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The Hidden Geometry of Complex,
Network-Driven Contagion Phenomena
Dirk Brockmann1,2,3* and Dirk Helbing4,5

The global spread of epidemics, rumors, opinions, and innovations are complex, network-driven
dynamic processes. The combined multiscale nature and intrinsic heterogeneity of the underlying
networks make it difficult to develop an intuitive understanding of these processes, to distinguish relevant
from peripheral factors, to predict their time course, and to locate their origin. However, we show that
complex spatiotemporal patterns can be reduced to surprisingly simple, homogeneous wave propagation
patterns, if conventional geographic distance is replaced by a probabilistically motivated effective
distance. In the context of global, air-traffic–mediated epidemics, we show that effective distance reliably
predicts disease arrival times. Even if epidemiological parameters are unknown, themethod can still deliver
relative arrival times. The approach can also identify the spatial origin of spreading processes and
successfully be applied to data of the worldwide 2009 H1N1 influenza pandemic and 2003 SARS epidemic.

The geographic spread of emergent infec-
tious diseases affects the lives of tens of
thousands or evenmillions of people (1, 2).

Recent examples of emergent diseases are the
SARS epidemic of 2003, the 2009 H1N1 influenza
pandemic, and most recently a new strain (H7N9)
of avian influenza virus (3, 4). Progressingworld-
wide urbanization, combined with growing con-
nectivity amongmetropolitan centers, has increased
the risk that highly virulent emergent pathogens
will spread (5–8). The complexity of global hu-
man mobility, particularly air traffic (Fig. 1A),
makes it increasingly difficult to develop effec-
tive containment andmitigation strategies on the
time scale imposed by the speed at which mod-
ern diseases can spread (9–11). Because timely,
accurate, and focused action can potentially save
the lives of many people and reduce the socio-
economic impact of infectious diseases (12, 13),
understanding global disease dynamics has be-
come a major 21st-century challenge. Unraveling
the core mechanisms that underlie these phenome-
na and being able to distinguish key factors from
peripheral ones are required to develop quantita-
tive, efficient, and predictive models that public
health authorities can employ to assess situations
quickly, make informed decisions, and optimize
vaccination and drug delivery plans. After the in-
itial outbreak of an epidemic, the key questions are
as follows: (i)Where did the novel pathogen emerge?
(ii)Where are new cases to be expected? (iii)When
is an epidemic going to arrive at distant locations?
(iv) How many cases are to be expected?

Historically, for cases like the spread of the
Black Death in Europe, reaction-diffusion mod-

els have been quite useful in addressing these
questions (14, 15). Despite their high level of
abstraction, thesemodels provide a solid intuition
and understanding of spreading processes. Their
mathematical simplicity permits the assessment
of key properties, e.g., spreading speed, arrival
times, and how pattern geometry depends on sys-
tem parameters (16). However, because of long-
distance travel, simple reaction-diffusion models
are inadequate for the description of today’s com-
plex, spatially incoherent spreading patterns that
generically bear no metric regularity, that depend
sensitively on model parameters and initial con-
ditions (17–20) (Fig. 1, B to E, and fig. S2).

Consequently, scientists have been developing
powerful, large-scale computational models and
sophisticated, parameter-rich epidemic simulators
that tackle the above key questions in detailed
ways. These consider demographics, mobility, and
epidemiological data, as well as disease-specific
mechanisms, all of which are believed to play a
role (21–23). Models range from high-level sto-
chastic metapopulationmodels (5, 20, 24) to agent-
based computer simulations that account for the
behavior and interactions of millions of individuals
in large populations (25). These approaches have
become remarkably successful in reproducing ob-
served patterns and predicting the temporal evo-
lution of ongoing epidemics (26). Many such
models reproduce similar dynamic features despite
major differences in their underlying assumptions
and data (27). The abundance of different, often
mutually incompatible, models suggests that we
still lack a fundamental understanding of the key
factors that determine the observed spatiotemporal
dynamics. It is unclear how the multitude of factors
shape the dynamics and how much detail is re-
quired to achieve a certain level of predictive fidel-
ity. Moreover, detailed computational models that
incorporate all potentially relevant factors ab initio
do not inform which factors are actually relevant
and which ones are not (28). They are also hard to
calibrate and of limited use when the knowledge
of epidemiological parameters is uncertain.

Here, we propose an intuitive and efficient
approach that remedies the situation by connect-
ing the conceptual power of simple reaction-
diffusion systems with the predictive power of
high-level, computational models. Our approach
is based on the idea of replacing conventional
geographic distance by a measure of effective
distance derived from the underlying mobility
network. Based on this novel notion of distance,
patterns that exhibit complex spatiotemporal struc-
ture in the conventional geographic perspective
turn into regular, wavelike solutions reminiscent
of simple reaction-diffusion systems. This permits
the definition of effective epidemic wavefronts,
propagation speeds, and the reliable estimation of
epidemic arrival times, based on the knowledge
of the underlying mobility network. The method,
however, goes beyond remapping data. It pro-
vides two key insights. First, epidemiological pa-
rameters enter the spreading dynamics separately
from the transport parameters, and second, the
dynamics is dominated by only a small percent-
age of transport connections. Furthermore, our
approach can quickly identify the geographic
origin of emergent diseases, using temporal snap-
shots of the spatial disease distribution. This
detection of the origin of complex, multiscale dy-
namical spreading patterns is important for three
reasons: (i) to determine what has caused the dis-
ease, (ii) to develop timely mitigation strategies,
and (iii) to predict its further spread (the arrival times
in remote locations and the expected prevalence).

Modeling Network-Driven Contagion Phenomena
For illustration, we consider a complex network
of coupled populations (ametapopulation) inwhich
the local disease time course is described by a con-
ventional susceptible-infected-recovered (SIR) dy-
namics (1):

∂tSn ¼ −aInSn=Nn,

∂tIn ¼ aInSn=Nn − bIn n ¼ 1,…,M (1)

where Nn is the population size of population
n, M is the number of populations, and Sn, In,
Rn ¼ Nn − Sn − In are absolute numbers of sus-
ceptible, infected, and recovered individuals, re-
spectively. Parameter b is the mean recovery rate
of individuals (for influenza-like diseases b–1 =
3 to 5 days), and R0 = a/b is the basic repro-
duction ratio (for whichwe assume typical values
in the range 1.4 to 2.9). (The focus on SIR kinetics
is not essential, as the following results are also
valid for other types of local dynamics.) Each lo-
cal population represents a node n in the global
mobility network (GMN), depicted in Fig. 1A. In
addition to the local dynamics, individuals travel
between nodes according to the rate equation

∂tUn ¼ ∑
m≠n

wnmUm − wmnUn ð2Þ

where Un is a placeholder for the classes Sn, In,
and Rn. The quantities wnm = Fnm/Nm represent
the per-capita traffic flux from location m to n.
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Weighted links Fnm quantify direct air traffic
(passengers per day) from node m to node n.
The GMN is constructed from the worldwide air
traffic between 4069 airports with 25,453 direct
connections. Details on the data and network con-
struction are provided in the supplementary mate-
rials (e.g., fig. S1 and table S1) (5, 13, 20, 29). The
total network traffic is approximately F ¼ 8:91�
106 passengers per day. Assuming that the total
traffic in and out of a node is proportional to its
population size, Eqs. 1 and 2 can be rewritten as

∂t jn ¼ asn jnsð jn=eÞ − b jn þ g ∑
m≠n

Pmnð jm − jnÞ
∂tsn ¼ −asn jnsð jn=eÞ þ g ∑

m≠n
Pmnðsm − snÞ

with sn = Sn/Nn, jn = In/Nn, and rn = 1 – sn – jn. A
detailed derivation is provided in the supplemen-
tary text. The mobility parameter g is the average
mobility rate, i.e.,g ¼ F=W, whereW ¼ ∑nNn is
the total population in the system. This yields nu-
merical values in the range g =0.0013–0.0178day–1.
The matrix P with 0 ≤ Pmn ≤ 1 quantifies the
fraction of the passenger flux with destinationm

emanating from node n, i.e., Pmn = Fmn/Fn,

where Fn ¼ ∑
m
Fmn. The additional sigmoid func-

tion sðxÞ ¼ xh=ð1þ xhÞwithgainparameterh >>0
accounts for the local invasion threshold e and
fluctuation effects for jn < e (30–32). Typical
parameter choices for e and h areh ¼ 4,8,∞ and
−log10 e ¼ 4,…,6. Our results are robust with re-
spect to changes in these parameters (e.g., figs. S5
and S13).

Figure 1B shows a temporal snapshot of the
dynamical system defined by Eq. 3 for a hy-
pothetical pandemic with initial outbreak loca-
tion (OL) in HongKong (HKG) (see also Fig. 2B
and fig. S2 for temporal sequences of the dy-
namical system for various other OLs). General-
ly, the metapopulation model above and related
models used in the past generate solutions that
are characterized by similar qualitative features.
First, only during the early stage of the process
does the prevalence jn(t) (i.e., the fraction of
infected individuals) correlate significantly with
geographic distance from the OL. Second, at in-

termediate and later stages, themultiscale structure
of the GMN induces a spatial decoherence of
the spreading pattern. Third, despite the global
connectivity, the spatiotemporal patterns do not
converge to the same pattern, i.e., spatiotemporal
differences are not a transient effect (figs. S3 to
S6 andmovies S1 to S3). This type of complexity
sharply contrasts the generic behavior of ordinary
reaction-diffusion systems, which typically ex-
hibit spatially coherent wavefronts.

Most Probable Paths and Effective Distance
The key idea we pursue here is that, despite the
structural complexity of the underlying network,
the redundancy of connections, and the multiplic-
ity of paths a contagion phenomenon can take, the
dynamic process is dominated by a set of most
probable trajectories that can be derived from the
connectivity matrix P. This hypothesis is analogous
to the dominance of the smallest resistor in a strong-
ly heterogeneous electrical network with parallel
conducting lines.Given the flux-fraction0≤Pmn≤1,
i.e., the fraction of travelers that leave node n and
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Fig. 1. Complexity in global, network-driven contagion phenomena. (A)
The global mobility network (GMN). Gray lines represent passenger flows along
direct connections between 4069 airports worldwide. Geographic regions are
distinguished by color [classified according to network modularity maximization
(39)]. (B) Temporal snapshot of a simulated global pandemic with initial outbreak
location (OL) in Hong Kong (HKG). The simulation is based on themetapopulation
model defined by Eq. 3 with parameters R0 = 1.5, b = 0.285 day–1, g = 2.8 ×
10–3 day–1, e = 10–6. Red symbols depict locations with epidemic arrival times
in the time window 105 days≤ Ta≤ 110 days. Because of themultiscale structure
of the underlying network, the spatial distribution of disease prevalence (i.e.,
the fraction of infected individuals) lacks geometric coherence. No clear wave-
front is visible, and based on this dynamic state, the OL cannot be easily deduced.
(C) For the same simulation as in (B), the panel depicts arrival times Ta as a
function of geographic distance Dg from the OL [nodes are colored according to
geographic region as in (A)] for each of the 4069 nodes in the network. On a

global scale, Ta weakly correlates with geographic distance Dg (R
2 = 0.34). A

linear fit yields an average global spreading speed of vg = 331 km/day (see also
fig. S7). Using Dg and vg to estimate arrival times for specific locations, however,
does not work well owing to the strong variability of the arrival times for a given
geographic distance. The red horizontal bar corresponds to the arrival time
window shown in (B). (D) Arrival times versus geographic distance from the
source (Mexico) for the 2009 H1N1 pandemic. Symbols represent 140 affected
countries, and symbol size quantifies total traffic per country. Arrival times are
defined as the date of the first confirmed case in a given country after the initial
outbreak on 17 March 2009. As in the simulated scenario, arrival time and
geographic distance are only weakly correlated (R2 = 0.0394). (E) In analogy to
(D), the panel depicts the arrival times versus geographic distance from the
source (China) of the 2003 SARS epidemic for 29 affected countries worldwide.
Arrival times are taken from WHO published data (2). As in (C) and (D), arrival
time correlates weakly with geographic distance.

(3)
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arrive at node m, we define the effective distance
dnm from a node n to a connected node m as

dmn ¼ ð1 − logPmnÞ ≥ 1 ð4Þ
This concept of effective distance reflects the

idea that a small fraction of traffic n→m is effec-
tively equivalent to a large distance, and vice versa.
As explained in more detail in the supplemen-
tary text, the logarithm is a consequence of the
requirement that effective lengths are additive,
whereas probabilities along multistep paths are
multiplicative. Eq. 4 defines a quasi-distance,which
is generally asymmetric, i.e., dmn ≠ dnm. The lack
of symmetry is analogous to a road network of one-
way streets, where the shortest distance fromA toB
may differ from the one from B to A. This asym-
metry captures the effect that a randomly seeded
disease in a peripheral node of the network has a
higher probability of being transmitted to a well-
connected hub than vice versa (figs. S8 to S10).
More properties of effective distance as defined
by Eq. 4 are discussed in the supplementary text.
On the basis of effective distance, we can define
the directed length lðGÞ of an ordered path

G ¼ fn1,…,nLg as the sum of effective lengths
along the legs of the path. Moreover, we define
the effective distance Dmn from an arbitrary ref-
erence node n to another node m in the network
by the length of the shortest path from n to m:

Dmn ¼ min
G

lðGÞ ð5Þ
Again, we typically haveDmn ≠ Dnm. From

the perspective of a chosen origin node n, the set
of shortest paths to all other nodes constitutes a
shortest path treeYn (Fig. 2A), illustrating themost
probable sequence of paths from the root node n
to the other nodes.

Effective Distance Perspective Reveals
Hidden Pattern Geometry
The key question is how, compared to the con-
ventional geographic representation, the same
spreading process evolves on the shortest path
tree. Figure 2B portrays this comparison. We see
that the effective distance representation has no-
table advantages: It reveals simple coherent wave
fronts, whereas spatiotemporal patterns in geo-
graphical space are complex, incoherent, and hard

to understand. This is a generic feature that is
robust against variations in epidemic parameters
and true for any choice of the OL (figs. S11 and
S12). Using effective distance, one can thus cal-
culate the spreading speed and arrival times of a
disease, and determine functional relationships
between epidemiological and mobility parameters.
The dynamic simplicity in the new representation
is much more than just a trivial visual rearrange-
ment of the spatiotemporal pattern. Simple prop-
agating waves in the new perspective imply that
the contagion process is dominated by most prob-
able paths, as this is the underlying assumption in
the derivation of Eq. 5. Also, effective distance
and the shortest path trees only depend on the
static mobility matrix P. This implies that, on a
spatial scale described by the metapopulation
model (Eq. 3), the complexity of the spatiotemporal
pattern is largely determined by the structure of
the mobility component in Eq. 3 and not by the
nonlinearities or the disease-specific, epidemio-
logical rate parameters of the model.

Figure 2C presents the correlation of arrival
times Ta with effective distances Deff for the
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Fig. 2. Understanding global contagion phenomena using effective
distance. (A) The structure of the shortest path tree (in gray) from Hong Kong
(central node). Radial distance represents effective distance Deff as defined by
Eqs. 4 and 5. Nodes are colored according to the same scheme as in Fig. 1A. (B)
The sequence (from left to right) of panels depicts the time course of a simulated
model disease with initial outbreak in Hong Kong (HKG), for the same param-
eter set as used in Fig. 1B. Prevalence is reflected by the redness of the symbols.
Each panel compares the state of the system in the conventional geographic
representation (bottom) with the effective distance representation (top). The
complex spatial pattern in the conventional view is equivalent to a homoge-

neous wave that propagates outwards at constant effective speed in the effective
distance representation. (C) Epidemic arrival time Ta versus effective distance
Deff for the same simulated epidemic as in (B). In contrast to geographic distance
(Fig. 1C), effective distance correlates strongly with arrival time (R2 = 0.973), i.e.,
effective distance is an excellent predictor of arrival times. (D and E) Linear
relationship between effective distance and arrival time for the 2009 H1N1
pandemic (D) and the 2003 SARS epidemic (E). The arrival time data are the
same as in Fig. 1, D and E. The effective distance was computed from the proj-
ected global mobility network between countries. As in the model system, we
observe a strong correlation between arrival time and effective distance.
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simulation shown in Fig. 2B. Compared to Fig. 1C,
this demonstrates that effective distance generates
a much higher correlation than geographic dis-
tance (R2

eff ¼ 0:97 compared to R2
geo ¼ 0:34; see

tables S2 and S3 and fig. S12 for more examples).
Furthermore, the relationship of Ta and Deff is
linear, which means that the effective speed veff =
Deff /Ta of the wavefront is a well-defined con-
stant. To compare the regression quality, we com-
puted the distribution of relative residuals r =
dTa/Ta, using effective or geographic distance as a
regressor. The ratio of residual variances implies
a more than 50-fold higher prediction quality
(table S3 and fig. S13).

Although we have demonstrated the clear
linear functional relationship for simulated, hy-
pothetical scenarios of global disease spread, it
is crucial to test the validity and usefulness of
the effective distance approach on empirical data.
Figure 2, D and E, depict arrival time versus ef-
fective distance on the basis of data for the 2009
H1N1 pandemic and the global 2003 SARS epi-
demic, respectively (figs. S14 to S16 and table S4).
Arrival times are the same as in Fig. 1, D and E,
but shown across effective rather than geographic
distances. As the empirical data are available on a
country resolution, we determined the traffic be-
tween countries by aggregation to specify a coarse-
grained network (GMNc) (189 nodes, 5004 links)
and effective distances from the origin location
in each case (see supplementary text for details).

Both the H1N1 and SARS data exhibit a clear
linear relationship between arrival time and ef-
fective distance from the source, even though
additional factors complicate the spreading of
real diseases. Fluctuations, effects due to coarse
graining, and errors in arrival-time measurements
can add noise to the system, which increases the
scatter in the linear relationship. To address the
general validity of the observed effects, we also
analyzed data generated by the global epidemic
and mobility model (GLEAM) (www.gleamviz.
org), a sophisticated epidemic simulation frame-
work (21). GLEAM incorporates air transporta-
tion and local commuter traffic on a global scale,
is fully stochastic, and permits the simulation of
infectious state–dependent mobility behavior, clin-
ical states, antiviral statement, and more. The re-
sults of this analysis are shown in figs. S17 to
S19 and are consistent with our claims.

Relative Arrival Times Are Independent
of Epidemic Parameters
Our results reveal an important, approximate
relationship between the system parameters,
which can be summarized as follows:

Ta ¼ Deff ðPÞ
︸eff : distance

=veff ða,R0,g,eÞ
︸eff : speed

ð6Þ

This equation states that arrival times can be
computed with high fidelity based on the ef-

fective distances Deff and effective spreading
speed veff, and that each factor depends on dif-
ferent parameters of the dynamical system. The
epidemiological parameters determine the effec-
tive speed, whereas effective distance depends
only on the topological features of the static
underlying network, i.e., the matrix P. When
confronted with the outbreak of an emergent in-
fectious disease, one of the key problems is that
the disease-specific parameters are typically un-
known in the beginning, and simulations based
on plausible parameter ranges typically exhibit
substantial variability in predicted outcomes.
However, Eq. 6 allows us to compute relative
arrival times without knowledge of these pa-
rameters. If, for example, the outbreak node is
labeled k, while n and m are arbitrary nodes,
then Ta(n|k)/Ta(m|k) =Deff(n|k)/Deff(m|k). Equa-
tion 6 states that the effective speed veff is a
global property, independent of the mobility net-
work and the outbreak location. Thus, irrespec-
tive of mobility and OL, one can investigate
how the effective speed depends on rate param-
eters of the system.

Origin of Outbreak Reconstruction Based on
Effective Distance
The concept of effective distance is particularly
valuable for solving the aforementioned in-
verse problem: Given a spatially distributed
prevalence pattern that was generated by an
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Fig. 3. Qualitative outbreak reconstruction based on effective distance.
(A) Spatial distribution of prevalence jn(t) at time T = 81 days for OL Chicago
(parameters b = 0.28 day–1, R0 = 1.9, g = 2.8 × 10–3 day–1, and e = 10–6).
After this time, it is difficult, if not impossible, to determine the correct OL from
snapshots of the dynamics. (B) Candidate OLs chosen from different geographic
regions. (C) Panels depict the state of the system shown in (A) from the

perspective of each candidate OL, using each OL’s shortest path tree represen-
tation. Only the actual OL (ORD, circled in blue) produces a circular wavefront.
Even for comparable North American airports [Atlanta (ATL), Toronto (YYZ), and
Mexico City (MEX)], the wavefronts are not nearly as concentric. Effective
distances thus permit the extraction of the correct OL, based on information on
the mobility network and a single snapshot of the dynamics.
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underlying, and potentially hidden, spreading
mechanism, how can we determine the most
likely initial outbreak location (33, 34)? A crucial
property of the effective distance perspective is
that spreading concentricity (Fig. 2B) is only
observed from the perspective of the actual OL.
Therefore, given a spatiotemporal snapshot of the
spreading dynamics (Fig. 3A), we can represent
the spreading process from the perspective of

candidate OLs (Fig. 3C) and determine the
degree of concentricity of the pattern in effec-
tive distance. Compared to alternative OL can-
didates, the representation for the actual OL
exhibits the most concentric shape, identifying
this node as the correct outbreak location. This
type of qualitative analysis can be made more
systematic by introducing a measure for concen-
tricity. We investigated two conceptually differ-

ent approaches. First, for every one of the 4069
potential outbreak locations n, we computed
the shortest path tree Yn, the effective distance
to all other locations Deff(m|n), and arrival times
Ta(m|n). For each candidate node, we computed
the correlation coefficient c(Ta, Deff) of effective
distance and arrival time for candidate location
n. This approach should yield the highest cor-
relation when n is the actual outbreak location.
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Fig. 4. Quantitative outbreak reconstruction based on effective dis-
tance. (A) Correlation-based outbreak reconstruction using arrival-time data
for the 2009 H1N1 pandemic. For each country n as a potential source, we
computed the correlation coefficient c(Ta, Deff) of arrival time Ta(m|n) and
effective distance Deff(m|n). According to our analysis, high correlation implies
a concentric pattern from the chosen node. The panel depicts c(Ta, Deff) as a
function of rank. Mexico (followed by the United States) exhibits the largest
correlation, consistent with the known outbreak scenario. (B) Correlation rank
diagram for the 2003 SARS epidemic analogous to (A). Here, China is correctly
identified as the source. (C) Sequence of panels depicting an alternative out-
break reconstruction technique based on temporal snapshots in the scenario
of a simulated pandemic with outbreak in Chicago (ORD) with parameters
identical to those used in Fig. 3. At each time, we computed the mean mF and
variance sF of effective distance (see text) from each potential OL to the
wavefront. A combined lowmean and variance are equivalent to a high degree
of concentricity. The red symbol corresponds to the actual OL, which is clearly

separated from the point cloud. Symbol size quantifies total traffic per node.
(D) Along the same lines as in (C), the panels depict data pairs (mF, sF) for
all countries as outbreak candidates for the H1N1 pandemic during four
different weeks of the pandemic. As described in the text, we used a course-
grained, country-resolution global mobility network (GMNc). Although the
actual outbreak location does not separate from the main point cloud as
much as in the simulated scenario, the actual outbreak location is never-
theless identified as the point with minimum combined (mF, sF), except for the
last time frame where the approach would identify the United States as the
source. (E) Outbreak reconstruction for the 2011 EHEC-HUS outbreak, using a
model and data for food distribution among 412 districts in Germany as the
underlying network. The actual district Uelzen is correctly identified in all but
the last time windows. For all times, however, some other locations possess
comparatively low values of (mF, sF) as well. Although this makes definite
source identification difficult, it substantially reduces the number of potential
outbreak locations.
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As expected, this is the case for the H1N1 and
SARS data sets (Fig. 4, A and B). However,
this approach requires knowledge of the entire
time course of the epidemic, e.g., arrival times
at all locations, which is typically not available
in real situations. Therefore, we used an alter-
native approach, mathematically similar to sur-
face roughness characterization (35), that only
requires dynamic information in a small time
window, e.g., one snapshot of the spreading pat-
tern. For each of the potential candidate outbreak
locations, we computed the effective distance
to the subset of nodes with prevalence above a
certain threshold, e.g., the red symbols in the
patterns of Fig. 3A or Fig. 1B. On the basis of
this set of effective distances (denoted by F),
we compute the mean mF(Deff) and standard de-
viation sF(Deff). Concentricity increases with a
combined minimization of mean and standard
deviation (supplementary text). Figure 4C de-
picts the distribution of ensemble-normalized
pairs [mF(Deff), sF(Deff)] for a simulated scenario
at four different times. For all time points, the
actual outbreak location is well separated from
the remaining point cloud and closest to the
origin. This shows that the effective distance
perspective is unique from the actual outbreak
location and that knowledge of a temporal snap-
shot of the spreading state combined with knowl-
edge of the underlying mobility network is a
powerful tool for outbreak reconstruction.

Although ourmethodworkswell for simulation-
generated data (i.e., disease dynamics generated
by Eq. 3), real data pose additional challenges: (i)
Data are subject to inaccuracies and incomplete-
ness in prevalence counts; (ii) fluctuations, not
captured explicitly by our model, may play a par-
ticular role during the onset of an epidemic; and
(iii) response and mitigation measures that can
change the time course of disease dynamics are not
accounted for by our model. Therefore, to assess
the applicability of our approach in a realistic con-
text, we validated the effective distance method
using data on the 2009 H1N1 pandemic and the
2011 outbreak of food-borne enterohemorrhagic
Escherichia coli (EHEC)O104:H4/HUS inGermany
with ~4000 cases and 53 deaths. Although the
application to the H1N1 pandemic is a proof-of-
concept application, as finding the spatial origin
on a country resolution was actually not the prob-
lem that we investigated here, reconstructing the
spatial outbreak origin during the EHEC-HUS epi-
demic (district Uelzen inNorthernGermany) was
notoriously difficult because of the spatial inco-
herence of reported cases. For the application to
H1N1, we used data of the worldwide prevalence
count by country in weeks 14 to 30 of 2009 (36).
For EHEC-HUS,we constructed a network of food
distribution in Germany using a gravity model
for transportation networks (37). For the spatial
prevalence, we used data on case counts per dis-
trict in Germany (38).

Figure 4D illustrates the results for H1N1.
In analogy to Fig. 4C, we use four distinct time
windows (weeks 24, 26, 27, and 29). Themethod

successfully identifies Mexico as the source of
this event, even though the time windows cover a
2-month period when the pandemic’s peak prev-
alence had already reached a broad geographical
distribution (fig. S16). Only as late as week 29,
another country (the United States) is incorrectly
identified as the likely outbreak location.

Figure 4E depicts the analogous results for
the 2011 EHEC-HUS epidemic, where disease
spreading was promoted not by air transporta-
tion, but by food transport. The nodes in the net-
work are 412 administrative districts in Germany,
coupled by the food supply network of the coun-
try. As time windows, we chose weeks 3 to 6
after onset. For this epidemic, a local farm in
Bienenbüttel, district Uelzen, was later identi-
fied as the source of contaminated sprouts (38).
On the basis of prevalence distribution in the
entire country, the effective distance method cor-
rectly identifies district Uelzen as the most like-
ly geographic source. However, in this case, the
separation in the mean/standard deviation dia-
gram is not as pronounced as for disease spread
by air passenger flows. Nevertheless, although
the method cannot identify the OL with full reli-
ability here, it dramatically reduces the set of
potential origin locations.

In both real-world scenarios—the 2011 EHEC/
HUS epidemic and the 2009 H1N1 pandemic—
the OL reconstruction works surprisingly well,
despite the intrinsic fluctuations and the low-
incidence regime. The unexpected degree of pre-
dictability indicates that the set of links in the
network contributing the shortest paths accumu-
lates a substantial fraction of the overall transmis-
sion probability (and that this set is almost identical
from the perspective of all nodes; fig. S20).

Discussion
In summary, the analysis of global disease dy-
namics in the framework of effective distances
enables researchers to understand complex con-
tagion dynamics in multiscale networks with
simple reaction-diffusion models. Given fixed
values for epidemic parameters, our analysis
shows that network and flux information are
sufficient to predict the dynamics and arrival
times. The method is a promising starting point
for more detailed investigations, including the
functional dependencies of key epidemic variables
such as the spreading speed and related macro-
scopic quantities on epidemiological parameters.
The successful application to real epidemic data
suggests that our method is also of practical use.
Finally, it seems promising to generalize the ef-
fective distancemethod to other contagion phenom-
ena, such as human-mediated bioinvasion and the
spread of rumors or violence, a subject of ever-more
importance in an increasingly connected society.
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