
ContainerODM&C
Course titleCourse title

● Open Data Management & the Cloud
● (Data Science & Scientific Computing / UniTS – DMG)

CC Lecture - Containers

ContainerODM&C 2/

Traditional service deliveryDependency hell!

ContainerODM&C 3/

★ A container is a standard unit of software that

packages up code and all its dependencies in

processes isolated from resources so the

application runs quickly and reliably from one

computing environment to another.

★ Containers creates portable isolated

environments at application level and not at

server level.

Traditional service deliveryWhat are containers?

ContainerODM&C 4/

Traditional service deliveryDependency hell with containers

ContainerODM&C 5/

Traditional service deliveryHow does a container work?

ContainerODM&C 6/

Traditional service deliveryHow does a container work?

Container Container

ContainerODM&C 7/

★ Virtual Machines are able to run different Operative Systems

★ Container Engine: abstraction and isolation level between OS and applications

environment. Enables and disables containers. Packages applications and their

environment

★ Containers virtualize at the OS level, with multiple containers running atop the OS

kernel directly. Containers are far more lightweight: they share the OS kernel, start

much faster, and use a fraction of the memory compared to booting an entire OS

Traditional service deliveryContainers vs Virtual Machines

Server

Virtual Machine Container

Server

Host OS Kernel

Hypervisor

Guest
OS

Guest
OS

Guest
OS

bin/lib/
mod

bin/lib/
mod

bin/lib/
mod

appapp

app

Host OS Kernel

Contain
er

Contain
er

Contain
er

bin/lib/
mod

app
bin/lib/

mod

app
bin/lib/

mod

app

bin/lib/
mod

Container Engine

ContainerODM&C 8/

★ Process Isolation and sandbox

★ A namespace: wraps a global system resource in an abstraction that

makes it appear to the processes within the namespace that they have their own

isolated instance of the global resource. Changes to the global resource are visible to

other processes that are members of the namespace, but are invisible to other

processes.

★ Cgroups: limit, police and

account the resource usage for a set

of processes.

Traditional service deliveryContainers technology

ContainerODM&C 9/

★ Isolation Containers virtualize CPU, memory, storage, and network

resources at the OS-level, providing developers with a sandboxed view of

the OS logically isolated from other applications. Developers, using

containers, are able to create predictable environments isolated from

other applications.

★ Productivity enhancement Containers can include software

dependencies needed by the application (specific versions of

programming language runtimes, software libraries) guaranteed to be

consistent no matter where the application is deployed. All this translates

to productivity: developers and IT operations teams spend less time

debugging and diagnosing differences in environments, and more time

shipping new functionality for users.

Traditional service deliveryContainers advantages (1)

ContainerODM&C 10/

★ Deployment simplicity containers allow your application as a

whole to be packaged, abstracting away the operating system, the

machine, and even the code itself, so development and deployment are

easier because containers are able to run virtually anywhere (Linux,

Windows, and Mac operating systems; virtual machines or bare metal;

developer’s machine or data centers on-premises; public cloud).

★ Easy portability Docker image format for containers further helps

with portability. Docker V2 image manifest is a specification for container

images that allows multi-architecture images and supports

content-addressable images

Traditional service deliveryContainers advantages (2)

ContainerODM&C 11/

★ Operational efficiency and reliability Containers are

perfect for Service Oriented Architectures/Applications because each

service limited to specific resources can be containerized. Separate

services can be considered as black boxes.

− This arises efficiency because each container can be health checked
and started/stopped when needed independently from others

− Reliability arises because separation and division of labor allows each
service to continue running even if others are failing, keeping the
application as a whole more reliable

Traditional service deliveryContainers advantages (3)

ContainerODM&C 12/

★ Easy Versioning A new container can be packaged for each new

application version including all needed dependencies, modules and

libraries at the “right” version

★ Security Containers add an additional layer of security since the

applications aren't running directly on the host operating system. There are

security constraint if application running inside containers have root

privileges

Traditional service deliveryContainers advantages (4)

ContainerODM&C 13/

★ Container images are lightweight,

standalone, executable package of software

that includes everything needed to run an

application: code, runtime, system tools,

system libraries and settings.

★Container images become containers at

runtime

Traditional service deliveryWhat are container images?

ContainerODM&C 14/

Traditional service deliveryContainer image hierarchy

ContainerODM&C 15/

★ Java example

− /usr/lib/jvm/java-1.7.0-openjdk

− /usr/lib/jvm/java-1.8.0-openjdk
 => /etc/alternatives/java_sdk -> /usr/lib/jvm/java-1.7.0-openjdk

★ Python example

− /usr/lib64/python2.7

− /usr/lib64/python3
 => virtualenv
 => conda and anaconda

Traditional service deliveryMultiple software version issue (1)

ContainerODM&C 16/

 $ python -V

Python 2.7.12 :: Continuum Analytics, Inc.

� If you install a packege SomePackage, it will install on python 2.7 path

� /usr/lib64/python2.7/site-packages/orca

� If later you will need to build a software with python3 and this software

need an orca library, you will not be able to compile because orca library

is installed for python2.7

�Moreover, this is not an easy problem to debug

� Other issue: unintentionally upgrade an application that shouldn’t be

upgraded breaking another application

Traditional service deliveryMultiple software version issue (2)

ContainerODM&C 17/

★Python “Virtual Environments” allow Python packages to
be installed in an isolated location for a particular
application, rather than being installed globally.

★Virtual environments have their own installation
directories and they don’t share libraries with other
virtual environments.

Traditional service deliveryOne solution: Virtual Environments

ContainerODM&C 18/

★ Dockerfile to create a container packaging a specific

python version and the application

Traditional service deliveryThe final solution: Containers

ContainerODM&C 19/

★ Difficult management in case of hosted

containers high number

★OS sharing is prone to errors/instability

Traditional service deliveryContainers disadvantages

ContainerODM&C 20/

★ There are many container formats available. Examples:

− Docker is a popular, open-source container format that is supported on
Google Cloud Platform and by Google Kubernetes Engine.

− Singularity: Singularity containers can be used to package entire
scientific workflows, software and libraries, and even data

 ==> Singularity software can import your Docker images without having
 Docker installed or being a superuser

Traditional service deliveryContainer formats

ContainerODM&C 21/

★ Docker is a containerization platform that packages your

application and all its dependencies together in the form of a

docker container to ensure that your application works

seamlessly in any environment.

★ Docker Container is a standardized unit which can be

created on the fly to deploy a particular application or

environment. It could be an Ubuntu container, CentOs

container, etc. to full-fill the requirement from an operating

system point of view.

Traditional service deliveryDocker

ContainerODM&C 22/

Verify your PC supports virtualization and specifically HyperV
Install from docker.com
Simple commands:
> docker version
> docker images
Run a simple “hello world!” program:
> docker run hello-world
Docker verifies if it is a local image with this name and if so, it runs it,
elsewhere it tries to automatically download it:

Traditional service deliveryHow to use Docker

ContainerODM&C 23/

[bertocco@firiel containers]$ docker run hello-world
Unable to find image 'hello-world:latest' locally
Trying to pull repository docker.io/library/hello-world ...
latest: Pulling from docker.io/library/hello-world
d1725b59e92d: Pull complete
Digest:
sha256:0add3ace90ecb4adbf7777e9aacf18357296e799f81cabc9fde47
0971e499788
Status: Downloaded newer image for docker.io/hello-world:latest

Traditional service deliveryDocker image creation

ContainerODM&C 24/

Hello from Docker!
This message shows that your installation appears to be working correctly.
To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (amd64)
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.
To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash
Share images, automate workflows, and more with a free Docker ID:
 https://hub.docker.com/
For more examples and ideas, visit:
 https://docs.docker.com/get-started/

Traditional service deliveryImage creation welcome message

ContainerODM&C 25/

> docker run --help (i=interactive t=terminal)
> docker run -it ubuntu (run ubuntu, minimized version, also in windows
shell)
Now we are in ubuntu shell. Try `ls` to check the filesystem
> docker run –it –name ubuntu my_ubuntu (gives a name)
> docker ps (shows available containers)
> docker attach my_ubuntu (to enter, use also the container ID)
> exit (exits and closes, verify `docker ps`)
> docker images (shows all downloaded images)
> docker rmi (-f) hello-world

Traditional service deliveryDocker simple commands

ContainerODM&C 26/

https://github.com/HermantNET/hello-system

Traditional service deliveryHow to create your image

https://github.com/HermantNET/hello-system

ContainerODM&C 27/

> git clone https://github.com/HermantNET/hello-system
Navigate to docker hub: https://hub.docker.com
Look for the Node package (we are working on a Node application)
“How to use this image” => “Create your dockerfile”
> cat .Dockerfile (the name is important)
specify the node base image with your desired version node:<version>
FROM node:4-onbuild
replace this with your application's default port
EXPOSE 80

Traditional service deliveryDockerfile

https://github.com/HermantNET/hello-system
https://hub.docker.com/

ContainerODM&C 28/

You can then build and run the Docker image:

> docker build t hello-system .

> docker run -it --rm --name my_running-app
hello-system

Bind a local port:

docker run -it p <localport>:<containerport> <name>
<imagename>

> docker run -it -p 3377:80 –name hi –hello-system

Check: localhost:3377

Traditional service deliveryRun your image (1)

ContainerODM&C 29/

If you prefer Docker Compose:
version: "2"
services:
 node:
 image: "node:8"
 user: "node"
 working_dir: /home/node/app
 environment:
 - NODE_ENV=production
 volumes:
 - ./:/home/node/app
 expose:
 - "80"
 command: "npm start"
You can then run using Docker Compose:
$ docker-compose up -d
Docker Compose example copies your current directory (including
node_modules) to the container. It assumes that your application has a
file named package.json defining start script.

Traditional service deliveryRun your image (2)

ContainerODM&C 30/

Traditional service deliveryDockerfiles

ContainerODM&C 31/

★Docker Registry is where the Docker Images are stored.

The Registry can be either a user’s local repository or a

public repository like a Docker Hub allowing multiple users

to collaborate in building an application. Even with

multiple teams within the same organization can

exchange or share containers by uploading them to the

Docker Hub.

★Docker Hub is Docker’s very own cloud repository similar

to GitHub.

Traditional service deliveryDocker Registry & Docker Hub

ContainerODM&C 32/

Traditional service deliveryDocker Architecture

ContainerODM&C 33/

★Volumes are the preferred mechanism for persisting data

generated by and used by Docker containers.

★Volumes are completely managed by Docker.

Traditional service deliveryDocker volumes

docker run -d --name devtest -v myvol2:/app nginx:latest

ContainerODM&C 34/

★The cluster management and orchestration features

embedded in the Docker Engine are built using swarmkit

Traditional service deliveryDocker swarm

$ docker swarm init

ContainerODM&C 35/

★Docker specialization is massive horizontal scaling each

environment can be composed from many different

containers and each container can be a database, a JS

installation, if you need more resources, Docker responds

with instances of what you need

Traditional service deliveryDocker scaling

ContainerODM&C 36/

 Kubernetes, or k8s (k, 8 characters, s), or “kube” is an

open source platform that automates Linux container

operations.

Groups of hosts running Linux containers can be

clustered spanning hosts across public, private, or hybrid

clouds and Kubernetes helps to easily and efficiently

manage those clusters.

Kubernates

ContainerODM&C 37/

 Kubernates is a platform to schedule and run containers

on clusters of physical or virtual machines
★ Orchestrate containers across multiple hosts.

★ Make better use of hardware to maximize resources needed to run the

enterprise apps.

★ Control and automate application deployments and updates.

★ Mount and add storage to run stateful apps.

★ Scale containerized applications and their resources on the fly.

★ Declaratively manage services, which guarantees the deployed

applications are always running how you deployed them.

★ Health-check and self-heal your apps with autoplacement, autorestart,

autoreplication, and autoscaling.

Kubernates features

ContainerODM&C 38/

Kubernates in production

Host

Nod
e

Nod
e

Kubernetes

Host OS

