
Introduction to Bash
Course titleCourse title

Bash Lecture 1
Bash and Linux command line introduction

Introduction to bash 2/39

★ Bibliography:

https://www.rigacci.org/docs/biblio/online/sysadmin/toc.htm

https://www.tldp.org/LDP/abs/html/

★ Learning Materials:

http://www.ee.surrey.ac.uk/Teaching/Unix/

https://github.com/bertocco/abilita_info_units_2021

Traditional service delivery
Bibliography and learning materials

https://www.rigacci.org/docs/biblio/online/sysadmin/toc.htm
https://www.tldp.org/LDP/abs/html/

Introduction to bash 3/39

★ How the shell works with you and linux

★ Features of a shell

★ Manipulating the shell environment

Traditional service delivery
Arguments of this lesson

Introduction to bash 4/39

★ SHELL is the human interface point for UNIX

SHELL is a program layer that provides an environment
to enter commands and parameters to produce a given
result.

To meet varying needs, UNIX has provided different
shells.

● Bourne (sh)
● Bourne Again (bash)
● Korn (ksh)

Traditional service delivery
What is a shell?

● C shells (csh)
● TC-Shell (tcsh)
● Z shell (zsh)

Introduction to bash 5/39

★ They differ in

– the various options they give the user to
manipulate the commands

– the complexity and capabilities of the scripting
language.

Traditional service delivery
Shell differences

Introduction to bash 6/39

★Flexible

★ More friendly than others

★The default in the most part of linux distributions

Traditional service delivery
Why bash?

Introduction to bash 7/39

★ General form of a command:

 command [flags] [argument1] [argument2] …

 Example:

 `ls -a -l` or `ls -al`

 `ls -al mydir`

Traditional service delivery
UNIX commands (1)

argument
flag

command

Introduction to bash 8/39

★ Arguments can be optional or mandatory

★ All commands have a return code (0 if OK)

 Read return code: `echo $?`

 The return codes can be used as part of control
 logic in shell scripts

★ All UNIX commands have an help:
`man command` or `man <number> command

Traditional service delivery
UNIX commands

Introduction to bash 9/39

★ Arguments can be optional or mandatory
Exercise: Try

– create the folder

mkdir myFolder

– jump inside the created folder

cd myFolder

– create two files

touch pippo pluto

– jump outside the folder

cd ..

– list the content of the folder where you are

ls Argument NOT mandatory. Optional

– list a specific folder content

ls myFolder

Traditional service delivery
UNIX commands

Introduction to bash 10/39

★ Arguments can be optional or mandatory
Exercise: Try

– create a folder

mkdir testFolder

– create (inside the folder) one or two files inside the folder

cd testFolder ; touch filePippo ; touch filePluto

– or: cd testFolder ; touch filePippo filePluto

– inside the folder try the command to remove files (without arguments)

pwd # to be sure to be in the folder

rm

– An argument (indicating the file to remove) is mandatory

rm filePippo # remove only the indicated file

rm * # remove all files

Traditional service delivery
UNIX commands

Introduction to bash 11/39

★ All commands have a return code (0 if OK)

 Read return code: `echo $?`

 The return codes can be used as part of control
 logic in shell scripts

Exercise: try

ls

echo $? # the result will be 0 : correct command

rm

echo $? # the result will be 1: command failure

Traditional service delivery
UNIX commands

Introduction to bash 12/39

★ All UNIX commands have an help:
`man command` or
`man <number> command

Example:

man ls

man wait

man 7 signal

Traditional service delivery
UNIX commands

Introduction to bash 13/39

Traditional service delivery
`ls` help

Introduction to bash 14/39

Traditional service delivery
`wait` help

Introduction to bash 15/39

★ All commands:
– accept inputs from the standard input,

is where UNIX gets the input for a command

– display output on standard output

is where UNIX displays output from a command

– display error message on standard error

is where UNIX displays any errors as a result of the
execution of a command

★ UNIX has redirection capabilities: to redirect
one or more of these (see “advanced bash” lesson)

Traditional service delivery
UNIX commands (2)

Introduction to bash 16/39

Traditional service delivery
`ls` (1)

`ls` can be used to inquire about the various
attributes of one or more files or directories.
You must have read permission to a directory to be

able to use the ls command on that directory and the
files under that directory.

The `ls` command generates the output to standard
output, which can be redirected, using the UNIX
redirection operator >, to a file.

Introduction to bash 17/39

Traditional service delivery
`ls` (2)

You can provide the names of one or more filenames or
directories to the ls command. The file and directory
names are optional. If you do not provide them, UNIX
processes the current directory.
Be default, the list of files within a directory is sorted by

filename. You can modify the sort order by using some of
the flags.
You should also be aware that the files starting with .

(period) will not be processed unless you use the -a flag
with the ls command. This means that the entries .
(single period) and .. (two consecutive periods) will not
be processed by default.

Introduction to bash 18/39

Traditional service delivery
`ls`: Exercices

– Try and understand differences:
ls; ls -l; ls -al
– Try and understand differences:

ls -trl; ls -tl

- Try an output redirection:

ls -l > myfileout.txt

Introduction to bash 19/39

Traditional service delivery
File manipulation commands File manipulation commands

It exists a set of file manipulation commands to manage files and directories.

To use these commands, the user needs to have right on the file to manage.

drwxrwxr-x 2 bertocco bertocco 20480 Dec 14 09:00 BACKUP

 owner group size last_access_date file-name

drwxrwxr-x permissions representation:

 d means it is a directory (- for a file)

 rwx means readable, writable, executable by owner

 rwx readable, writable, executable by group

 r-x readable, NOT writable, executable by

Introduction to bash 20/39

Traditional service delivery
File manipulation commands File Permissions

Understand the meaning of:

drwxrwxr-x 2 bertocco bertocco 4096 Apr 26 2018 config

-rw-rw-r-- 1 bertocco bertocco 10240 Mar 13 2017 config.tar

-rw------- 1 bertocco bertocco 960065536 Dec 3 22:02 core.3040

-rw-rw-r-- 1 bertocco bertocco 7290880 May 8 2017 demo_EGIconf.tar

drwxr-xr-x. 4 bertocco bertocco 4096 Dec 7 15:57 Desktop

drwx------. 12 bertocco bertocco 4096 Aug 13 19:01 dev

drwxr-xr-x. 14 bertocco bertocco 4096 Nov 28 17:18 Documents

drwxr-----. 13 bertocco bertocco 8192 Dec 10 12:35 Downloads

drwxrwxr-x 2 bertocco bertocco 147 Apr 24 2018 exchange

-rw-r--r-- 1 bertocco bertocco 181 Apr 13 2017 filmatini_utili.txt

Introduction to bash 21/39

Traditional service delivery
File manipulation commands Change File Permissions (1)

 Chenge read permission (similarly for write ‘w’ and execute ‘x’):

-rw-rw-r-- 1 bertocco bertocco 0 Dec 14 15:30 pippo

 $ chmod -r pippo # remove all read permissions. Check:

 $ ls -l pippo

 --w--w---- 1 bertocco bertocco 0 Dec 14 15:30 pippo

 $ chmod +r pippo # add all read permissions, Check:

 $ ls -l pippo

 -rw-rw-r-- 1 bertocco bertocco 0 Dec 14 15:30 pippo

 $ chmod -r pippo # remove a new time all permissions, to restart from

 --w--w---- 1 bertocco bertocco 0 Dec 14 15:30 pippo

 $ chmod u+r pippo # add read permission to user

 $ ls -l pippo

 -rw--w---- 1 bertocco bertocco 0 Dec 14 15:30 pippo

 $ chmod g+r pippo # add read permission to group

 $ ls -l pippo

 -rw-rw---- 1 bertocco bertocco 0 Dec 14 15:30 pippo

 $ chmod a+r pippo # add read permission to all

 $ ls -l pippo

 -rw-rw-r-- 1 bertocco bertocco 0 Dec 14 15:30 pippo

Introduction to bash 22/39

Traditional service delivery
File manipulation commands Change File Permissions (2)

Introduction to bash 23/39

Traditional service delivery
File manipulation commands Main file manipulation commands

Create an empty file in the current path

– `touch testFile` creates a file

Create an empty file in a specified path

– `touch one_dir_more/target_dir/testFile

Create an empty directory in the current path

– `mkdir mydir`

Create an empty directory in the specified path forcing
intermediate folders if needed

– `mkdir -p /onedir/twodir/threedir`

Introduction to bash 24/39

Traditional service delivery
File manipulation commands Main file manipulation commands

* is a UNIX wildcard: here it
matches all files

Delete a single file

– `rm file1`

Delete a single file in the specified path

– rm one_dir_more/target_dir/testFile

Delete all files in the current path

– `rm *`

Delete all files in the specified path

– `rm one_dir_more/target_dir/*`

Delete an empty folder

– `rm myFolder` works only if myFolder is empty

Delete recursively all files and folders contained in myFolder and myFolder itself

– `rm -r myFolder`

Introduction to bash 25/39

Traditional service delivery
File manipulation commands

BE VERY
CAREFUL!!!

Copy file1 on file2

overwrite file2 if already exists create it if it does not exist:

– `cp file1 file2`

Copy file1 on file2, but asking before: “are you sure?”

– `cp -i file1 file2`

Copy file1 on file2 removing the -i flag if set

– `\cp file1 file2`

Rename a file:

– `mv file1 file2` moves file1 on file2

same result using two commands (but less neat)

– `cp file1 file2`; `rm file1` # but not the best way

Introduction to bash 26/39

Traditional service delivery
File manipulation commands
Main file manipulation commands:
summary

BE VERY
CAREFUL!!!

– `touch` creates a file

– `mkdir mydir` creates a directory (where you are)

– `mkdir -p /onedir/twodir/threedir`

– `rmdir mydir` delete an empty directory

– `rm -rf` force to recursively delete a non empty directory

– `cp file1 file2` copy file1 on file2 (overwriting it if already exists,

 creating file2 if it does not exist)

– `cp -i file1 file2` before copy asks “are you sure?”

– `\cp file1 file2` remove the -i flag if set

– `rm file1` removes file1

– `mv file1 file2` moves file1 on file2 # it is the same of :

– `cp file1 file2`; `rm file1`

Introduction to bash 27/39

– Create a file

– Create a directory

– Create a directory tree

– Create files in the directory tree

– Remove a file

– remove a directory (emprty and not empty)

– remove a directory tree (emprty and not empty)

– Rename a file

Traditional service delivery
File manipulation commands: Exercises

Introduction to bash 28/39

Traditional service delivery
`cat`

`cat` is used to display a text file or to concatenate
multiple files into a single file.

By default, the cat command generates outputs into the
standard output and accepts input from standard input.

 The cat command takes in one or more filenames as its
arguments. The files are concatenated in the order they
appear in the argument list.

Introduction to bash 29/39

Traditional service delivery
`cat`: Exercices

– Display file on a terminal

cat testfile

– concatenate multiple files for display on the terminal

cat testfile1 testfile2 testfile3

– concatenate these files into a file called testfile, use the
redirection operator > as follows:

cat testfile1 testfile2 testfile2 > testfile

– If the file testfile already exists, it is overwritten with the
concatenated files testfile1, testfile2 and testfile3. If testfile
already exists and you want to concatenate at the end of the
existing file, instead of using the redirection operator >, you must
use the >> (two consecutive greater than sign) operator as
follows:

cat testfile1 testfile2 testfile2 >> testfile

Introduction to bash 30/39

`ln`

`ln` provides alternate names for the same file.

It links a file name to another one and it is possible to link a file to
another name in the same directory or the same name in another
directory.

The flags that can be used with the ln command are as follows:

-s to create a soft link to another file or directory. In a soft link, the
linked file contains the name of the original file. When an
operation on the linked filename is done, the name of the original
file in the link is used to reference the original file.

-f to ensure that the destination filename is replaced by the linked
filename if the file already exists. Remove destination files, if
existing

Introduction to bash 31/39

`ln`: hard link

Hard link (ln without flags):

ln sourceFile targetFile

The hard link refers directly to the physical location of another
file. It points to the same “node” in the filesystem that the
original file points to

The hard link acts like a mirror of the original file. The content
pointed by the two names is synchronized

When the source of the link “sourceFile” is moved or
removed, the hard link still refer to the source

The hard link cannot refer to a directory and cannot cross file
system boundaries (ex.: can not link a file in a mounted
removable disk from home)

Introduction to bash 32/39

`ln -s`: soft/symbolic link
Soft/symbolic link (ln with flag s):

ln -s sourceFile targetFile

A symbolic link is a symbolic path indicating the location of
the source file. It is some way an alias to a file-name.

A symbolic link can refer to a directory

A symbolic link can cross file system boundaries (can link a
file in a mounted removable disk from home).

If the sourceFile of the link is moved or removed, then the
symbolic link is not updated (the ‘alias’ results broken).

Introduction to bash 33/39

`ln`: hard link vs soft/symbolic link
Create a simple source file

➢ create a hard link

➢ create a soft link

➢ inspect the content of the hard link

➢ inspect the content of the soft link:

contents are the same

Introduction to bash 34/39

`ln`: hard link vs soft/symbolic link
Modify the source file

➢ inspect the content of the hard link

➢ inspect the content of the soft link:

contents have the same modifications

Introduction to bash 35/39

`ln`: hard link vs soft/symbolic link

list the folder content to check the file status

➢ remove the source file

➢ list the folder content to check the file status

the soft link is broken, the hard link is untouched

Introduction to bash 36/39

Traditional service delivery
`ln`: Exercices
★If you want to link testfile1 to testfile2 in the current directory, execute the

following command:

ln testfile1 testfile2

This creates a hard linked testfile2 linking it to tesftfile1. In this case, if one of
the files is removed, the other will remain unaltered.

★If testfile is in the current directory and is to be linked to testfile in the
directory /u/testuser/testdir, execute the following command:

ln testfile u/testuser/testdir

★To create a symbolic link of testfile1 in the current directory, execute the
following command:

ln -s testfile1 testfile2

This creates a linked testfile2, which will contain the name of testfile1. If you

remove testfile1, you will be left with an orphan testfile2, which points to
nowhere.

Introduction to bash 37/39

★When one or more strings are provided as arguments,
echo by default repeats those stings on the screen.
Example (try)
echo This is a pen.
It is not necessary to surround the strings with quotes,

as it does not affect what is written on the screen. If
quotes (either single or double) are used, they are not
repeated on the screen (try `echo “This is a pen.”`).
★`echo` can also show the value of a particular variable if

the name of the variable is preceded directly (i.e., with no
intervening spaces) by the dollar character ($), which
tells the shell to substitute the value of the variable for its
name. Example (try):
x=5; echo The number is $x.

Traditional service delivery
Command `echo` and strings

Introduction to bash 38/39

★echo This is a pen.

★x=5
echo The number is $x.
echo “The number is $x.”

★Simple backup script
 OF=/home/me/my-backup-$(date +%Y%m%d).tgz
 tar -czf $OF <path>/dir_or_file_to_tar
 ls -l (to check the result)

Traditional service delivery
Command `echo` examples

Introduction to bash 39/39

★ Verify that you are using bash:

echo $SHELL

★Explore help command

type `help`

★ Explore help for `ls` command

type `man command_name`

★List files `ls` or `ls -l` and check differences

★ List all files `ls -al`

★List files by date (direct and reverse order) `ls -trl`

Traditional service delivery
Exercises

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

