepts

We can use the information in the sample to make inferences about
the population.

We will always have two hypotheses that go together, the null
hypothesis (denoted H0) and the alternative hypothesis (denoted H1).

The null hypothesis is the statement or the statistical hypothesis that
is actually being tested. The alternative hypothesis represents the
remaining outcomes of interest.

For example, suppose given the regression results above, we are
interested in the hypothesis that the true value of β is in fact 0.5. We
would use the notation

H0: β = 0.5
H1: β 6= 0.5

This would be known as a two sided test.
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One-Sided Hypothesis Tests

Sometimes we may have some prior information that, for example, we
would expect β > 0.5 rather than β < 0.5. In this case, we would do
a one-sided test:

H0: β = 0.5
H1: β < 0.5

or we could have had

H0: β = 0.5
H1: β < 0.5

There are two ways to conduct a hypothesis test: via the test of
significance approach or via the confidence interval approach.
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The Probability Distribution of the Least Squares
Estimators

We assume that ut ∼ N(0, σ2)

Since the least squares estimators are linear combinations of the
random variables
i.e. β̂ =

∑
wtyt

The weighted sum of normal random variables is also normally
distributed, so

α̂ ∼ N(α,Var(α))

β̂ ∼ N(β,Var(β))

What if the errors are not normally distributed? Will the parameter
estimators still be normally distributed?
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The Probability Distribution of the Least Squares
Estimators (Cont’d)

Yes, if the other assumptions of the CLRM hold, and the sample size
is sufficiently large.

Standard normal variates can be constructed from α̂ and β̂:

α̂−α√
var(α)

∼ N(0, 1) and β̂−β√
var(β)

∼ N(0, 1)

But var(α) and var(β) are unknown, so

α̂−α
SE(α̂) ∼ tT−2 and β̂−β

SE(β̂)
∼ tT−2
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Testing Hypotheses:
The Test of Significance Approach

Assume the regression equation is given by,

yt = α + βxt + ut for t = 1, 2, ...,T

The steps involved in doing a test of significance are:

1 Estimate α̂, β̂ and SE (α̂), SE (β̂) in the usual way

2 Calculate the test statistic. This is given by the formula

test statistic = β̂−β∗

SE(β̂)

where β∗ is the value of β under the null hypothesis.
3 We need some tabulated distribution with which to compare the

estimated test statistics. Test statistics derived in this way can be
shown to follow a t-distribution with T-2 degrees of freedom.
As the number of degrees of freedom increases, we need to be less
cautious in our approach since we can be more sure that our results are
robust.
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Testing Hypotheses:
The Test of Significance Approach (Cont’d)

4 We need to choose a “significance level”, often denoted α. This is also
sometimes called the size of the test and it determines the region
where we will reject or not reject the null hypothesis that we are
testing. It is conventional to use a significance level of 5%.

Intuitive explanation is that we would only expect a result as extreme as
this or more extreme 5% of the time as a consequence of chance alone.

Conventional to use a 5% size of test, but 10% and 1% are also
commonly used.
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Determining the Rejection Region for a Test of
Significance

5 Given a significance level, we can determine a rejection region and
non-rejection region. For a 2-sided test:

x

95% non-rejection region2.5%
rejection region

2.5%
rejection region

xf (  )
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The Rejection Region for a 1-Sided Test
(Upper Tail)

x

95% non-rejection region 5%
rejection region

xf (  )

‘Financial Econometrics’ (DEAMS) Giovanni Millo, 2020 - c© Chris Brooks 2019 47



The Rejection Region for a 1-Sided Test
(Lower Tail)

x

95% non-rejection region5%
rejection region

xf (  )
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The Test of Significance Approach:
Drawing Conclusions

6 Use the t-tables to obtain a critical value or values with which to
compare the test statistic.

7 Finally perform the test. If the test statistic lies in the rejection region
then reject the null hypothesis (H0), else do not reject H0.
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A Note on the t and the Normal Distribution

You should all be familiar with the normal distribution and its
characteristic “bell” shape.

We can scale a normal variate to have zero mean and unit variance by
subtracting its mean and dividing by its standard deviation.

There is, however, a specific relationship between the t- and the
standard normal distribution. Both are symmetrical and centred on
zero. The t-distribution has another parameter, its degrees of
freedom. We will always know this (for the time being from the
number of observations −2).
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What Does the t -Distribution Look Like?

normal distribution

t-distribution

x

xf (  )
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Comparing the t and the Normal Distribution

In the limit, a t-distribution with an infinite number of degrees of
freedom is a standard normal, i.e. t(∞) = N(0, 1)

Examples from statistical tables:

Significance level N(0, 1) t(40) t(4)
50% 0 0 0
5% 1.64 1.68 2.13

2.5% 1.96 2.02 2.78
0.5% 2.57 2.70 4.60

The reason for using the t-distribution rather than the standard
normal is that we had to estimate σ2, the variance of the
disturbances.
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The Confidence Interval Approach to Hypothesis
Testing

An example of its usage: We estimate a parameter, say to be 0.93,
and a “95% confidence interval” to be (0.77, 1.09). This means that
we are 95% confident that the interval containing the true (but
unknown) value of β.

Confidence intervals are almost invariably two-sided, although in
theory a one-sided interval can be constructed.
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How to Carry out a Hypothesis Test Using
Confidence Intervals

1 Calculate α̂, β̂ and SE (α̂), SE (β̂) as before.

2 Choose a significance level, α, (again the convention is 5%). This is
equivalent to choosing a (1-α)×100% confidence interval, i.e. 5%
significance level = 95% confidence interval

3 Use the t-tables to find the appropriate critical value, which will again
have T-2 degrees of freedom.

4 The confidence interval is given by
(β̂ − tcrit × SE (β̂), β̂ + tcrit × SE (β̂))

5 Perform the test: If the hypothesised value of β (β∗) lies outside the
confidence interval, then reject the null hypothesis that β = β∗,
otherwise do not reject the null.
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Confidence Intervals Versus Tests of Significance

Note that the Test of Significance and Confidence Interval approaches
always give the same answer.

Under the test of significance approach, we would not reject H0 that
β = β∗ if the test statistic lies within the non-rejection region, i.e. if

−tcrit ≤ β̂−β∗

SE(β̂)
≤ +tcrit

Rearranging, we would not reject if

−tcrit × SE (β̂) ≤ β̂ − β∗ ≤ +tcrit × SE (β̂))
β̂ − tcrit × SE (β̂) ≤ β∗ ≤ β̂ + tcrit × SE (β̂))

But this is just the rule under the confidence interval approach.
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Constructing Tests of Significance and Confidence
Intervals: An Example

Using the regression results above,

ŷt = 20.3 + 0.5091xt
, T = 22

(14.38) (0.2561)

Using both the test of significance and confidence interval approaches,
test the hypothesis that β = 1 against a two-sided alternative.

The first step is to obtain the critical value. We want tcrit = t20;5%
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Determining the Rejection Region

x

95% non-rejection region2.5%
rejection region

2.5%
rejection region

–2.086 +2.086

xf (  )
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Performing the Test

The hypotheses are:

H0 : β = 1

H1 : β 6= 1

Test of significance approach Confidence interval approach

test stat =
β̂ − β∗

SE (β̂)

=
0.5091− 1

0.2561
= −1.917

Find tcrit = t20;5% = ±2.086

β̂ ± tcrit · SE (β̂)
= 0.5091± 2.086 · 0.2561
= (−0.0251, 1.0433)

Do not reject H0 since test statistic Do not reject H0 since 1 lies
lies within non-rejection region within the confidence interval
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Testing other Hypotheses

What if we wanted to test H0: β = 0 or H0: β = 2?

Note that we can test these with the confidence interval approach.

For interest (!), test

H0: β = 0
vs. H1: β 6= 0

H0: β = 2
vs. H1: β 6= 2
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Changing the Size of the Test

But note that we looked at only a 5% size of test. In marginal cases
(e.g. H0: β = 1), we may get a completely different answer if we use
a different size of test. This is where the test of significance approach
is better than a confidence interval.

For example, say we wanted to use a 10% size of test. Using the test
of significance approach,

test stat =
β̂ − β∗

SE (β̂)

=
0.5091− 1

0.2561
= −1.917

as above. The only thing that changes is the critical t-value.
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Changing the Size of the Test: The New Rejection
Regions
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Changing the Size of the Test: The Conclusion

t20;10% = 1.725. So now, as the test statistic lies in the rejection
region, we would reject H0.

Caution should therefore be used when placing emphasis on or
making decisions in marginal cases (i.e. in cases where we only just
reject or not reject).
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Some More Terminology

If we reject the null hypothesis at the 5% level, we say that the result
of the test is statistically significant.

Note that a statistically significant result may be of no practical
significance. E.g. if a shipment of cans of beans is expected to weigh
450g per tin, but the actual mean weight of some tins is 449g, the
result may be highly statistically significant but presumably nobody
would care about 1g of beans.
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The Errors That We Can Make Using Hypothesis
Tests

We usually reject H0 if the test statistic is statistically significant at a
chosen significance level.

There are two possible errors we could make:

1 Rejecting H0 when it was really true. This is called a type I error.

2 Not rejecting H0 when it was in fact false. This is called a type II error.

Reality

H0 is true H0 is false

Significant Type I error = α
√

Result of test (reject H0)
Insignificant

√
Type II error = β

(do not reject H0)
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The Trade-off Between Type I and Type II Errors

The probability of a type I error is just α, the significance level or size
of test we chose. To see this, recall what we said significance at the
5% level meant: it is only 5% likely that a result as or more extreme
as this could have occurred purely by chance.

Note that there is no chance for a free lunch here! What happens if
we reduce the size of the test (e.g. from a 5% test to a 1% test)? We
reduce the chances of making a type I error ... but we also reduce the
probability that we will reject the null hypothesis at all, so we increase
the probability of a type II error:

Less likely Lower
to falsely →chance of

Reduce size→More strict→Reject null↗reject type I error
of test (e.g. criterion for hypothesis↘
5% to 1%) rejection less often More likely to Higher

incorrectly →chance of
not reject type II error
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The Trade-off Between Type I and Type II Errors
(Cont’d)

So there is always a trade off between type I and type II errors when
choosing a significance level. The only way we can reduce the
chances of both is to increase the sample size.
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A Special Type of Hypothesis Test: The t-ratio

Recall that the formula for a test of significance approach to
hypothesis testing using a t-test was

test statistic =
β̂i−β∗

i

SE(β̂i )

If the test is H0: βi = 0
H1: βi 6= 0

i.e. a test that the population coefficient is zero against a two-sided
alternative, this is known as a t-ratio test:

Since β∗i = 0, test stat = β̂i
SE(β̂i )

The ratio of the coefficient to its SE is known as the t-ratio or
t-statistic.
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The t-ratio: An Example

Suppose that we have the following parameter estimates, standard
errors and t-ratios for an intercept and slope respectively.

Coefficient 1.10 -4.40
SE 1.35 0.96
t-ratio 0.81 -4.63

Compare this with a tcrit with 15-3 = 12 d.f.
(21

2% in each tail for a 5% test) = 2.179 5%
= 3.055 1%

Do we reject H0: β1 = 0? (No)
H0: β2 = 0? (Yes)
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What Does the t-ratio tell us?

If we reject H0, we say that the result is significant. If the coefficient
is not “significant” (e.g. the intercept coefficient in the last regression
above), then it means that the variable is not helping to explain
variations in y. Variables that are not significant are usually removed
from the regression model.

In practice there are good statistical reasons for always having a
constant even if it is not significant. Look at what happens if no
intercept is included:

y
t

x
t‘Financial Econometrics’ (DEAMS) Giovanni Millo, 2020 - c© Chris Brooks 2019 69



An Example of the Use of a Simple t -test to Test
a Theory in Finance

Testing for the presence and significance of abnormal returns
(“Jensen’s alpha” - Jensen, 1968).

The Data: Annual Returns on the portfolios of 115 mutual funds
from 1945-1964.

The model: Rjt − Rft = αj + βj(Rmt − Rft) + ujt for j=1, ..., 115

We are interested in the significance of αj .

The null hypothesis is H0: αj=0 .
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Frequency Distribution of t -ratios of Mutual Fund
Alphas (gross of transactions costs)
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Frequency Distribution of t -ratios of Mutual Fund
Alphas (net of transactions costs)
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Can UK Unit Trust Managers “Beat the Market”?

We now perform a variant on Jensen’s test in the context of the UK
market, considering monthly returns on 76 equity unit trusts. The
data cover the period January 1979 – May 2000 (257 observations for
each fund). Some summary statistics for the funds are:

Mean Min Max Median
Average monthly return 1.0% 0.6% 1.4% 1.0%
Std dev of returns 5.1% 4.3% 6.9% 5.0%

Jensen Regression Results for UK Unit Trust Returns, January
1979-May 2000

Rjt − Rft = αj + βj(Rmt − Rft) + εjt
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Can UK Unit Trust Managers “Beat the Market”?
Results

Estimates of Mean Minimum Maximum Median
α -0.02% -0.54% 0.33% -0.03%
β 0.91 0.56 1.09 0.91

t-ratio on α -0.07 -2.44 3.11 -0.25

In fact, gross of transactions costs, 9 funds of the sample of 76 were
able to significantly out-perform the market by providing a significant
positive alpha, while 7 funds yielded significant negative alphas.
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The Overreaction Hypothesis and the UK Stock
Market

Motivation

Two studies by DeBondt and Thaler (1985, 1987) showed that stocks
which experience a poor performance over a 3 to 5 year period tend
to outperform stocks which had previously performed relatively well.

How Can This be Explained?

2 suggestions
1 A manifestation of the size effect

DeBondt & Thaler did not believe this a sufficient explanation, but
Zarowin (1990) found that allowing for firm size did reduce the
subsequent return on the losers.

2 Reversals reflect changes in equilibrium required returns
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The Overreaction Hypothesis and the UK Stock
Market (Cont’d)

Ball & Kothari (1989) find the CAPM beta of losers to be considerably
higher than that of winners.

Another interesting anomaly: the January effect.

– Another possible reason for the superior subsequent performance of
losers.

– Zarowin (1990) finds that 80% of the extra return available from
holding the losers accrues to investors in January.

Example study: Clare and Thomas (1995)

Data:

Monthly UK stock returns from January 1955 to 1990 on all firms
traded on the London Stock exchange.
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Methodology

Calculate the monthly excess return of the stock over the market over
a 12, 24 or 36 month period for each stock i:

Uit = Rit − Rmt n = 12, 24 or 36 months

Calculate the average monthly return for the stock i over the first 12,
24, or 36 month period:

R̄i = 1
n

∑n
t=1 Uit
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Portfolio Formation

Then rank the stocks from highest average return to lowest and from
5 portfolios:

Portfolio 1: Best performing 20% of firms
Portfolio 2: Next 20%
Portfolio 3: Next 20%
Portfolio 4: Next 20%
Portfolio 5: Worst performing 20% of firms.

Use the same sample length n to monitor the performance of each
portfolio.
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Portfolio Formation and Portfolio Tracking Periods

How many samples of length n have we got?

n = 1, 2, or 3 years.

If n = 1year:

Estimate for year 1

Monitor portfolios for year 2

Estimate for year 3

...

Monitor portfolios for year 36

So if n = 1, we have 18 INDEPENDENT (non-overlapping)
observation/tracking periods.
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Constructing Winner and Loser Returns

Similarly, n = 2 gives 9 independent periods and n = 3 gives 6
independent periods.

Calculate monthly portfolio returns assuming an equal weighting of
stocks in each portfolio.

Denote the mean return for each month over the 18, 9 or 6 periods
for the winner and loser portfolios respectively as R̄W

p and R̄L
p

respectively.

Define the difference between these as R̄Dt = R̄L
p − R̄W

p .

Then perform the regression
R̄Dt = α1 + ηt (Test 1)

Look at the significance of α1.
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Allowing for Differences in the Riskiness of the
Winner and Loser Portfolios

Problem: Significant and positive α1 could be due to higher return
being required on loser stocks due to loser stocks being more risky.

Solution: Allow for risk differences by regressing against the market
risk premium:

R̄Dt = α2 + β(Rmt − Rft) + ηt (Test 2)

where

Rmt is the return on the FTA All-share

Rft is the return on a UK government 3 month t-bill.
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Is there an Overreaction Effect in the UK Stock
Market? Results

Panel A: All Months
n = 12 n = 24 n = 36

Return on loser 0.0033 0.0011 0.0129
Return on winner 0.0036 −0.0003 0.0115
Implied annualised return difference −0.37% 1.68% 1.56%
Coefficient for (3.37): α̂1 −0.00031 0.0014∗∗ 0.0013

(0.29) (2.01) (1.55)

Coefficients for (3.38): α̂2 −0.00034 0.00147∗∗ 0.0013∗

(−0.30) (2.01) (1.41)

Coefficients for (3.38): β̂ −0.022 0.010 −0.0025
(−0.25) (0.21) (−0.06)

Panel B: all months except January
Coefficient for (3.37): α̂1 −0.0007 0.0012∗ 0.0009

(−0.72) (1.63) (1.05)
Notes: t-ratios in parentheses; ∗ and ∗∗ denote significance at the 10% and 5% levels, respectively.
Source: Clare and Thomas (1995). Reprinted with the permission of Blackwell Publishers.
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Testing for Seasonal Effects in Overreactions

Is there evidence that losers out-perform winners more at one time of
the year than another?

To test this, calculate the difference between the winner & loser
portfolios as previously, R̄Dt , and regress this on 12
month-of-the-year dummies:

R̄Dt =
∑12

i=1 δiMi + vt

Significant out-performance of losers over winners in,

– June (for the 24-month horizon), and

– January, April and October (for the 36-month horizon)

– winners appear to stay significantly as winners in

March (for the 12-month horizon).
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Conclusions

Evidence of overreactions in stock returns.

Losers tend to be small so we can attribute most of the overreaction
in the UK to the size effect.

Comments

Small samples

No diagnostic checks of model adequacy
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The Exact Significance Level or p-value

This is equivalent to choosing an infinite number of critical t-values
from tables. It gives us the marginal significance level where we would
be indifferent between rejecting and not rejecting the null hypothesis.

If the test statistic is large in absolute value, the p-value will be small,
and vice versa. The p-value gives the plausibility of the null
hypothesis.

e.g. a test statistic is distributed as a t62 = 1.47.

The p-value = 0.12.

Do we reject at the 5% level?...........................No

Do we reject at the 10% level?.........................No

Do we reject at the 20% level?.........................Yes
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